1
|
Cyr-Depauw C, Mižik I, Cook DP, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing to Guide Autologous Preterm Cord Mesenchymal Stromal Cell Therapy. Am J Respir Crit Care Med 2025; 211:391-406. [PMID: 39586004 DOI: 10.1164/rccm.202403-0569oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) remains the most common complication of extreme prematurity (<28 wk of gestation). Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) represent an opportunity for autologous cell therapy, as UC-MSCs have been shown to improve lung function and structure in experimental BPD. However, characterization and repair capacity of UC-MSCs derived from donors with pregnancy-related complications associated with prematurity remain unexplored. Objectives: To characterize UC-MSCs' transcriptome and determine if pregnancy-related complications (preeclampsia and chorioamnionitis) alter their therapeutic potential. Methods: Single-cell RNA sequencing was used to compare the transcriptome of UC-MSCs derived from 5 term donors, 16 preterm donors, and human neonatal dermal fibroblasts (control cells of mesenchymal origin) and correlated with their therapeutic potential in experimental BPD. Using publicly available neonatal lung single-nucleus RNA sequencing data, we also determined putative communication networks between UC-MSCs and resident lung cell populations. Measurements and Main Results: Most UC-MSCs displayed a similar transcriptome despite their pregnancy-related conditions and mitigated hyperoxia-induced lung injury in newborn rats. Conversely, human neonatal dermal fibroblasts and one term and two preterm with preeclampsia UC-MSC donors exhibited a distinct transcriptome enriched in genes related to fibroblast function and senescence and were devoid of therapeutic benefit in hyperoxia-induced BPD. Conversely, therapeutic UC-MSCs displayed a unique transcriptome active in cell proliferation and distinct cell-cell interactions with neonatal lung cell populations, including NEGR (neuronal growth regulator 1) and NRNX (neurexin) pathways. Conclusions: Term and preterm UC-MSCs are lung protective in experimental BPD. Single-cell RNA sequencing allows us to identify donors with a distinct UC-MSC transcriptome characteristic of reduced therapeutic potential.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Translational Pulmonology and Translational Lung Research Center Heidelberg, University Hospital Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
| | - Daniel Freund
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Yang J, Yuan J, Wen YQ, Wu L, Liao JJ, Qi HB. Bone marrow mesenchymal stem cells promote uterine healing by activating the PI3K/AKT pathway and modulating inflammation in rat models. World J Stem Cells 2025; 17:98349. [PMID: 39866893 PMCID: PMC11752458 DOI: 10.4252/wjsc.v17.i1.98349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear. However, exploring the specific regulatory roles of BMSCs in uterine injury treatment is crucial for further understanding their functions and enhancing therapeutic efficacy. AIM To investigate the underlying mechanism by which BMSCs promote the process of uterine healing. METHODS In in vivo experiments, we established a model of full-thickness uterine injury and injected BMSCs into the uterine wound. Transcriptome sequencing was performed to determine the enrichment of differentially expressed genes at the wound site. In in vitro experiments, we isolated rat uterine smooth muscle cells (USMCs) and cocultured them with BMSCs to observe the interaction between BMSCs and USMCs in the microenvironment. RESULTS We found that the differentially expressed genes were mainly related to cell growth, tissue repair, and angiogenesis, while the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was highly enriched. Quantitative reverse-transcription polymerase chain reaction was used to validate differentially expressed genes, and the results demonstrated that BMSCs can upregulate genes related to regeneration and downregulate genes related to inflammation. Coculturing BMSCs promoted the migration and proliferation of USMCs, and the USMC microenvironment promoted the myogenic differentiation of BMSCs. Finally, we validated the PI3K/AKT pathway in tissues and cells and showed that BMSCs activate the PI3K/AKT pathway to promote the regeneration of uterine smooth muscle both in vivo and in vitro. CONCLUSION BMSCs upregulated uterine wound regeneration and anti-inflammatory factors and enhanced uterine smooth muscle proliferation through the PI3K/AKT pathway both in vivo and in vitro.
Collapse
Affiliation(s)
- Jing Yang
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang 557300, Guizhou Province, China
| | - Jun Yuan
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Qing Wen
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Wu
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Jiu-Jiang Liao
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong-Bo Qi
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Al-Zeer MA, Lubad MA. Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with Chlamydia trachomatis. J Microbiol Biotechnol 2024; 34:2465-2473. [PMID: 39467689 PMCID: PMC11733544 DOI: 10.4014/jmb.2406.06023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
The intracellular pathogen Chlamydia trachomatis can inflict substantial damage on the host. Notably, Chlamydia infection is acknowledged for its precise modulation of diverse host signaling pathways to ensure cell survival, a phenomenon intricately connected to genetic regulatory changes in host cells. To monitor shifts in gene regulation within Chlamydia-infected cells, we employed mesenchymal stem cells (MSCs) as a naïve, primary cell model. Utilizing biochemical methods and imaging, our study discloses that acute Chlamydia infection in human MSCs leads to the downregulation of transcription factors Oct4, Sox2, and Nanog, suggesting a loss of pluripotency markers. Conversely, pluripotency markers in MSCs were sustained through treatment with conditioned medium from infected MSCs. Additionally, there is an augmentation in alkaline phosphatase activity, along with elevated Sox9 and CD44 mRNA expression levels observed during acute infection. A comprehensive screening for specific cell markers using touchdown PCR indicates an upregulation of mRNA for the early chondrogenesis gene Sox9 and a decrease in mRNA for the MSC marker vimentin. Real-time PCR quantification further corroborates alterations in gene expression, encompassing increased Sox9 and CD44 mRNA levels, alongside heightened alkaline phosphatase activity. In summary, the infection of MSCs with C. trachomatis induces numerous genetic deregulations, implying a potential trend towards differentiation into chondrocytes. These findings collectively underscore a targeted impact of Chlamydia on the gene regulations of host cells, carrying significant implications for the final fate and differentiation of these cells.
Collapse
Affiliation(s)
- Munir A. Al-Zeer
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Abu Lubad
- Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
4
|
Cyr-Depauw C, Cook DP, Mižik I, Lesage F, Vadivel A, Renesme L, Deng Y, Zhong S, Bardin P, Xu L, Möbius MA, Marzahn J, Freund D, Stewart DJ, Vanderhyden BC, Rüdiger M, Thébaud B. Single-Cell RNA Sequencing Reveals Repair Features of Human Umbilical Cord Mesenchymal Stromal Cells. Am J Respir Crit Care Med 2024; 210:814-827. [PMID: 38564376 DOI: 10.1164/rccm.202310-1975oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/04/2024] Open
Abstract
Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.
Collapse
Affiliation(s)
- Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ivana Mižik
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Laurent Renesme
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine and
| | | | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Liqun Xu
- Sinclair Centre for Regenerative Medicine and
| | - Marius A Möbius
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Jenny Marzahn
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Daniel Freund
- Research Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada; and
| | - Mario Rüdiger
- Neonatology and Pediatric Critical Care Medicine, Department of Pediatrics, University Hospital Carl Gustav Carus, and
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Gakhar D, Joshi H, Makkar D, Taneja N, Arora A, Rakha A. Machine learning reveals the rules governing the efficacy of mesenchymal stromal cells in septic preclinical models. Stem Cell Res Ther 2024; 15:289. [PMID: 39256841 PMCID: PMC11389403 DOI: 10.1186/s13287-024-03873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal Stromal Cells (MSCs) are the preferred candidates for therapeutics as they possess multi-directional differentiation potential, exhibit potent immunomodulatory activity, are anti-inflammatory, and can function like antimicrobials. These capabilities have therefore encouraged scientists to undertake numerous preclinical as well as a few clinical trials to access the translational potential of MSCs in disease therapeutics. In spite of these efforts, the efficacy of MSCs has not been consistent-as is reflected in the large variation in the values of outcome measures like survival rates. Survival rate is a resultant of complex cascading interactions that not only depends upon upstream experimental factors like dosage, time of infusion, type of transplant, etc.; but is also dictated, post-infusion, by intrinsic host specific attributes like inflammatory microniche including proinflammatory cytokines and alarmins released by the damaged host cells. These complex interdependencies make a researcher's task of designing MSC transfusion experiments challenging. METHODS In order to identify the rules and associated attributes that influence the final outcome (survival rates) of MSC transfusion experiments, we decided to apply machine learning techniques on manually curated data collected from available literature. As sepsis is a multi-faceted condition that involves highly dysregulated immune response, inflammatory environment and microbial invasion, sepsis can be an efficient model to verify the therapeutic effects of MSCs. We therefore decided to implement rule-based classification models on data obtained from studies involving interventions of MSCs in sepsis preclinical models. RESULTS The rules from the generated graph models indicated that survival rates, post-MSC-infusion, are influenced by factors like source, dosage, time of infusion, pre-Interleukin-6 (IL-6)/ Tumour Necrosis Factor- alpha (TNF-α levels, etc. CONCLUSION: This approach provides important information for optimization of MSCs based treatment strategies that may help the researchers design their experiments.
Collapse
Affiliation(s)
- Diksha Gakhar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Himanshu Joshi
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Diksha Makkar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Amit Arora
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| |
Collapse
|
6
|
Garcia Gómez-Heras S, Garcia-Arranz M, Vega-Clemente L, Olivera-Salazar R, Vélez Pinto JF, Fernández-García M, Guadalajara H, Yáñez R, Garcia-Olmo D. Study of the Effect of Wild-Type and Transiently Expressing CXCR4 and IL-10 Mesenchymal Stromal Cells in a Mouse Model of Peritonitis. Int J Mol Sci 2023; 25:520. [PMID: 38203690 PMCID: PMC10778615 DOI: 10.3390/ijms25010520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Sepsis due to peritonitis is a process associated with an inflammatory state. Mesenchymal stromal cells (MSCs) modulate the immune system due to the paracrine factors released and may be a therapeutic alternative. Three treatment groups were developed in a murine model of peritonitis to verify the effect of human adipose mesenchymal stem cell (hASCs). Additionally, a temporary modification was carried out on them to improve their arrival in inflamed tissues (CXCR4), as well as their anti-inflammatory activity (IL-10). The capacity to reduce systemic inflammation was studied using a local application (peritoneal injection) as a treatment route. Comparisons involving the therapeutic effect of wild-type ASCs and ASCs transiently expressing CXCR4 and IL-10 were carried out with the aim of generating an improved anti-inflammatory response for sepsis in addition to standard antibiotic treatment. However, under the experimental conditions used in these studies, no differences were found between both groups with ASCs. The peritoneal administration of hASCs or genetically modified hASCs constitutes an efficient and safe therapy in our model of mouse peritonitis.
Collapse
Affiliation(s)
- Soledad Garcia Gómez-Heras
- Department of Basic Health Science, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Alcorcón, Spain
| | - Mariano Garcia-Arranz
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Luz Vega-Clemente
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
| | - Rocio Olivera-Salazar
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
| | - Juan Felipe Vélez Pinto
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - María Fernández-García
- Biomedical Innovation Unit, Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain; (M.F.-G.); (R.Y.)
| | - Héctor Guadalajara
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033 Madrid, Spain
| | - Rosa Yáñez
- Biomedical Innovation Unit, Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain; (M.F.-G.); (R.Y.)
| | - Damian Garcia-Olmo
- New Therapy Laboratory, Health Research Institute Fundación Jiménez Díaz, 28033 Madrid, Spain; (L.V.-C.); (R.O.-S.); (H.G.); (D.G.-O.)
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033 Madrid, Spain
| |
Collapse
|
7
|
Tieu A, Stewart DJ, Chwastek D, Lansdell C, Burger D, Lalu MM. Biodistribution of mesenchymal stromal cell-derived extracellular vesicles administered during acute lung injury. Stem Cell Res Ther 2023; 14:250. [PMID: 37705086 PMCID: PMC10500845 DOI: 10.1186/s13287-023-03472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are a promising cell-free therapy for acute lung injury (ALI). To date, no studies have investigated their biodistribution in ALI or discerned the timing of administration for maximal lung targeting, which are crucial considerations for clinical translation. Our study aimed to characterize a mouse model of ALI and establish the distribution kinetics and optimal timing of MSC-EV delivery during lung injury. METHODS MSC-EVs were isolated by ultracentrifugation alone (U/C) or tangential flow filtration with ultracentrifugation (TFF-U/C) and characterized by nanoparticle tracking analysis and western blot. A lipopolysaccharide (LPS)-induced mouse model of ALI was established to study the inflammatory response over 72 h. ALI was assessed by histological lung injury score, bronchoalveolar lavage fluid cell count and inflammatory cytokines. For biodistribution studies, ALI mice were intravenously administered fluorescently labeled MSC-EVs to determine the optimal timing of administration and organ-specific biodistribution. Live in vivo and ex vivo fluorescence imaging was conducted at various timepoints post-EV injection. RESULTS EVs isolated by either ultracentrifugation alone or TFF-U/C displayed comparable size distribution (~ 50-350 nm) and EV marker expression (CD63/81). TFF-U/C generated a 5.4-fold higher particle concentration and 3.9-fold higher total protein when compared to ultracentrifugation alone. From the inflammatory time-course study, cell count and IL-1β peaked in bronchoalveolar lavage fluid at 24 h after ALI induction. MSC-EVs delivered at 24 h (as opposed to 0.5 h, 5 h or 10 h) after disease induction resulted in a 2.7-4.4-fold higher lung uptake of EVs. Biodistribution studies comparing organ-specific MSC-EV uptake showed progressive lung accumulation up to 48 h post-delivery (threefold higher than the spleen/liver), with a decline at 72 h. Importantly, lung EV fluorescence at 48 h in ALI mice was significantly elevated as compared to control mice. The lung tropism of MSC-EVs was further validated as therapeutically inert EVs derived from HEK293T cells accumulated mainly to the spleen and liver with a 5.5-fold lower distribution to the lungs as compared to MSC-EVs. CONCLUSION MSC-EVs exhibit maximal lung accumulation when administered during heightened inflammation at 24 h after ALI induction. This lung tropism suggests that MSC-EVs may serve as a practical rescue treatment for acute inflammatory respiratory conditions.
Collapse
Affiliation(s)
- Alvin Tieu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Duncan J Stewart
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Damian Chwastek
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Casey Lansdell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Dylan Burger
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Manoj M Lalu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
- Department of Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
- Clinical Epidemiology Program, BLUEPRINT Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
8
|
Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, Bhaskar A, Dwivedi VP, Das G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell Mol Immunol 2023; 20:600-612. [PMID: 37173422 PMCID: PMC10176304 DOI: 10.1038/s41423-023-01028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.
Collapse
Affiliation(s)
- Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
9
|
Khosrojerdi A, Soudi S, Hosseini AZ, Khaligh SG, Hashemi SM. The combination of mesenchymal stem cell- and hepatocyte-derived exosomes, along with imipenem, ameliorates inflammatory responses and liver damage in a sepsis mouse model. Life Sci 2023; 326:121813. [PMID: 37257578 DOI: 10.1016/j.lfs.2023.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Aim Sepsis is a medical emergency with no definitive treatment. Animal experiments have confirmed the therapeutic characteristics of exosomes in reducing inflammation and tissue damage. The study investigates the effect of MSC and hepatocyte-derived exosomes along with imipenem in controlling systemic and local (liver) inflammation in a mouse model of sepsis. MAIN METHODS To induce sepsis in C57BL/6 mice, the Cecal Ligation and Puncture (CLP) model was used. The mice were given various treatments, including imipenem, MSC-derived exosomes, hepatocyte-derived exosomes, and a mixture of exosomes. Blood and liver samples were collected and analyzed for cell blood count, liver enzymes, NO levels, cytokine concentrations, and bacterial presence. The percentages of TCD3 + CD4+/CD8+ and Treg in the spleen and mesenteric lymph nodes were also assessed using flow cytometry. The pathological changes were assessed in the liver, lung, and heart tissues. In addition, the cytokine content of exosomes was measured by ELISA. KEY FINDINGS Our results demonstrated that MSC-derived exosomes+imipenem could control systemic and local inflammation and increase the TCD4+ and Treg populations. Hepatocyte-derived exosomes+imipenem reduced inflammation in the liver and increased the TCD8+ and Treg populations. The mixture of exosomes+imipenem had the best function in reducing inflammation, maintaining all T lymphocyte populations, reducing liver damage, and ultimately increasing the survival rate. SIGNIFICANCE The mixture of exosomes derived from MSCs and hepatocytes, along with imipenem, in the inflammatory phase of sepsis could be a promising therapeutic strategy in sepsis treatment.
Collapse
Affiliation(s)
- Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Ghaffari Khaligh
- Department of Pathology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Thébaud B. Stem cell therapies for neonatal lung diseases: Are we there yet? Semin Perinatol 2023; 47:151724. [PMID: 36967368 DOI: 10.1016/j.semperi.2023.151724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Lung diseases are a main cause of mortality and morbidity in neonates. Despite major breakthroughs, therapies remain supportive and, in some instances, contribute to lung injury. Because the neonatal lung is still developing, the ideal therapy should be capable of preventing/repairing lung injury while at the same time, promoting lung growth. Cell-based therapies hold high hopes based on laboratory experiments in animal models of neonatal lung injury. Mesenchymal stromal cells and amnion epithelial cells are now in early phase clinical trials to test the feasibility, safety and early signs of efficacy in preterm infants at risk of developing bronchopulmonary dysplasia. Other cell-based therapies are being explored in experimental models of congenital diaphragmatic hernia and alveolar capillary dysplasia. This review will summarize current evidence that has lead to the clinical translation of cell-based therapies and highlights controversies and the numerous questions that remain to be addressed to harness the putative repair potential of cell-based therapies.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada.; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Hezam K, Wang C, Fu E, Zhou M, Liu Y, Wang H, Zhu L, Han Z, Han ZC, Chang Y, Li Z. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther 2023; 14:48. [PMID: 36949464 PMCID: PMC10032272 DOI: 10.1186/s13287-023-03277-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
13
|
Lithopoulos MA, Strueby L, O'Reilly M, Zhong S, Möbius MA, Eaton F, Fung M, Hurskainen M, Cyr-Depauw C, Suen C, Xu L, Collins JJP, Vadivel A, Stewart DJ, Burger D, Thébaud B. Pulmonary and Neurologic Effects of Mesenchymal Stromal Cell Extracellular Vesicles in a Multifactorial Lung Injury Model. Am J Respir Crit Care Med 2022; 205:1186-1201. [PMID: 35286238 DOI: 10.1164/rccm.202012-4520oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials mesenchymal stromal cell therapies demonstrate promise as a therapeutic for bronchopulmonary dysplasia. OBJECTIVES To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. METHODS Mice at postnatal day 7/8 were injected intraperitoneally with lipopolysaccharide and ventilated with 40% oxygen at postnatal day 9/10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone/hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. MEASUREMENTS AND MAIN RESULTS The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. Additionally, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. CONCLUSIONS Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Marissa A Lithopoulos
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Lannae Strueby
- University of Saskatchewan, 7235, Department of Pediatrics, Saskatoon, Saskatchewan, Canada
| | - Megan O'Reilly
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Shumei Zhong
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Marius A Möbius
- Universitätsklinikum Carl Gustav Carus, 39063, Department of Neonatalogy and Pediatric Critical Care Medicine, Dresden, Germany
| | - Farah Eaton
- University of Alberta, 3158, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, Alberta, Canada
| | - Moses Fung
- University of Alberta, 3158, Department of Pediatrics, Edmonton, Alberta, Canada
| | - Maria Hurskainen
- Helsinki University Central Hospital, 159841, Department of Pediatric Cardiology, Helsinki, Finland.,University of Helsinki, 3835, Pediatric Research Center, Helsinki, Finland
| | - Chanèle Cyr-Depauw
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Colin Suen
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Liqun Xu
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Jennifer J P Collins
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Arul Vadivel
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Dylan Burger
- University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, 10055, Kidney Research Centre, Chronic Disease Program, Ottawa, Ontario, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, 10055, Regenerative Medicine Program, Ottawa, Ontario, Canada.,University of Ottawa, 6363, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, 274065, Ottawa, Ontario, Canada;
| |
Collapse
|
14
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
15
|
Direct comparison of different therapeutic cell types susceptibility to inflammatory cytokines associated with COVID-19 acute lung injury. Stem Cell Res Ther 2022; 13:20. [PMID: 35033181 PMCID: PMC8760881 DOI: 10.1186/s13287-021-02699-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Although 90% of infections with the novel coronavirus 2 (COVID-19) are mild, many patients progress to acute respiratory distress syndrome (ARDS) which carries a high risk of mortality. Given that this dysregulated immune response plays a key role in the pathology of COVID-19, several clinical trials are underway to evaluate the effect of immunomodulatory cell therapy on disease progression. However, little is known about the effect of ARDS associated pro-inflammatory mediators on transplanted stem cell function and survival, and any deleterious effects could undermine therapeutic efficacy. As such, we assessed the impact of inflammatory cytokines on the viability, and paracrine profile (extracellular vesicles) of bone marrow-derived mesenchymal stromal cells, heart-derived cells, and umbilical cord-derived mesenchymal stromal cells. Methods All cell products were manufactured and characterized to established clinical release standards by an accredited clinical cell manufacturing facility. Cytokines and Extracellular vesicles in the cell conditioned media were profiled using proteomic array and nanoparticle tracking analysis. Using a survey of the clinical literature, 6 cytotoxic cytokines implicated in the progression of COVID-19 ARDS. Flow cytometry was employed to determine receptor expression of these 6 cytokines in three cell products. Based on clinical survey and flow cytometry data, a cytokine cocktail that mimics cytokine storm seen in COVID-19 ARDS patients was designed and the impact on cytokine cocktail on viability and paracrine secretory ability of cell products were assessed using cell viability and nanoparticle tracking analysis. Results Flow cytometry revealed the presence of receptors for all cytokines but IL-6, which was subsequently excluded from further experimentation. Despite this widespread expression, exposure of each cell type to individual cytokines at doses tenfold greater than observed clinically or in combination at doses associated with severe ARDS did not alter cell viability or extracellular vesicle character/production in any of the 3 cell products. Conclusions The paracrine production and viability of the three leading cell products under clinical evaluation for the treatment of severe COVID-19 ARDS are not altered by inflammatory mediators implicated in disease progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02699-7.
Collapse
|
16
|
Xu Z, Huang Y, Zhou J, Deng X, He W, Liu X, Li Y, Zhong N, Sang L. Current Status of Cell-Based Therapies for COVID-19: Evidence From Mesenchymal Stromal Cells in Sepsis and ARDS. Front Immunol 2021; 12:738697. [PMID: 34659231 PMCID: PMC8517471 DOI: 10.3389/fimmu.2021.738697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted the urgent need for novel therapies. Cell-based therapies, primarily using mesenchymal stromal cells (MSCs), have demonstrated safety and potential efficacy in the treatment of critical illness, particularly sepsis and acute respiratory distress syndrome (ARDS). However, there are limited preclinical data for MSCs in COVID-19. Recent studies have shown that MSCs could decrease inflammation, improve lung permeability, enhance microbe and alveolar fluid clearance, and promote lung epithelial and endothelial repair. In addition, MSC-based therapy has shown promising effects in preclinical studies and phase 1 clinical trials in sepsis and ARDS. Here, we review recent advances related to MSC-based therapy in the context of sepsis and ARDS and evaluate the potential value of MSCs as a therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Zhiheng Xu
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Jianmeng Zhou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiumei Deng
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Weiqun He
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Ling Sang
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
17
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
18
|
Alveolar-like Macrophages Attenuate Respiratory Syncytial Virus Infection. Viruses 2021; 13:v13101960. [PMID: 34696391 PMCID: PMC8540499 DOI: 10.3390/v13101960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of acute lower respiratory infections in young children and infection has been linked to the development of persistent lung disease in the form of wheezing and asthma. Despite substantial research efforts, there are no RSV vaccines currently available and an effective monoclonal antibody targeting the RSV fusion protein (palivizumab) is of limited general use given the associated expense. Therefore, the development of novel approaches to prevent RSV infection is highly desirable to improve pediatric health globally. We have developed a method to generate alveolar-like macrophages (ALMs) from pluripotent stem cells. These ALMs have shown potential to promote airway innate immunity and tissue repair and so we hypothesized that ALMs could be used as a strategy to prevent RSV infection. Here, we demonstrate that ALMs are not productively infected by RSV and prevent the infection of epithelial cells. Prevention of epithelial infection was mediated by two different mechanisms: phagocytosis of RSV particles and release of an antiviral soluble factor different from type I interferon. Furthermore, intratracheal administration of ALMs protected mice from subsequent virus-induced weight loss and decreased lung viral titres and inflammation, indicating that ALMs can impair the pathogenesis of RSV infection. Our results support a prophylactic role for ALMs in the setting of RSV infection and warrant further studies on stem cell-derived ALMs as a novel cell-based therapy for pulmonary viral infections.
Collapse
|
19
|
Exploring Clinically-Relevant Experimental Models of Neonatal Shock and Necrotizing Enterocolitis. Shock 2021; 53:596-604. [PMID: 31977960 DOI: 10.1097/shk.0000000000001507] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neonatal shock and necrotizing enterocolitis (NEC) are leading causes of morbidity and mortality in premature infants. NEC is a life-threatening gastrointestinal illness, the precise etiology of which is not well understood, but is characterized by an immaturity of the intestinal barrier, altered function of the adaptive immune system, and intestinal dysbiosis. The complexities of NEC and shock in the neonatal population necessitate relevant clinical modeling using newborn animals that mimic the disease in human neonates to better elucidate the pathogenesis and provide an opportunity for the discovery of potential therapeutics. A wide variety of animal species-including rats, mice, piglets, and primates-have been used in developing experimental models of neonatal diseases such as NEC and shock. This review aims to highlight the immunologic differences in neonates compared with adults and provide an assessment of the advantages and drawbacks of established animal models of both NEC and shock using enteral or intraperitoneal induction of bacterial pathogens. The selection of a model has benefits unique to each type of animal species and provides individual opportunities for the development of targeted therapies. This review discusses the clinical and physiologic relevance of animal models and the insight they contribute to the complexities of the specific neonatal diseases: NEC and shock.
Collapse
|
20
|
Liu AR, Yang SP, Zhang XL. Effects of interaction between mesenchymal stem cells and gut microbiota in treatment of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2021; 29:312-318. [DOI: 10.11569/wcjd.v29.i6.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ai-Ru Liu
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Shao-Peng Yang
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Xiao-Lan Zhang
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| |
Collapse
|
21
|
Chen R, Xie Y, Zhong X, Chen F, Gong Y, Wang N, Wang D. MSCs derived from amniotic fluid and umbilical cord require different administration schemes and exert different curative effects on different tissues in rats with CLP-induced sepsis. Stem Cell Res Ther 2021; 12:164. [PMID: 33676566 PMCID: PMC7936453 DOI: 10.1186/s13287-021-02218-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are derived from multiple tissues, including amniotic fluid (AF-MSCs) and the umbilical cord (UC-MSCs). Although the therapeutic effect of MSCs on sepsis is already known, researchers have not determined whether the cells from different sources require different therapeutic schedules or exert different curative effects. We assessed the biofunction of the administration of AF-MSCs and UC-MSCs in rats with caecal ligation and puncture (CLP)-induced sepsis. METHODS CLP was used to establish a disease model of sepsis in rats, and intravenous tail vein administration of AF-MSCs and UC-MSCs was performed to treat sepsis at 6 h after CLP. Two phases of animal experiments were implemented using MSCs harvested in saline with or without filtration. The curative effect was measured by determining the survival rate. Further effects were assessed by measuring proinflammatory cytokine levels, the plasma coagulation index, tissue histology and the pathology of the lung, liver and kidney. RESULTS We generated rats with medium-grade sepsis with a 30-40% survival rate to study the curative effects of AF-MSCs and UC-MSCs. MSCs reversed CLP-induced changes in proinflammatory cytokine levels and coagulation activation. MSCs ameliorated CLP-induced histological and pathological changes in the lung, liver and kidney. AF-MSCs and UC-MSCs functioned differently in different tissues; UC-MSCs performed well in reducing the upregulation of inflammatory cytokine levels in the lungs and inhibiting the inflammatory cell infiltration into the liver capsule, while AF-MSCs performed well in inhibiting cell death in the kidneys and reducing the plasma blood urea nitrogen (BUN) level, an indicator of renal function. CONCLUSIONS Our studies suggest the safety and efficacy of AF-MSCs and UC-MSCs in the treatment of CLP-induced sepsis in rats and show that the cells potentially exert different curative effects on the main sepsis-affected tissues.
Collapse
Affiliation(s)
- Rui Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Xuan Zhong
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, 510150, Guangdong, China
| | - Fei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yu Gong
- Central Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Na Wang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
22
|
Papait A, Cargnoni A, Sheleg M, Silini AR, Kunis G, Ofir R, Parolini O. Perinatal Cells: A Promising COVID-19 Therapy? Front Bioeng Biotechnol 2021; 8:619980. [PMID: 33520970 PMCID: PMC7841388 DOI: 10.3389/fbioe.2020.619980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has become a priority in the health systems of all nations worldwide. In fact, there are currently no specific drugs or preventive treatments such as vaccines. The numerous therapies available today aim to counteract the symptoms caused by the viral infection that in some subjects can evolve causing acute respiratory distress syndromes (ARDS) with consequent admission to intensive care unit. The exacerbated response of the immune system, through cytokine storm, causes extensive damage to the lung tissue, with the formation of edema, fibrotic tissues and susceptibility to opportunistic infections. The inflammatory picture is also aggravated by disseminated intravascular coagulation which worsens the damage not only to the respiratory system, but also to other organs. In this context, perinatal cells represent a valid strategy thanks to their strong immunomodulatory potential, their safety profile, the ability to reduce fibrosis and stimulate reparative processes. Furthermore, perinatal cells exert antibacterial and antiviral actions. This review therefore provides an overview of the characteristics of perinatal cells with a particular focus on the beneficial effects that they could have in patients with COVID-19, and more specifically for their potential use in the treatment of ARDS and sepsis.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | | | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
23
|
Atala A, Henn A, Lundberg M, Ahsan T, Greenberg J, Krukin J, Lynum S, Lutz C, Cetrulo K, Albanna M, Pereira T, Eaker S, Hunsberger J. Regen med therapeutic opportunities for fighting COVID-19. Stem Cells Transl Med 2021; 10:5-13. [PMID: 32856432 PMCID: PMC7461298 DOI: 10.1002/sctm.20-0245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
This perspective from a Regenerative Medicine Manufacturing Society working group highlights regenerative medicine therapeutic opportunities for fighting COVID-19. This article addresses why SARS-CoV-2 is so different from other viruses and how regenerative medicine is poised to deliver new therapeutic opportunities to battle COVID-19. We describe animal models that depict the mechanism of action for COVID-19 and that may help identify new treatments. Additionally, organoid platforms that can recapitulate some of the physiological properties of human organ systems, such as the lungs and the heart, are discussed as potential platforms that may prove useful in rapidly screening new drugs and identifying at-risk patients. This article critically evaluates some of the promising regenerative medicine-based therapies for treating COVID-19 and presents some of the collective technologies and resources that the scientific community currently has available to confront this pandemic.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Martha Lundberg
- National Heart, Lung and Blood Institute (NHLBI)BethesdaMarylandUSA
| | | | | | | | | | - Cat Lutz
- Jackson LabsMount Desert Island, MaineUSA
| | - Kyle Cetrulo
- International Perinatal Stem Cell Society, Inc.WestportConnecticutUSA
| | | | | | | | - Joshua Hunsberger
- Regenerative Medicine Manufacturing SocietyWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
24
|
Immunomodulatory and Therapeutic Effects of Mesenchymal Stem Cells on Organ Dysfunction in Sepsis. Shock 2020; 55:423-440. [PMID: 32826813 DOI: 10.1097/shk.0000000000001644] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT Sepsis is a life-threatening disorder that is caused by a dysregulated inflammatory response during an infection. The disease mostly affects pregnant women, newborns, and patients in intensive care units. Sepsis treatment is a significant part of a country's health budgets. Delay in the therapy causes irreversible failure of various organs due to the lack of blood supply and reduction of oxygen in the tissues and eventually increased mortality. The involvement of four or five organs by sepsis has been attributed to an increased risk of death to over 90%. Although antibiotics are at the first line of sepsis treatment, they do not possess enough potency to control the disease and prevent subsequent organ failure. The immunomodulatory, anti-inflammatory, anti-apoptotic, and anti-microbial properties of mesenchymal stem cells (MSCs) have been reported in various studies. Therefore, the application of MSCs has been considered a potentially promising therapeutic strategy. In preclinical studies, the administration of MSCs has been associated with reduced bacterial load and decreased levels of pro-inflammatory factors as well as the improved function of the different vital organs, including heart, kidney, liver, and lungs. The current study provides a brief review of sepsis and its pathophysiology, and then highlights recent findings in the therapeutic effects of MSCs and MSC-derived secretome in improving sepsis-induced organ dysfunction. Besides, eligible sepsis candidates for MSC-therapy and the latest clinical findings in these areas have been reviewed.
Collapse
|
25
|
Laroye C, Gibot S, Huselstein C, Bensoussan D. Mesenchymal stromal cells for sepsis and septic shock: Lessons for treatment of COVID-19. Stem Cells Transl Med 2020; 9:1488-1494. [PMID: 32808462 PMCID: PMC7461462 DOI: 10.1002/sctm.20-0239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis is defined as life‐threatening organ dysfunction caused by a deregulated immune host response to infection. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has highlighted this multifactorial and complex syndrome. The absence of specific treatment neither against SARS‐CoV‐2 nor against acute respiratory distress syndrome (ARDS), the most serious stage of this infection, has emphasized the need to find alternative treatments. Several therapeutics are currently being tested, including mesenchymal stromal cells. These cells, already used in preclinical models of ARDS, sepsis, and septic shock and also in a few clinical trials, appear well‐tolerated and promising, but many questions remain unanswered.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, Université de Lorraine, CHRU de Nancy, Nancy, France.,CNRS, IMoPA, Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- Inserm, DCAC, Université de Lorraine, Nancy, France.,CHRU de Nancy, Service de Réanimation Médicale, Université de Lorraine, Nancy, France
| | | | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, Université de Lorraine, CHRU de Nancy, Nancy, France.,CNRS, IMoPA, Université de Lorraine, Nancy, France
| |
Collapse
|
26
|
Sato Y, Ochiai D, Abe Y, Masuda H, Fukutake M, Ikenoue S, Kasuga Y, Shimoda M, Kanai Y, Tanaka M. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Res Ther 2020; 11:300. [PMID: 32690106 PMCID: PMC7370504 DOI: 10.1186/s13287-020-01809-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/06/2020] [Accepted: 07/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background Despite recent advances in neonatal care, sepsis remains a leading cause of mortality in neonates. Mesenchymal stem cells derived from various tissues, such as bone marrow, umbilical cord, and adipose tissue, have beneficial effects on adult sepsis. Although human amniotic fluid stem cells (hAFSCs) have mesenchymal stem cell properties, the efficacy of hAFSCs on neonatal sepsis is yet to be elucidated. This study aimed to investigate the therapeutic potential of hAFSCs on neonatal sepsis using a rat model of lipopolysaccharide (LPS)-induced sepsis. Methods hAFSCs were isolated as CD117-positive cells from human amniotic fluid. Three-day-old rat pups were intraperitoneally treated with LPS to mimic neonatal sepsis. hAFSCs were administered either 3 h before or at 0, 3, or 24 h after LPS exposure. Serum inflammatory cytokine levels, gene expression profiles from spleens, and multiple organ damage were analyzed. hAFSC localization was determined in vivo. In vitro LPS stimulation tests were performed using neonatal rat peritoneal macrophages co-cultured with hAFSCs in a cell-cell contact-dependent/independent manner. Immunoregulation in the spleen was determined using a DNA microarray analysis. Results Prophylactic therapy with hAFSCs improved survival in the LPS-treated rats while the hAFSCs transplantation after LPS exposure did not elicit a therapeutic response. Therefore, hAFSC pretreatment was used for all subsequent studies. Inflammatory cytokine levels were elevated after LPS injection, which was attenuated by hAFSC pretreatment. Subsequently, inflammation-induced damages in the brain, lungs, and liver were ameliorated. hAFSCs aggregated with peritoneal macrophages and/or transiently accumulated in the liver, mesentery, and peritoneum. Paracrine factors released by hAFSCs induced M1-M2 macrophage polarization in a cell-cell contact-independent manner. Direct contact between hAFSCs and peritoneal macrophages further enhanced the polarization. Microarray analysis of the spleen showed that hAFSC pretreatment reduced the expression of genes involved in apoptosis and inflammation and subsequently suppressed toll-like receptor 4 signaling pathways. Conclusions Prophylactic therapy with hAFSCs improved survival in a rat model of LPS-induced neonatal sepsis. These effects might be mediated by a phenotypic switch from M1 to M2 in peritoneal macrophages, triggered by hAFSCs in a cell-cell contact-dependent/independent manner and the subsequent immunomodulation of the spleen.
Collapse
Affiliation(s)
- Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan.
| | - Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Marie Fukutake
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Satoru Ikenoue
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| |
Collapse
|
27
|
Yang B, Good D, Mosaiab T, Liu W, Ni G, Kaur J, Liu X, Jessop C, Yang L, Fadhil R, Yi Z, Wei MQ. Significance of LL-37 on Immunomodulation and Disease Outcome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8349712. [PMID: 32509872 PMCID: PMC7246396 DOI: 10.1155/2020/8349712] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
LL-37, also called cathelicidin, is an important part of the human immune system, which can resist various pathogens. A plethora of experiments have demonstrated that it has the multifunctional effects of immune regulation, in addition to antimicrobial activity. Recently, there have been increasing interest in its immune function. It was found that LL-37 can have two distinct functions in different tissues and different microenvironments. Thus, it is necessary to investigate LL-37 immune functions from the two sides of the same coin. On the one side, LL-37 promotes inflammation and immune response and exerts its anti-infective and antitumor effects; on the other side, it has the ability to inhibit inflammation and promote carcinogenesis. This review presents a brief summary of its expression, structure, and immunomodulatory effects as well as brief discussions on the role of this small peptide as a key factor in the development and treatment of various inflammation-related diseases and cancers.
Collapse
Affiliation(s)
- Binbin Yang
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - David Good
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
- School of Allied Health, Australian Catholic University, Brisbane, Qld 4014, Australia
| | - Tamim Mosaiab
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
- Institute for Glycomics, Griffith University, Gold Coast, Qld 4215, Australia
| | - Wei Liu
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Guoying Ni
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia
| | - Jasmine Kaur
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia
- Cancer Research Institute, First People's Hospital of Foshan, Foshan 528000, China
| | - Calvin Jessop
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Lu Yang
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Rushdi Fadhil
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Zhengjun Yi
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
| | - Ming Q. Wei
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| |
Collapse
|
28
|
Human Umbilical Cord Mesenchymal Stromal Cells Attenuate Systemic Sepsis in Part by Enhancing Peritoneal Macrophage Bacterial Killing via Heme Oxygenase-1 Induction in Rats. Anesthesiology 2020; 132:140-154. [PMID: 31764154 DOI: 10.1097/aln.0000000000003018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mesenchymal stromal cells have therapeutic potential in sepsis, but the mechanism of action is unclear. We tested the effects, dose-response, and mechanisms of action of cryopreserved, xenogeneic-free human umbilical cord mesenchymal stromal cells in a rat model of fecal peritonitis, and examined the role of heme oxygenase-1 in protection. METHODS Separate in vivo experiments evaluated mesenchymal stromal cells in fecal sepsis, established dose response (2, 5, and 10 million cells/kg), and the role of heme oxygenase-1 in mediating human umbilical cord-derived mesenchymal stromal/stem cell effects. Ex vivo studies utilized pharmacologic blockers and small inhibitory RNAs to evaluate mechanisms of mesenchymal stromal cell enhanced function in (rodent, healthy and septic human) macrophages. RESULTS Human umbilical cord mesenchymal stromal cells reduced injury and increased survival (from 48%, 12 of 25 to 88%, 14 of 16, P = 0.0033) in fecal sepsis, with dose response studies demonstrating that 10 million cells/kg was the most effective dose. Mesenchymal stromal cells reduced bacterial load and peritoneal leukocyte infiltration (from 9.9 ± 3.1 × 10/ml to 6.2 ± 1.8 × 10/ml, N = 8 to 10 per group, P < 0.0001), and increased heme oxygenase-1 expression in peritoneal macrophages, liver, and spleen. Heme oxygenase-1 blockade abolished the effects of mesenchymal stromal cells (N = 7 or 8 per group). Mesenchymal stromal cells also increased heme oxygenase-1 expression in macrophages from healthy donors and septic patients. Direct ex vivo upregulation of macrophage heme oxygenase-1 enhanced macrophage function (phagocytosis, reactive oxygen species production, bacterial killing). Blockade of lipoxin A4 production in mesenchymal stromal cells, and of prostaglandin E2 synthesis in mesenchymal stromal cell/macrophage cocultures, prevented upregulation of heme oxygenase-1 in macrophages (from 9.6 ± 5.5-fold to 2.3 ± 1.3 and 2.4 ± 2.3 respectively, P = 0.004). Knockdown of heme oxygenase-1 production in macrophages ablated mesenchymal stromal cell enhancement of macrophage phagocytosis. CONCLUSIONS Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis by enhancing peritoneal macrophage bacterial killing, mediated partly via upregulation of peritoneal macrophage heme oxygenase-1. Lipoxin A4 and prostaglandin E2 play key roles in the mesenchymal stromal cell and macrophage interaction.
Collapse
|
29
|
Hosseiniyan Khatibi SM, Kheyrolahzadeh K, Barzegari A, Rahbar Saadat Y, Zununi Vahed S. Medicinal signaling cells: A potential antimicrobial drug store. J Cell Physiol 2020; 235:7731-7746. [PMID: 32352173 DOI: 10.1002/jcp.29728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022]
Abstract
Medicinal signaling cells (MSCs) are multipotent cells derived from mammalian bone marrow and periosteum that can be extended in culture. They can keep their ability in vitro to form a variety of mesodermal phenotypes and tissues. Over recent years, there has been great attention over MSCs since they can impact the organ transplantation as well as autoimmune and bacterial diseases. MSCs can secrete different bioactive factors such as growth factors, antimicrobial peptides/proteins and cytokines that can suppress the immune system and prevent infection via direct and indirect mechanisms. Moreover, MSCs are able to increase bacterial clearance in sepsis models by producing antimicrobial peptides such as defensins, cathelicidins, lipocalin and hepcidin. It is the aim of the present review to focus on the antibacterial effector functions of MSCs and their mechanisms of action against the pathogenic microbes.
Collapse
Affiliation(s)
| | - Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Azad University, Tabriz Branch, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
30
|
O'Reilly M, Möbius MA, Vadivel A, Ionescu L, Fung M, Eaton F, Greer JJ, Thébaud B. Late Rescue Therapy with Cord-Derived Mesenchymal Stromal Cells for Established Lung Injury in Experimental Bronchopulmonary Dysplasia. Stem Cells Dev 2020; 29:364-371. [PMID: 31918630 DOI: 10.1089/scd.2019.0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), the main complication of extreme prematurity, has lifelong consequences for lung health. Mesenchymal stromal cells (MSCs) prevent lung injury in experimental BPD in newborn rodents when given in the immediate neonatal period. Whether MSC therapy can restore normal lung growth after established lung injury in adulthood is clinically relevant, but currently unknown. Experimental BPD was achieved by exposing newborn rats to 95% O2 from postnatal days 4-14. Human umbilical cord-derived MSCs were intratracheally administered to rats (1 × 106cells/kg body weight) as a single dose at 3 or 6 months of age followed by assessment at 5 or 8 months of age, respectively. Lung alveolar structure and vessel density were histologically analyzed. O2-exposed rats exhibited persistent lung injury characterized by arrested alveolar growth with airspace enlargement and a lower vessel density at both 5 and 8 months of age compared with controls. Single-dose MSC treatment at 3 months partially attenuated O2-induced alveolar injury and restored vessel density at 5 months. Treatment with a single dose at 6 months did not attenuate alveolar injury or vessel density at 8 months. However, treatment with multiple MSC doses at 6, 6.5, 7, and 7.5 months significantly attenuated alveolar injury and improved vessel density at 8 months of age. Treatment of the adult BPD lung with MSCs has the potential to improve lung injury if administered in multiple doses or at an early stage of adulthood.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Marius A Möbius
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - Arul Vadivel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Sinclair Center for Regenerative Medicine, Ottawa, Canada
| | - Lavinia Ionescu
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - Moses Fung
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - Farah Eaton
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - John J Greer
- Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Sinclair Center for Regenerative Medicine, Ottawa, Canada.,Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
31
|
Nitkin CR, Rajasingh J, Pisano C, Besner GE, Thébaud B, Sampath V. Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges. Pediatr Res 2020; 87:265-276. [PMID: 31086355 PMCID: PMC6854309 DOI: 10.1038/s41390-019-0425-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant mortality and long-term morbidity. Effective therapies for the prevention or treatment for these conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with encouraging pre-clinical results that hold promise for clinical translation. However, there are a number of unanswered questions and facets to the development of stem cell therapy as a clinical intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal diseases, highlighting the promises and challenges in clinical translation towards preventing neonatal diseases in the 21st century.
Collapse
Affiliation(s)
- Christopher R Nitkin
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Johnson Rajasingh
- Department of Cardiovascular Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, MO, USA
| | - Courtney Pisano
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Department of Pediatric Surgery, Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Venkatesh Sampath
- Division of Neonatology, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA.
| |
Collapse
|
32
|
Liau LL, Al-Masawa ME, Koh B, Looi QH, Foo JB, Lee SH, Cheah FC, Law JX. The Potential of Mesenchymal Stromal Cell as Therapy in Neonatal Diseases. Front Pediatr 2020; 8:591693. [PMID: 33251167 PMCID: PMC7672022 DOI: 10.3389/fped.2020.591693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can be derived from various tissue sources, such as the bone marrow (BMSCs), adipose tissue (ADSCs), umbilical cord (UC-MSCs) and umbilical cord blood (UCB-MSCs). Clinical trials have been conducted to investigate the potential of MSCs in ameliorating neonatal diseases, including bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH) and necrotizing enterocolitis (NEC). In preclinical studies, MSC therapy has been tested for the treatment of various neonatal diseases affecting the heart, eye, gut, and brain as well as sepsis. Up to date, the number of clinical trials using MSCs to treat neonatal diseases is still limited. The data reported thus far positioned MSC therapy as safe with positive outcomes. However, most of these trials are still preliminary and generally smaller in scale. Larger trials with more appropriate controls and a longer follow-up period need to be conducted to prove the safety and efficacy of the therapy more conclusively. This review discusses the current application of MSCs in treating neonatal diseases, its mechanism of action and future direction of this novel therapy, including the potential of using MSC-derived extracellular vesicles instead of the cells to treat various clinical conditions in the newborn.
Collapse
Affiliation(s)
- Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Qi Hao Looi
- Future Cytohealth Sdn Bhd, Bandar Seri Petaling, Kuala Lumpur, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Fook Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Möbius MA, Freund D, Vadivel A, Koss S, McConaghy S, Ohls RK, Rüdiger M, Thébaud B. Oxygen Disrupts Human Fetal Lung Mesenchymal Cells. Implications for Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2019; 60:592-600. [PMID: 30562051 DOI: 10.1165/rcmb.2018-0358oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exogenous mesenchymal stromal cells (MSCs) ameliorate experimental bronchopulmonary dysplasia. Moreover, data from term-born animal models and human tracheal aspirate-derived cells suggest altered mesenchymal signaling in the pathophysiology of neonatal lung disease. We hypothesized that hyperoxia, a factor contributing to the development of bronchopulmonary dysplasia, perturbs human lung-resident MSC function. Mesenchymal cells were isolated from human fetal lung tissue (16-18 wk of gestation), characterized and cultured in conditions resembling either intrauterine (5% O2) or extrauterine (21% and 60% O2) atmospheres. Secretome data were compared with MSCs obtained from term umbilical cord tissues. The human fetal lung mesenchyme almost exclusively contains CD146pos. MSCs expressing SOX-2 and OCT-4, which secrete elastin, fibroblast growth factors 7 and 10, vascular endothelial growth factor, angiogenin, and other lung cell-protecting/-maturing proteins. Exposure to extrauterine atmospheres in vitro leads to excessive proliferation, reduced colony-forming ability, alterations in the cell's surface marker profile, decreased elastin deposition, and impaired secretion of factors important for lung growth. Conversely, umbilical cord-derived MSCs abundantly secreted factors that impaired lung MSCs are unable to produce. Oxygen-impaired human fetal lung MSC function may contribute to disrupted repair capacity and arrested lung growth. Exogenous MSCs may act by triggering the signaling pathways lost by impaired endogenous lung mesenchymal cells.
Collapse
Affiliation(s)
- Marius A Möbius
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany.,2 Deutsche Forschungsgemeinschaft Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, Germany.,3 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Daniel Freund
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany.,2 Deutsche Forschungsgemeinschaft Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Arul Vadivel
- 3 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Sarah Koss
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany
| | - Suzanne McConaghy
- 4 Division of Neonatology, Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico; and
| | - Robin K Ohls
- 4 Division of Neonatology, Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico; and
| | - Mario Rüdiger
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany.,2 Deutsche Forschungsgemeinschaft Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Bernard Thébaud
- 3 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,5 Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Silachev DN, Goryunov KV, Shpilyuk MA, Beznoschenko OS, Morozova NY, Kraevaya EE, Popkov VA, Pevzner IB, Zorova LD, Evtushenko EA, Starodubtseva NL, Kononikhin AS, Bugrova AE, Evtushenko EG, Plotnikov EY, Zorov DB, Sukhikh GT. Effect of MSCs and MSC-Derived Extracellular Vesicles on Human Blood Coagulation. Cells 2019; 8:cells8030258. [PMID: 30893822 PMCID: PMC6468445 DOI: 10.3390/cells8030258] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a potent therapeutic tool for the treatment of a number of pathologies, including immune pathologies. However, unwelcome effects of MSCs on blood coagulation have been reported, motivating us to explore the thrombotic properties of human MSCs from the umbilical cord. We revealed strong procoagulant effects of MSCs on human blood and platelet-free plasma using rotational thromboelastometry and thrombodynamic tests. A similar potentiation of clotting was demonstrated for MSC-derived extracellular vesicles (EVs). To offer approaches to avoid unwanted effects, we studied the impact of a heparin supplement on MSC procoagulative properties. However, MSCs still retained procoagulant activity toward blood from children receiving a therapeutic dose of unfractionated heparin. An analysis of the mechanisms responsible for the procoagulant effect of MSCs/EVs revealed the presence of tissue factor and other proteins involved in coagulation-associated pathways. Also, we found that some MSCs and EVs were positive for annexin V, which implies the presence of phosphatidylserine on their surfaces, which can potentiate clot formation. Thus, we revealed procoagulant activity of MSCs/EVs associated with the presence of phosphatidylserine and tissue factor, which requires further analysis to avoid adverse effects of MSC therapy in patients with a risk of thrombosis.
Collapse
Affiliation(s)
- Denis N. Silachev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Kirill V. Goryunov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
| | - Margarita A. Shpilyuk
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
| | - Olga S. Beznoschenko
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
| | - Natalya Y. Morozova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
| | - Elizaveta E. Kraevaya
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
| | - Vasily A. Popkov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Irina B. Pevzner
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ljubava D. Zorova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | - Natalia L. Starodubtseva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Alexey S. Kononikhin
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Anna E. Bugrova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Egor Y. Plotnikov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P. & D.B.Z.)
| | - Dmitry B. Zorov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P. & D.B.Z.)
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (D.N.S.); (K.V.G.); (M.A.S.); (N.Y.M.); (E.E.K.); (V.A.P.); (I.B.P.); (L.D.Z.); (N.L.S.); (A.S.K.); (A.E.B.); (G.T.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education, First Moscow State Medical University Named after I.M. Sechenov, Moscow 119992, Russia
| |
Collapse
|
35
|
Marrazzo P, Crupi AN, Alviano F, Teodori L, Bonsi L. Exploring the roles of MSCs in infections: focus on bacterial diseases. J Mol Med (Berl) 2019; 97:437-450. [PMID: 30729280 DOI: 10.1007/s00109-019-01752-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Despite human healthcare advances, some microorganisms continuously react evolving new survival strategies, choosing between a commensal fitness and a pathogenic attitude. Many opportunistic microbes are becoming an increasing cause of clinically evident infections while several renowned infectious diseases sustain a considerable number of deaths. Besides the primary and extensively investigated role of immune cells, other cell types are involved in the microbe-host interaction during infection. Interestingly, mesenchymal stem cells (MSCs), the current leading players in cell therapy approaches, have been suggested to contribute to tackling pathogens and modulating the host immune response. In this context, this review critically explores MSCs' role in E. coli, S. aureus, and polymicrobial infections. Summarizing from various studies, in vitro and in vivo results support the mechanistic involvement of MSCs and their derivatives in fighting infection and in contributing to microbial spreading. Our work outlines the double face of MSCs during infection, disease, and sepsis, highlighting potential pitfalls in MSC-based therapy due to the MSCs' susceptibility to pathogens' weapons. We also identify potential targets to improve infection treatments, and propose the potential applications of MSCs for vaccine research.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| | | | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy.
| | - Laura Teodori
- Diagnostics and Metrology, FSN-TECFIS-DIM, Enea Frascati, Rome, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| |
Collapse
|
36
|
Thébaud B. Stem cell-based therapies in neonatology: a new hope. Arch Dis Child Fetal Neonatal Ed 2018; 103:F583-F588. [PMID: 29973349 DOI: 10.1136/archdischild-2017-314451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023]
Abstract
Despite progress made in neonatal intensive care, complications of extreme preterm birth still contribute as the main cause of death to children below 5 years of age. Stem cell-based therapies-mesenchymal stromal cells in particular-offer a new hope in preventing and/or restoring organ damage in extreme preterm infants. Early phase clinical trials, fueled by promising preclinical studies on lung and brain injury, have begun. While the enthusiasm in the neonatal community is palpable, much more needs to be learnt about cell-based therapies. Maintaining the balance between temptation and a cautious, evidence-based approach will be critical for cell therapies to fulfil their promise in substantially improving the outcome of extreme preterm infants.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Saeedi P, Halabian R, Fooladi AAI. Antimicrobial effects of mesenchymal stem cells primed by modified LPS on bacterial clearance in sepsis. J Cell Physiol 2018; 234:4970-4986. [PMID: 30216449 DOI: 10.1002/jcp.27298] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Mesenchymal stem cells (MSCs)-based regenerative therapy is now considered as an alternative approach to revive infectious diseases, including sepsis. Nevertheless, the efficiency of MSC application is limited by the poor survival rate of engrafted MSCs. Hence, preconditioning was established as a strategy to increase the cells' efficiency. METHODS MSCs were preconditioned with 1 μg/ml of three different lipopolysaccharides (LPSs) of Pseudomonas (Pse-LPS), Acinetobacter (Ac-LPS), and Acinetobacter inactivated lipid A by PagL (Ac-LPS-PagL). Then, preconditioned MSCs were exposed to oxidative stress and serum deprivation followed by evaluation of the antibacterial activity, survival, and apoptosis of MSCs. Then, the murine sepsis model treated with 100 μl phosphate-buffered saline (control group, sepsis group), 100 μl of 1 × 10 6 wild MSCs (MSC group), and three remained groups received 100 μl of 1 × 10 6 LPS-preconditioned MSCs (Pse-LPS-MSCs group: LPS purified from Pseudomonas, or Ac-LPS-MSCs group: LPS purified from Acinetobacter, and Ac-PagL-LPS-MSCs group: detoxified LPS Pagl). RESULTS After 4 days, LPS-preconditioned MSC transplantation modulated the immune response and reduced inflammation in septic mice. Apoptosis of Pse-LPS/Ac-LPS-preconditioned-MSCs was obviously reduced in vitro, and the survival rate of engrafted mice was evidently elevated in Pse-LPS-MSCs and Ac-LPS-MSCs groups compared with other three groups. CONCLUSION LPS preconditioning provides an innovative strategy for evolving functional and biological properties of MSCs and ameliorates the survival rate of the mouse model of sepsis after MSC transplantation, protects cells from apoptosis and organ damages, and evaluates therapeutic properties, including immunemodulatory.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res 2018; 374:1-15. [PMID: 29955951 DOI: 10.1007/s00441-018-2871-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal (stem) cells (MSCs) have multipotent differentiation capacity and exist in nearly all forms of post-natal organs and tissues. The immunosuppressive and anti-inflammatory properties of MSCs have made them an ideal candidate in the treatment of diseases, such as sepsis, in which inflammation plays a critical role. One of the key mechanisms of MSCs appears to derive from their paracrine activity. Recent studies have demonstrated that MSC-derived extracellular vesicles (MSC-EVs) are at least partially responsible for the paracrine effect. MSC-EVs transfer molecules (such as proteins/peptides, mRNA, microRNA and lipids) with immunoregulatory properties to recipient cells. MSC-EVs have been shown to mimic MSCs in alleviating sepsis and may serve as an alternative to whole cell therapy. Compared with MSCs, MSC-EVs may offer specific advantages due to lower immunogenicity and higher safety profile. The first two sections of the review discuss the preclinical and clinical findings of MSCs in sepsis. Next, we review the characteristics of EVs and MSC-EVs. Then, we summarize the mechanisms of MSC-EVs, including tissue regeneration and immunomodulation. Finally, our review presents the evidences that MSC-EVs are effective in treating models of sepsis. In conclusion, MSC-EVs may have the potential to become a novel therapeutic strategy for sepsis.
Collapse
|
39
|
Ee MT, Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: "It's About Time" or "Not so Fast" ? Curr Pediatr Rev 2018; 14:227-238. [PMID: 30205800 PMCID: PMC6416190 DOI: 10.2174/1573396314666180911100503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE While the survival of extremely premature infants has improved over the past decades, the rate of complications - especially for bronchopulmonary dysplasia (BPD) - remains unacceptably high. Over the past 50 years, no safe therapy has had a substantial impact on the incidence and severity of BPD. METHODS This may stem from the multifactorial disease pathogenesis and the increasing lung immaturity. Mesenchymal Stromal Cells (MSCs) display pleiotropic effects and show promising results in neonatal rodents in preventing or rescuing lung injury without adverse effects. Early phase clinical trials are now underway to determine the safety and efficacy of this therapy in extremely premature infants. RESULTS AND CONCLUSION This review summarizes our current knowledge about MSCs, their mechanism of action and the results of preclinical studies that provide the rationale for early phase clinical trials and discuss remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.,Sinclair Centre for Regenerative Medicine, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Thébaud B, Kourembanas S. Can We Cure Bronchopulmonary Dysplasia? J Pediatr 2017; 191:12-14. [PMID: 28942897 DOI: 10.1016/j.jpeds.2017.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Ottawa Hospital Research Institute, Sinclair Center for Regenerative Medicine, Ottawa, Ontario, Canada.
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA; Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|