1
|
Liu X, Zhang H, Yan J, Ye P, Wang Y, Zhang N, Tian Z, Liu B, Yang H. Purine metabolism in bone marrow microenvironment inhibits hematopoietic stem cell differentiation under microgravity. Stem Cell Res Ther 2025; 16:115. [PMID: 40038750 DOI: 10.1186/s13287-025-04213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Spaceflight and microgravity environments have been shown to cause significant health impairments, including bone loss, immune dysfunction, and hematopoietic disorders. Hematopoietic stem cells (HSCs), as progenitors of the hematopoietic system, are critical for the continuous renewal and regulation of immune cells. Therefore, elucidating the regulatory mechanisms governing HSC fate and differentiation in microgravity environments is of paramount importance. METHODS In this study, hindlimb unloading (HU) was employed in mice to simulate microgravity conditions. After 28 days of HU, cells were isolated for analysis. Flow cytometry and colony-forming assays were utilized to assess changes in HSC proliferation and differentiation. Additionally, transcriptomic and untargeted metabolomic sequencing were performed to elucidate alterations in the metabolic pathways of the bone marrow microenvironment and their molecular regulatory effects on HSCs fate. RESULTS Our findings revealed that 28 days of HU impaired hematopoietic function, leading to multi-organ damage and hematological disorders. The simulated microgravity environment significantly increased the HSCs population in the bone marrow, particularly within the long-term and short-term subtypes, while severely compromising the differentiation capacity of hematopoietic stem/progenitor cells. Transcriptomic analysis of HSCs, combined with metabolomic profiling of bone marrow supernatants, identified 1,631 differentially expressed genes and 58 metabolites with altered abundance. Gene set enrichment analysis indicated that HU suppressed key pathways, including hematopoietic cell lineage and MAPK signaling. Furthermore, integrated analyses revealed that metabolites affected by HU, particularly hypoxanthine enriched in the purine metabolism pathway, were closely associated with hematopoietic cell lineage and MAPK signaling pathways. Molecular docking simulations and in vitro experiments confirmed that hypoxanthine interacts directly with core molecules within these pathways, influencing their expression. CONCLUSIONS These findings demonstrate that hypoxanthine in the bone marrow supernatant acts as a signaling mediator under microgravity, influencing HSCs fate by modulating hematopoietic cell lineage and MAPK signaling pathways. This study offers novel insights into the impact of microgravity on HSC fate and gene expression, underscoring the pivotal role of bone marrow microenvironmental metabolic changes in regulating key signaling pathways that determine hematopoietic destiny.
Collapse
Affiliation(s)
- Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Penghui Ye
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yanran Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bin Liu
- Department of Infectious Diseases, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, China.
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China.
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
2
|
van den Nieuwenhof DWA, Moroni L, Chou J, Hinkelbein J. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: a narrative review. NPJ Microgravity 2024; 10:102. [PMID: 39505879 PMCID: PMC11541851 DOI: 10.1038/s41526-024-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The rising aging population underscores the need for advances in tissue engineering and regenerative medicine. Alterations in cellular response in microgravity might be pivotal in unraveling the intricate cellular mechanisms governing tissue and organ regeneration. Microgravity could improve multicellular spheroid, tissue, and organ formation. This review summarizes microgravity-induced cellular alterations and highlights the potential of tissue engineering in microgravity for future breakthroughs in space travel, transplantation, drug testing, and personalized medicine.
Collapse
Affiliation(s)
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Joshua Chou
- University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Jochen Hinkelbein
- Department of Anesthesiology, Intensive Care Medicine and Emergency Medicine, Johannes Wesling Klinikum Minden, University Hospital Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Zeger L, Barasa P, Han Y, Hellgren J, Redwan IN, Reiche ME, Florin G, Christoffersson G, Kozlova EN. Microgravity Effect on Pancreatic Islets. Cells 2024; 13:1588. [PMID: 39329769 PMCID: PMC11430520 DOI: 10.3390/cells13181588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
We previously demonstrated that boundary cap neural crest stem cells (BCs) induce the proliferation of beta-cells in vitro, increase survival of pancreatic islets (PIs) in vivo after transplantation, and themselves strongly increase their proliferation capacity after exposure to space conditions. Therefore, we asked if space conditions can induce the proliferation of beta-cells when PIs are alone or together with BCs in free-floating or 3D-printed form. During the MASER 15 sounding rocket experiment, half of the cells were exposed to 6 min of microgravity (µg), whereas another group of cells were kept in 1 g conditions in a centrifuge onboard. The proliferation marker EdU was added to the cells just before the rocket reached µg conditions. The morphological assessment revealed that PIs successfully survived and strongly proliferated, particularly in the free-floating condition, though the fusion of PIs hampered statistical analysis. Proliferation of beta-cells was displayed in 3D-printed islets two weeks after µg exposure, suggesting that the effects of µg may be delayed. Thus, PIs in 3D-printed scaffolds did not fuse, and this preparation is more suitable than free-floating specimens for morphological analysis in µg studies. PIs maintained their increased proliferation capacity for weeks after µg exposure, an effect that may not appear directly, but can emerge after a delay.
Collapse
Affiliation(s)
- Lukas Zeger
- Regenerative Neurobiology, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden; (L.Z.); (Y.H.)
| | - Povilas Barasa
- Department of Biological Models, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania;
| | - Yilin Han
- Regenerative Neurobiology, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden; (L.Z.); (Y.H.)
| | - Josefin Hellgren
- CELLINK Bioprinting AB, Langfilsgatan 7, 41277 Gothenburg, Sweden; (J.H.); (I.N.R.)
| | - Itedale Namro Redwan
- CELLINK Bioprinting AB, Langfilsgatan 7, 41277 Gothenburg, Sweden; (J.H.); (I.N.R.)
| | - Myrthe E. Reiche
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, 75310 Uppsala, Sweden; (M.E.R.); (G.C.)
| | | | - Gustaf Christoffersson
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, 75310 Uppsala, Sweden; (M.E.R.); (G.C.)
| | - Elena N. Kozlova
- Regenerative Neurobiology, Department of Immunology, Genetics and Pathology, Uppsala University, 75108 Uppsala, Sweden; (L.Z.); (Y.H.)
| |
Collapse
|
4
|
Abdelfattah F, Schulz H, Wehland M, Corydon TJ, Sahana J, Kraus A, Krüger M, González-Torres LF, Cortés-Sánchez JL, Wise PM, Mushunuri A, Hemmersbach R, Liemersdorf C, Infanger M, Grimm D. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:10014. [PMID: 39337501 PMCID: PMC11431953 DOI: 10.3390/ijms251810014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Ashwini Mushunuri
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Ruth Hemmersbach
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
5
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
6
|
Ye Y, Xie W, Ma Z, Wang X, Wen Y, Li X, Qi H, Wu H, An J, Jiang Y, Lu X, Chen G, Hu S, Blaber EA, Chen X, Chang L, Zhang W. Conserved mechanisms of self-renewal and pluripotency in mouse and human ESCs regulated by simulated microgravity using a 3D clinostat. Cell Death Discov 2024; 10:68. [PMID: 38336777 PMCID: PMC10858198 DOI: 10.1038/s41420-024-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism. Specifically, SMG induces the upregulation of heat shock protein genes, subsequently enhancing the expression of core pluripotency factors and activating the Wnt and/or LIF/STAT3 signaling pathways, thereby fostering ESC self-renewal. Notably, heightened Wnt pathway activity, facilitated by Tbx3 upregulation, prompts mesoendodermal differentiation in both murine and human ESCs under SMG conditions. Recognizing potential disparities between terrestrial SMG simulations and authentic microgravity, forthcoming space flight experiments are imperative to validate the impact of reduced gravity on ESC self-renewal and differentiation mechanisms.
Collapse
Affiliation(s)
- Ying Ye
- Medical College of Soochow University, Suzhou, China
| | - Wenyan Xie
- Medical College of Soochow University, Suzhou, China
| | - Zhaoru Ma
- Medical College of Soochow University, Suzhou, China
| | - Xuepeng Wang
- Medical College of Soochow University, Suzhou, China
| | - Yi Wen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xuemei Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Hongqian Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin, 300350, China
| | - Hao Wu
- Medical College of Soochow University, Suzhou, China
| | - Jinnan An
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Suzhou, China
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, Tianjin, 300350, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, 215000, China.
| | - Elizabeth A Blaber
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Province International Joint Laboratory For Regeneration Medicine, Medical College of Soochow University, Suzhou, China.
| | | |
Collapse
|
7
|
In Prostate Cancer Cells Cytokines Are Early Responders to Gravitational Changes Occurring in Parabolic Flights. Int J Mol Sci 2022; 23:ijms23147876. [PMID: 35887223 PMCID: PMC9319544 DOI: 10.3390/ijms23147876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
The high mortality in men with metastatic prostate cancer (PC) establishes the need for diagnostic optimization by new biomarkers. Mindful of the effect of real microgravity on metabolic pathways of carcinogenesis, we attended a parabolic flight (PF) mission to perform an experiment with the PC cell line PC-3, and submitted the resulting RNA to next generation sequencing (NGS) and quantitative real-time PCR (qPCR). After the first parabola, alterations of the F-actin cytoskeleton-like stress fibers and pseudopodia are visible. Moreover, numerous significant transcriptional changes are evident. We were able to identify a network of relevant PC cytokines and chemokines showing differential expression due to gravitational changes, particularly during the early flight phases. Together with differentially expressed regulatory lncRNAs and micro RNAs, we present a portfolio of 298 potential biomarkers. Via qPCR we identified IL6 and PIK3CB to be sensitive to vibration effects and hypergravity, respectively. Per NGS we detected five upregulated cytokines (CCL2, CXCL1, IL6, CXCL2, CCL20), one zink finger protein (TNFAIP3) and one glycoprotein (ICAM1) related to c-REL signaling and thus relevant for carcinogenesis as well as inflammatory aspects. We found regulated miR-221 and the co-localized lncRNA MIR222HG induced by PF maneuvers. miR-221 is related to the PC-3 growth rate and MIR222HG is a known risk factor for glioma susceptibility. These findings in real microgravity may further improve our understanding of PC and contribute to the development of new diagnostic tools.
Collapse
|
8
|
Juran CM, Zvirblyte J, Almeida E. Differential Single Cell Responses of Embryonic Stem Cells Versus Embryoid Bodies to Gravity Mechanostimulation. Stem Cells Dev 2022; 31:346-356. [PMID: 35570697 PMCID: PMC9293686 DOI: 10.1089/scd.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forces generated by gravity have shaped life on Earth and impact gene expression and morphogenesis during early development. Conversely, disuse on Earth or during spaceflight, reduces normal mechanical loading of organisms, resulting in altered cell and tissue function. Although gravity mechanical loading in adult mammals is known to promote increased cell proliferation and differentiation, little is known about how distinct cell types respond to gravity mechanostimulation during early development. In this study we sought to understand, with single cell RNA-sequencing resolution, how a 60-min pulse of 50 g hypergravity (HG)/5 kPa hydrostatic pressure, influences transcriptomic regulation of developmental processes in the embryoid body (EB) model. Our study included both day-9 EBs and progenitor mouse embryonic stem cells (ESCs) with or without the HG pulse. Single cell t-distributed stochastic neighbor mapping shows limited transcriptome shifts in response to the HG pulse in either ESCs or EBs; this pulse however, induces greater positional shifts in EB mapping compared to ESCs, indicating the influence of mechanotransduction is more pronounced in later states of cell commitment within the developmental program. More specifically, HG resulted in upregulation of self-renewal and angiogenesis genes in ESCs, while in EBs, HG loading was associated with upregulation of Gene Ontology-pathways for multicellular development, mechanical signal transduction, and DNA damage repair. Cluster transcriptome analysis of the EBs show HG promotes maintenance of transitory cell phenotypes in early development; including EB cluster co-expression of markers for progenitor, post-implant epiblast, and primitive endoderm phenotypes with HG pulse but expression exclusivity in the non-pulsed clusters. Pseudotime analysis identified three branching cell types susceptible to HG induction of cell fate decisions. In totality, this study provides novel evidence that ESC maintenance and EB development can be regulated by gravity mechanostimulation and that stem cells committed to a differentiation program are more sensitive to gravity-induced changes to their transcriptome.
Collapse
Affiliation(s)
| | - Justina Zvirblyte
- Vilnius University, 54694, Sector of Microtechnologies, Institute of Biotechnology, Life Sciences Center,, Vilnius, Vilnius, Lithuania
| | - Eduardo Almeida
- NASA AMES Research Center, Space Biosciences Division, Bldg 236 rm 217, Moffett Field , California, United States, 94035-1000, ,
| |
Collapse
|
9
|
Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med 2022; 7:23. [PMID: 35393412 PMCID: PMC8991236 DOI: 10.1038/s41536-022-00216-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Although skeletal muscle repairs itself following small injuries, genetic diseases or severe damages may hamper its ability to do so. Induced pluripotent stem cells (iPSCs) can generate myogenic progenitors, but their use in combination with bioengineering strategies to modulate their phenotype has not been sufficiently investigated. This review highlights the potential of this combination aimed at pushing the boundaries of skeletal muscle tissue engineering. First, the overall organization and the key steps in the myogenic process occurring in vivo are described. Second, transgenic and non-transgenic approaches for the myogenic induction of human iPSCs are compared. Third, technologies to provide cells with biophysical stimuli, biomaterial cues, and biofabrication strategies are discussed in terms of recreating a biomimetic environment and thus helping to engineer a myogenic phenotype. The embryonic development process and the pro-myogenic role of the muscle-resident cell populations in co-cultures are also described, highlighting the possible clinical applications of iPSCs in the skeletal muscle tissue engineering field.
Collapse
Affiliation(s)
- Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.
| | - Emanuele Gruppioni
- Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, 40054, Vigorso di Budrio (BO), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy
| |
Collapse
|
10
|
Deane CS, da Silveira WA, Herranz R. Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes. iScience 2022; 25:103920. [PMID: 35265808 PMCID: PMC8898910 DOI: 10.1016/j.isci.2022.103920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include "omic" analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK.,Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Willian A da Silveira
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD, 2080, Malta
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
11
|
Li F, Ye Y, Lei X, Zhang W. Effects of Microgravity on Early Embryonic Development and Embryonic Stem Cell Differentiation: Phenotypic Characterization and Potential Mechanisms. Front Cell Dev Biol 2021; 9:797167. [PMID: 34926474 PMCID: PMC8675004 DOI: 10.3389/fcell.2021.797167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
With the development of science and technology, mankind’s exploration of outer space has increased tremendously. Settling in outer space or on other planets could help solve the Earth’s resource crisis, but such settlement will first face the problem of reproduction. There are considerable differences between outer space and the Earth’s environment, with the effects of gravity being one of the most significant. Studying the possible effects and underlying mechanisms of microgravity on embryonic stem cell (ESC) differentiation and embryonic development could help provide solutions to healthy living and reproduction in deep space. This article summarizes recent research progress on the effects of microgravity on ESCs and early embryonic development and proposes hypotheses regarding the potential mechanisms. In addition, we discuss the controversies and key questions in the field and indicate directions for future research.
Collapse
Affiliation(s)
- Feng Li
- Department of Urinary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Ye
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.,Department of Physiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Effects of Simulated Microgravity on Wild Type and Marfan hiPSCs-Derived Embryoid Bodies. Cell Mol Bioeng 2021; 14:613-626. [PMID: 34900014 PMCID: PMC8630351 DOI: 10.1007/s12195-021-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/20/2021] [Indexed: 11/03/2022] Open
Abstract
Background Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including the inhibition of regenerative stem cell differentiation. In this work, we investigate the effects of microgravity simulation on early lineage commitment of hiPSCs from healthy and Marfan Syndrome (MFS; OMIM #154700) donors, using the embryoid bodies model of tissue differentiation and evaluating their ultra-structural conformation. MFS model involves an anomalous organization of the extracellular matrix for a deficit of fibrillin-1, an essential protein of connective tissue. Methods In vitro models require the use of embryoid bodies derived from hiPSCs. A DRPM was used to simulate microgravity conditions. Results Our data suggest an increase of the stemness of those EBs maintained in SMG condition. EBs are still capable of external migration, but are less likely to distinguish, providing a measure of the remaining progenitor or stem cell populations in the earlier stage. The microgravity response appears to vary between WT and Marfan EBs, presumably as a result of a cell structural component deficiency due to fibrillin-1 protein lack. In fact, MFS EBs show a reduced adaptive capacity to the environment of microgravity that prevented them from reacting and making rapid adjustments, while healthy EBs show stem retention, without any structural changes due to microgravity conditions. Conclusion EBs formation specifically mimics stem cell differentiation into embryonic tissues, this process has also significant similarities with adult stem cell-based tissue regeneration. The use of SMG devices for the maintenance of stem cells on regenerative medicine applications is becoming increasingly more feasible. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00680-1.
Collapse
|
13
|
Salvetti A, Degl'Innocenti A, Gambino G, van Loon JJ, Ippolito C, Ghelardoni S, Ghigo E, Leoncino L, Prato M, Rossi L, Ciofani G. Artificially altered gravity elicits cell homeostasis imbalance in planarian worms, and cerium oxide nanoparticles counteract this effect. J Biomed Mater Res A 2021; 109:2322-2333. [PMID: 33960131 PMCID: PMC8518838 DOI: 10.1002/jbm.a.37215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023]
Abstract
Gravity alterations elicit complex and mostly detrimental effects on biological systems. Among these, a prominent role is occupied by oxidative stress, with consequences for tissue homeostasis and development. Studies in altered gravity are relevant for both Earth and space biomedicine, but their implementation using whole organisms is often troublesome. Here we utilize planarians, simple worm model for stem cell and regeneration biology, to characterize the pathogenic mechanisms brought by artificial gravity alterations. In particular, we provide a comprehensive evaluation of molecular responses in intact and regenerating specimens, and demonstrate a protective action from the space-apt for nanotechnological antioxidant cerium oxide nanoparticles.
Collapse
Affiliation(s)
- Alessandra Salvetti
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Andrea Degl'Innocenti
- Istituto Italiano di TecnologiaCenter for Materials Interfaces, Smart Bio‐InterfacesPisaItaly
| | - Gaetana Gambino
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Jack J.W.A. van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral PathologyAmsterdam UMC location VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA)AmsterdamThe Netherlands
- TEC‐MMG LIS labEuropean Space Agency (ESA), European Space Research and Technology Center (ESTEC)NoordwijkThe Netherlands
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, Biology and Genetics UnitUniversità di PisaPisaItaly
| | - Sandra Ghelardoni
- Department of Pathology, Biochemistry UnitUniversità di PisaPisaItaly
| | - Eric Ghigo
- Institut Hospitalo‐Universitaire Méditerranée InfectionMarseilleFrance
- Techno JouvenceMarseilleFrance
| | - Luca Leoncino
- Istituto Italiano di TecnologiaElectron Microscopy FacilityGenoaItaly
| | - Mirko Prato
- Istituto Italiano di TecnologiaMaterials Characterization FacilityGenoaItaly
| | - Leonardo Rossi
- Università di Pisa, Department of Clinical and Experimental MedicineBiology and Genetics unitPisaItaly
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaCenter for Materials Interfaces, Smart Bio‐InterfacesPisaItaly
| |
Collapse
|
14
|
Han Y, Zeger L, Tripathi R, Egli M, Ille F, Lockowandt C, Florin G, Atic E, Redwan IN, Fredriksson R, Kozlova EN. Molecular genetic analysis of neural stem cells after space flight and simulated microgravity on earth. Biotechnol Bioeng 2021; 118:3832-3846. [PMID: 34125436 DOI: 10.1002/bit.27858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Understanding how stem cells adapt to space flight conditions is fundamental for human space missions and extraterrestrial settlement. We analyzed gene expression in boundary cap neural crest stem cells (BCs), which are attractive for regenerative medicine by their ability to promote proliferation and survival of cocultured and co-implanted cells. BCs were launched to space (space exposed cells) (SEC), onboard sounding rocket MASER 14 as free-floating neurospheres or in a bioprinted scaffold. For comparison, BCs were placed in a random positioning machine (RPM) to simulate microgravity on earth (RPM cells) or were cultured under control conditions in the laboratory. Using next-generation RNA sequencing and data post-processing, we discovered that SEC upregulated genes related to proliferation and survival, whereas RPM cells upregulated genes associated with differentiation and inflammation. Thus, (i) space flight provides unique conditions with distinctly different effects on the properties of BC compared to earth controls, and (ii) the space flight exposure induces postflight properties that reinforce the utility of BC for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Yilin Han
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| | - Lukas Zeger
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| | - Rekha Tripathi
- Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden
| | - Marcel Egli
- Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland
| | - Fabian Ille
- Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland
| | | | - Gunnar Florin
- Swedish Space Corporation, Science Service Division, Solna, Sweden
| | | | | | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden
| | - Elena N Kozlova
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
16
|
Radiation Response of Murine Embryonic Stem Cells. Cells 2020; 9:cells9071650. [PMID: 32660081 PMCID: PMC7408589 DOI: 10.3390/cells9071650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
To understand the mechanisms of disturbed differentiation and development by radiation, murine CGR8 embryonic stem cells (mESCs) were exposed to ionizing radiation and differentiated by forming embryoid bodies (EBs). The colony forming ability test was applied for survival and the MTT test for viability determination after X-irradiation. Cell cycle progression was determined by flow cytometry of propidium iodide-stained cells, and DNA double strand break (DSB) induction and repair by γH2AX immunofluorescence. The radiosensitivity of mESCs was slightly higher compared to the murine osteoblast cell line OCT-1. The viability 72 h after X-irradiation decreased dose-dependently and was higher in the presence of leukemia inhibitory factor (LIF). Cells exposed to 2 or 7 Gy underwent a transient G2 arrest. X-irradiation induced γH2AX foci and they disappeared within 72 h. After 72 h of X-ray exposure, RNA was isolated and analyzed using genome-wide microarrays. The gene expression analysis revealed amongst others a regulation of developmental genes (Ada, Baz1a, Calcoco2, Htra1, Nefh, S100a6 and Rassf6), downregulation of genes involved in glycolysis and pyruvate metabolism whereas upregulation of genes related to the p53 signaling pathway. X-irradiated mESCs formed EBs and differentiated toward cardiomyocytes but their beating frequencies were lower compared to EBs from unirradiated cells. These results suggest that X-irradiation of mESCs deregulate genes related to the developmental process. The most significant biological processes found to be altered by X-irradiation in mESCs were the development of cardiovascular, nervous, circulatory and renal system. These results may explain the X-irradiation induced-embryonic lethality and malformations observed in animal studies.
Collapse
|
17
|
Grimm D, Wehland M, Corydon TJ, Richter P, Prasad B, Bauer J, Egli M, Kopp S, Lebert M, Krüger M. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl Med 2020; 9:882-894. [PMID: 32352658 PMCID: PMC7381804 DOI: 10.1002/sctm.20-0084] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
A spaceflight has enormous influence on the health of space voyagers due to the combined effects of microgravity and cosmic radiation. Known effects of microgravity (μg) on cells are changes in differentiation and growth. Considering the commercialization of spaceflight, future space exploration, and long-term manned flights, research focusing on differentiation and growth of stem cells and cancer cells exposed to real (r-) and simulated (s-) μg is of high interest for regenerative medicine and cancer research. In this review, we focus on platforms to study r- and s-μg as well as the impact of μg on cancer stem cells in the field of gastrointestinal cancer, lung cancer, and osteosarcoma. Moreover, we review the current knowledge of different types of stem cells exposed to μg conditions with regard to differentiation and engineering of cartilage, bone, vasculature, heart, skin, and liver constructs.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Magdeburg, Germany.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Richter
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Binod Prasad
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johann Bauer
- Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Marcel Egli
- Institute of Medical Engineering, Space Biology Group, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Michael Lebert
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Space Biology Unlimited SAS, Bordeaux, France
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
18
|
Acharya A, Brungs S, Lichterfeld Y, Hescheler J, Hemmersbach R, Boeuf H, Sachinidis A. Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes. Cells 2019; 8:cells8040352. [PMID: 31013958 PMCID: PMC6523861 DOI: 10.3390/cells8040352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Functional studies of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hCMs) under different gravity conditions contribute to aerospace medical research. To study the effects of altered gravity on hCMs, we exposed them to acute hypergravity and microgravity phases in the presence and absence of the β-adrenoceptor isoprenalin (ISO), L-type Ca2+ channel (LTCC) agonist Bay-K8644, or LTCC blocker nifedipine, and monitored their beating rate (BR). These logistically demanding experiments were executed during the 66th Parabolic Flight Campaign of the European Space Agency. The hCM cultures were exposed to 31 alternating hypergravity, microgravity, and hypergravity phases, each lasting 20–22 s. During the parabolic flight experiment, BR and cell viability were monitored using the xCELLigence real-time cell analyzer Cardio Instrument®. Corresponding experiments were performed on the ground (1 g), using an identical set-up. Our results showed that BR continuously increased during the parabolic flight, reaching a 40% maximal increase after 15 parabolas, compared with the pre-parabolic (1 g) phase. However, in the presence of the LTCC blocker nifedipine, no change in BR was observed, even after 31 parabolas. We surmise that the parabola-mediated increase in BR was induced by the LTCC blocker. Moreover, the increase in BR induced by ISO and Bay-K8644 during the pre-parabola phase was further elevated by 20% after 25 parabolas. This additional effect reflects the positive impact of the parabolas in the absence of both agonists. Our study suggests that acute alterations of gravity significantly increase the BR of hCMs via the LTCC.
Collapse
Affiliation(s)
- Aviseka Acharya
- Institute of Neurophysiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Sonja Brungs
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany.
| | - Yannick Lichterfeld
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany.
| | - Jürgen Hescheler
- Institute of Neurophysiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany.
| | - Helene Boeuf
- INSERM (French National Institute of Health and Medical Research), U1026-Biotis, Université de Bordeaux, 33076 Bordeaux, France.
| | - Agapios Sachinidis
- Institute of Neurophysiology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|