1
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2025; 21:23-38. [PMID: 37966629 PMCID: PMC11904000 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
2
|
Zeng X, Ropper AE, Aljuboori Z, Yu D, Teng TW, Kabatas S, Usuga E, Anderson JE, Teng YD. Concurrent Oncolysis and Neurolesion Repair by Dual Gene-Engineered hNSCs in an Experimental Model of Intraspinal Cord Glioblastoma. Cells 2024; 13:1522. [PMID: 39329707 PMCID: PMC11429792 DOI: 10.3390/cells13181522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 09/28/2024] Open
Abstract
Intramedullary spinal cord glioblastoma (ISCG) is lethal due to lack of effective treatment. We previously established a rat C6-ISCG model and the antitumor effect of F3.CD-TK, an hNSC line expressing CD and TK, via producing cytocidal 5FU and GCV-TP. However, the neurotherapeutic potential of this hNSC approach has remained uninvestigated. Here for the first time, cultured F3.CD-TK cells were found to have a markedly higher oncolytic effect, which was GJIC-dependent, and BDNF expression but less VEGF secretion than F3.CD. In Rowett athymic rats, F3.CD-TK (1.5 × 106 cells/10 µL × 2), injected near C6-ISCG (G55 seeding 7 days earlier: 10 K/each) and followed by q.d. (×5/each repeat; i.p.) of 5FC (500 mg/kg/5 mL/day) and GCV (25 mg/kg/1 mL/day), robustly mitigated cardiorespiratory, locomotor, and sensory deficits to improve neurofunction and overall survival compared to animals receiving either F3.CD or F3.CD-TK+F3.CD debris formula. The F3.CD-TK regimen exerted greater tumor penetration and neural inflammation/immune modulation, reshaped C6-ISCG topology to increase the tumor's surface area/volume ratio to spare/repair host axons (e.g., vGlut1+ neurites), and had higher post-prodrug donor self-clearance. The multimodal data and mechanistic leads from this proof-of-principle study suggest that the overall stronger anti-ISCG benefit of our hNSC-based GDEPT is derived from its concurrent oncolytic and neurotherapeutic effects.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Alexander E. Ropper
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Zaid Aljuboori
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Dou Yu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | | | - Serdar Kabatas
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Jamie E. Anderson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA 02129, USA
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
- Laboratory of SCI, Stem Cell, and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
3
|
Zhou X, Gao F, Gao W, Wang Q, Li X, Li X, Li W, Liu J, Zhou H, Luo A, Chen C, Liu Z. Bismuth Sulfide Nanoflowers Facilitated miR339 Delivery to Overcome Stemness and Radioresistance through Ubiquitin-Specific Peptidase 8 in Esophageal Cancer. ACS NANO 2024; 18:19232-19246. [PMID: 38996055 DOI: 10.1021/acsnano.4c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Despite the superior efficacy of radiotherapy in esophageal squamous cell carcinoma (ESCC), radioresistance by cancer stem cells (CSCs) leads to recurrence, metastasis, and treatment failure. Therefore, it is necessary to develop CSC-based therapies to enhance radiotherapy. miR-339-5p (miR339) is involved in stem cell division and DNA damage checkpoint signaling pathways based on ESCC cohort. miR339 inhibited ESCC cell stemness and enhanced radiation-induced DNA damage by targeting USP8, suggesting that it acts as a potential CSC regulator and radiosensitizer. Considering the limited circulating periods and poor tumor-targeting ability of miRNA, a multifunctional nanoplatform based on bismuth sulfide nanoflower (Bi@PP) is developed to efficiently deliver miR339 and improve radioresistance. Intriguingly, Bi@PP encapsulates more miR339 owing to their flower-shaped structure, delivering more than 1000-fold miR339 into cells, superior to free miR339 alone. Besides being used as a carrier, Bi@PP is advantageous for dynamically monitoring the distribution of delivered miR339 in vivo while simultaneously inhibiting tumor growth. Additionally, Bi@PP/miR339 can significantly enhance radiotherapy efficacy in patient-derived xenograft models. This multifunctional platform, incorporating higher miRNA loading capacity, pH responsiveness, hypoxia relief, and CT imaging, provides another method to promote radiosensitivity and optimize ESCC treatment.
Collapse
Affiliation(s)
- Xuantong Zhou
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fene Gao
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Wenyan Gao
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingzhen Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinyue Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenxin Li
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Huige Zhou
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
4
|
Ma J, Chen Z, Li Q, Wang L, Chen J, Yang X, Yang C, Quan Z. RARRES2 is involved in the "lock-and-key" interactions between osteosarcoma stem cells and tumor-associated macrophages. Sci Rep 2024; 14:2267. [PMID: 38280909 PMCID: PMC10821905 DOI: 10.1038/s41598-024-52738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Osteosarcoma (OS) is a type of tumor. Osteosarcoma stem cells (OSCs) are responsible for drug resistance, recurrence, and immunosuppression in OS. We aimed to determine the heterogeneity of OSCs and the immunosuppression mechanisms underlying the interactions between OSCs and tumor-associated macrophages (TAMs). The cell components, trajectory changes, and cell communication profiles of OS cells were analyzed by transcriptomics at the single-cell level. The intercellular communication patterns of OSCs were verified, and the role of the cell hub genes was revealed. Hub geneS are genes that play important roles in regulating certain biological processes; they are often defined as the genes with the strongest regulatory effect on differentially expressed gene sets. Moreover, various cellular components of the OS microenvironment were identified. Malignant cells were grouped, and OSCs were identified. Further regrouping and communication analysis revealed that the genes in the stemness maintenance and differentiation subgroups were involved in communication with macrophages. Key receptor-ligand pairs and target gene sets for cell communication were obtained. Transcriptome data analysis revealed the key gene RARRES2, which is involved in intercellular communication between OSCs and TAMs. In vitro studies confirmed that macrophages promote RARRES2-mediated stemness maintenance in OSCs via the TAM-secreted cytokine insulin-like growth factor 1. Patient studies confirmed that RARRES2 could be a biomarker of OS. OSCs are highly heterogeneous, and different subgroups are responsible for proliferation and communication with other cells. The IGF-RARRES2 axis plays a key role in maintaining OSC stemness through communication with TAMs.
Collapse
Affiliation(s)
- Jingjin Ma
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiaochu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chaohua Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular Hydrogen: From Molecular Effects to Stem Cells Management and Tissue Regeneration. Antioxidants (Basel) 2023; 12:antiox12030636. [PMID: 36978884 PMCID: PMC10045005 DOI: 10.3390/antiox12030636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| | - Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | | | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Sergei V. Dlin
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| |
Collapse
|
7
|
The Role of Tumor Microenvironment in Regulating the Plasticity of Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232416155. [PMID: 36555795 PMCID: PMC9788144 DOI: 10.3390/ijms232416155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on their tumor microenvironment. In recent years, the likelihood of its dynamic plasticity has been extensively studied. Importantly, the tumor microenvironment appears to act as the main regulatory component of OS cell plasticity. For these reasons aforementioned, novel strategies for OS treatment focusing on modulating OS cell plasticity and the possibility of modulating the composition of the tumor microenvironment are currently being explored. In this paper, we review recent studies describing the phenomenon of OSCs and factors known to influence phenotypic plasticity. The microenvironment, which can regulate OSC plasticity, has great potential for clinical exploitation and provides different perspectives for drug and treatment design for OS.
Collapse
|
8
|
Li J, Wang ZH, Dang YM, Li DN, Liu Z, Dai DP, Cai JP. MTH1 suppression enhances the stemness of MCF7 through upregulation of STAT3. Free Radic Biol Med 2022; 188:447-458. [PMID: 35809767 DOI: 10.1016/j.freeradbiomed.2022.06.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
MTH1 protein can sanitize the damaged (d)NTP pool and MTH1 inhibitors have been developed to impede the growth of rapidly proliferating tumor cells; however, the effect of MTH1 inhibition on breast cancer stemness has not been reported yet. Here, we constructed breast cancer cell lines with the stable depletion of MTH1. MTH1 suppression clearly increased the ratio of CD44+CD24-/low subpopulations and promoted the formation of tumorspheres in MCF7 and T47D cells. RNA expression profiling, RT-qPCR and Western blotting showed the upregulation of master stem cell transcription factors Sox2, Oct4 and Nanog in MTH1 knockdown cells. GSEA suggested and Western blotting verified that MTH1 knockdown increased the expression of phosphorylated STAT3 (Tyr705). Furthermore, we indirectly demonstrated that the increased concentration of 8-oxo-dGTP and 8-oxo-GTP in MTH1-knockdown cells and exogenous 8-oxoGTP, rather than 8-oxo-dGTP, could significantly increase the phosphorylation of STAT3. In conclusion, this work indicates that MTH1 inhibition increased the proportion of breast cancer stem cells (BCSCs) and promoted stemness properties in MCF7 cells.
Collapse
Affiliation(s)
- Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Zi-Hui Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Ya-Min Dang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Dan-Ni Li
- The Clinical Laboratory of Beijing Hospital, Ministry of Health, Beijing, PR China
| | - Zhen Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
9
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
10
|
Tian BR, Lin WF, Zhang Y. Effects of biomechanical forces on the biological behavior of cancer stem cells. J Cancer 2021; 12:5895-5902. [PMID: 34476003 PMCID: PMC8408108 DOI: 10.7150/jca.60893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), dynamic subsets of cancer cells, are responsible for malignant progression. The unique properties of CSCs, including self-renewal, differentiation, and malignancy, closely depend on the tumor microenvironment. Mechanical components in the microenvironment, including matrix stiffness, fluid shear stress, compression and tension stress, affect the fate of CSCs and further influence the cancer process. This paper reviews recent studies of mechanical components and CSCs, and further discusses the intrinsic correlation among them. Regulatory mechanisms of mechanical microenvironment, which act on CSCs, have great potential for clinical application and provide different perspectives to drugs and treatment design.
Collapse
Affiliation(s)
- Bo Ren Tian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, People's Republic of China
| | - Wei Fan Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, People's Republic of China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, People's Republic of China
| |
Collapse
|
11
|
Baniahmad A. Tumor spheroids and organoids as preclinical model systems. MED GENET-BERLIN 2021; 33:229-234. [PMID: 38835698 PMCID: PMC11006296 DOI: 10.1515/medgen-2021-2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/27/2021] [Indexed: 06/06/2024]
Abstract
The generation of three-dimensional (3D) cancer models is a novel and fascinating development in the study of personalized medicine and tumor-specific drug delivery. In addition to the classical two-dimensional (2D) adherent cell culture models, 3D spheroid and organoid cancer models that mimic the microenvironment of cancer tissue are emerging as an important preclinical model system. 3D cancer models form, similar to cancer, multiple cell-cell and cell-extracellular matrix interactions and activate different cellular cascades/pathways, like proliferation, quiescence, senescence, and necrotic or apoptotic cell death. Further, it is possible to analyze genetic variations and mutations, the microenvironment of cell-cell interactions, and the uptake of therapeutics and nanoparticles in nanomedicine. Important is also the analysis of cancer stem cells (CSCs), which could play key roles in resistance to therapy and cancer recurrence. Tumor spheroids can be generated from one tumor-derived cell line or from co-culture of two or more cell lines. Tumor organoids can be derived from tumors or may be generated from CSCs that differentiate into multiple facets of cancerous tissue. Similarly, tumorspheres can be generated from a single CSC. By transplanting spheroids and organoids into immune-deficient mice, patient-derived xenografts can serve as a preclinical model to test therapeutics in vivo. Although the handling and analysis of 3D tumor spheroids and organoids is more complex, it will provide insights into various cancer processes that cannot be provided by 2D culture. Here a short overview of 3D tumor systems as preclinical models is provided.
Collapse
Affiliation(s)
- Aria Baniahmad
- Institut für Humangenetik, Universitätsklinikum Jena, Am Klinikum 1, 07740 Jena, Germany
| |
Collapse
|
12
|
Glioma stem cell-derived exosomal miR-944 reduces glioma growth and angiogenesis by inhibiting AKT/ERK signaling. Aging (Albany NY) 2021; 13:19243-19259. [PMID: 34233294 PMCID: PMC8386563 DOI: 10.18632/aging.203243] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
In this study, we investigated the regulatory role of exosomal microRNA-944 (miR-944) derived from glioma stem cells (GSCs) in glioma progression and angiogenesis. Bioinformatics analysis showed that miR-944 levels were significantly lower in high-grade gliomas (HGGs) than low-grade gliomas in the Chinese Glioma Genome Atlas and The Cancer Genome Atlas datasets. The overall survival rates were significantly shorter for glioma patients expressing low miR-944 levels than high miR-944 levels. GSC-derived exosomal miR-944 significantly decreased in vitro proliferation, migration, and tube formation by human umbilical vein endothelial cells (HUVECs). Targetscan and dual luciferase reporter assays demonstrated that miR-944 directly targets the 3’UTR of VEGFC. In vivo mouse studies demonstrated that injection of agomiR-944 directly into tumors 3 weeks after xenografting glioma cells significantly reduced tumor growth and angiogenesis. GSC-derived exosomal miR-944 significantly reduced VEGFC levels and suppressed activation of AKT/ERK signaling pathways in HUVECs and xenograft glioma cell tumors. These findings demonstrate that GSC-derived exosomal miR-944 inhibits glioma growth, progression, and angiogenesis by suppressing VEGFC expression and inhibiting the AKT/ERK signaling pathway.
Collapse
|
13
|
Wright RHG, Beato M. Role of the NUDT Enzymes in Breast Cancer. Int J Mol Sci 2021; 22:2267. [PMID: 33668737 PMCID: PMC7956304 DOI: 10.3390/ijms22052267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Despite global research efforts, breast cancer remains the leading cause of cancer death in women worldwide. The majority of these deaths are due to metastasis occurring years after the initial treatment of the primary tumor and occurs at a higher frequency in hormone receptor-positive (Estrogen and Progesterone; HR+) breast cancers. We have previously described the role of NUDT5 (Nudix-linked to moiety X-5) in HR+ breast cancer progression, specifically with regards to the growth of breast cancer stem cells (BCSCs). BCSCs are known to be the initiators of epithelial-to-mesenchyme transition (EMT), metastatic colonization, and growth. Therefore, a greater understanding of the proteins and signaling pathways involved in the metastatic process may open the door for therapeutic opportunities. In this review, we discuss the role of NUDT5 and other members of the NUDT family of enzymes in breast and other cancer types. We highlight the use of global omics data based on our recent phosphoproteomic analysis of progestin signaling pathways in breast cancer cells and how this experimental approach provides insight into novel crosstalk mechanisms for stratification and drug discovery projects aiming to treat patients with aggressive cancer.
Collapse
Affiliation(s)
- Roni H. G. Wright
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08003 Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Life Science, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| |
Collapse
|
14
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
15
|
Gaps and Doubts in Search to Recognize Glioblastoma Cellular Origin and Tumor Initiating Cells. JOURNAL OF ONCOLOGY 2020; 2020:6783627. [PMID: 32774372 PMCID: PMC7396023 DOI: 10.1155/2020/6783627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Cellular origin of glioblastoma (GB) is constantly discussed and remains a controversial subject. Unfortunately, neurobiologists are not consistent in defining neural stem cells (NSC) complicating this issue even further. Nevertheless, some suggestions referring to GB origin can be proposed based on comparing GB to central nervous system (CNS) cells. Firstly, GB cells show in vitro differentiation pattern similar to GFAP positive neural cells, rather than classical (GFAP negative) NSC. GB cells in primary cultures become senescent in vitro, similar to GFAP positive neural progenitors, whereas classical NSC proliferate in vitro infinitely. Classical NSC apoptosis triggered by introduction of IDH1R132H undermines hypothesis stating that IDH-mutant (secondary) GB origins from these NSC. Analysis of biological role of typical IDH-wildtype (primary) GB oncogene such as EGFRvIII also favors GFAP positive cells rather than classical NSC as source of GB. Single-cell NGS and single-cell transcriptomics also suggest that GFAP positive cells are GB origin. Considering the above-mentioned and other discussed in articles data, we suggest that GFAP positive cells (astrocytes, radial glia, or GFAP positive neural progenitors) are more likely to be source of GB than classical GFAP negative NSC, and further in vitro assays should be focused on these cells. It is highly possible that several populations of tumor initiating cells (TIC) exist within GB, adjusting their phenotype and even genotype to various environmental conditions including applied therapy and periodically going through different TIC states as well as non-TIC state. This adjustment is driven by changes in number and types of amplicons. The existence of various populations of TIC would enable creating neoplastic foci in different environments and increase tumor aggressiveness.
Collapse
|
16
|
Caveolin-1 inhibits breast cancer stem cells via c-Myc-mediated metabolic reprogramming. Cell Death Dis 2020; 11:450. [PMID: 32528105 PMCID: PMC7290025 DOI: 10.1038/s41419-020-2667-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Breast cancer stem cells (BCSCs) are considered to be the root of breast cancer occurrence and progression. However, the characteristics and regulatory mechanisms of BCSCs metabolism have been poorly revealed, which hinders the development of metabolism-targeted treatment strategies for BCSCs elimination. Herein, we demonstrated that the downregulation of Caveolin-1 (Cav-1) usually occurred in BCSCs and was associated with a metabolic switch from mitochondrial respiration to aerobic glycolysis. Meanwhile, Cav-1 could inhibit the self-renewal capacity and aerobic glycolysis activity of BCSCs. Furthermore, Cav-1 loss was associated with accelerated mammary-ductal hyperplasia and mammary-tumor formation in transgenic mice, which was accompanied by enrichment and enhanced aerobic glycolysis activity of BCSCs. Mechanistically, Cav-1 could promote Von Hippel-Lindau (VHL)-mediated ubiquitination and degradation of c-Myc in BCSCs through the proteasome pathway. Notably, epithelial Cav-1 expression significantly correlated with a better overall survival and delayed onset age of breast cancer patients. Together, our work uncovers the characteristics and regulatory mechanisms of BCSCs metabolism and highlights Cav-1-targeted treatments as a promising strategy for BCSCs elimination.
Collapse
|
17
|
Aminuddin A, Ng PY, Leong CO, Chua EW. Mitochondrial DNA alterations may influence the cisplatin responsiveness of oral squamous cell carcinoma. Sci Rep 2020; 10:7885. [PMID: 32398775 PMCID: PMC7217862 DOI: 10.1038/s41598-020-64664-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is the first-line chemotherapeutic agent for the treatment of oral squamous cell carcinoma (OSCC). However, the intrinsic or acquired resistance against cisplatin remains a major obstacle to treatment efficacy in OSCC. Recently, mitochondrial DNA (mtDNA) alterations have been reported in a variety of cancers. However, the role of mtDNA alterations in OSCC has not been comprehensively studied. In this study, we evaluated the correlation between mtDNA alterations (mtDNA content, point mutations, large-scale deletions, and methylation status) and cisplatin sensitivity using two OSCC cell lines, namely SAS and H103, and stem cell-like tumour spheres derived from SAS. By microarray analysis, we found that the tumour spheres profited from aberrant lipid and glucose metabolism and became resistant to cisplatin. By qPCR analysis, we found that the cells with less mtDNA were less responsive to cisplatin (H103 and the tumour spheres). Based on the findings, we theorised that the metabolic changes in the tumour spheres probably resulted in mtDNA depletion, as the cells suppressed mitochondrial respiration and switched to an alternative mode of energy production, i.e. glycolysis. Then, to ascertain the origin of the variation in mtDNA content, we used MinION, a nanopore sequencer, to sequence the mitochondrial genomes of H103, SAS, and the tumour spheres. We found that the lower cisplatin sensitivity of H103 could have been caused by a constellation of genetic and epigenetic changes in its mitochondrial genome. Future work may look into how changes in mtDNA translate into an impact on cell function and therefore cisplatin response.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Cisplatin/pharmacology
- DNA, Mitochondrial/drug effects
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Amnani Aminuddin
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Dias Câmara DA, Luiz de Sá Junior P, Alexandre de Azevedo R, Figueiredo CR, Araldi RP, Levy D, Madeiro de Souza D, Kerkis I. Identification of very small cancer stem cells expressing hallmarks of pluripotency in B16F10 melanoma cells and their reoccurrence in B16F10-derived clones. Exp Cell Res 2020; 391:111938. [PMID: 32278688 DOI: 10.1016/j.yexcr.2020.111938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/18/2023]
Abstract
Melanoma is characterized by high heterogeneity and plasticity, most likely due to the presence of mutated melanocyte stem cells or immature progenitor cells in the skin that serves as precursors to melanoma. In the present study, for the first time, we identified rare cells in the murine melanoma B16F10, and human A2058 and SK-MEL-28 cell lines that express pluripotency markers, including Oct4, Nanog, Sox2 and a marker of melanoma cancer cells (ALDH1/2). These cells are very small with round morphology and they grow onto melanoma cells, thereby demonstrating feeder layer dependence similar to that of other pluripotent cells. These cells underwent self-renewal, symmetric and asymmetric division. We called these cells murine very small cancer stem cells (VSCSC). VSCSC were also found in B16F10-derived clones after 3-5 consecutive passages, where they occur as single cells or as small colonies, nevertheless, always using melanoma cells as feeders. These cells formed melanospheres enriched with Oct4-and ALDH1/2-positive cells. We also evaluated the possible effect of VSCSC that presented in the parental cell line (B16F10) and in clones based on their functional characteristics. We found that VCSCS present in the B16F10 cell line reappearing in their clones were required for continuous tumor growth and were responsible for melanoma cell heterogeneity and plasticity rather than directly affecting functional characteristics of melanoma cells. Our data, together with those of previous reports suggested the existence of melanoma-competent melanocyte stem cells, which corroborate the hypothesis of the existence of tumor-initiating cells and cancer stem cell hierarchies, at least in melanoma.
Collapse
Affiliation(s)
- Diana Aparecida Dias Câmara
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil; Universidade Federal de Sao Paulo, Programa de Pós-graduação em Biologia Estrutural e Funcional, SP, Brazil.
| | | | - Ricardo Alexandre de Azevedo
- Experimental Oncology Unit (UNONEX), Microbiology, Immunology and Parasitology Department, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos Rogério Figueiredo
- Experimental Oncology Unit (UNONEX), Microbiology, Immunology and Parasitology Department, Federal University of Sao Paulo, Sao Paulo, SP, Brazil; Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | | | - Irina Kerkis
- Laboratory of Genetics, Butantan Institute, Sao Paulo, SP, Brazil.
| |
Collapse
|
19
|
Li Z, Hu J, Qin Z, Tao Y, Lai Z, Wang Q, Li T. High-dimensional single-cell proteomics analysis reveals the landscape of immune cells and stem-like cells in renal tumors. J Clin Lab Anal 2019; 34:e23155. [PMID: 31855296 PMCID: PMC7246380 DOI: 10.1002/jcla.23155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Renal tumors are highly heterogeneous, and identification of tumor heterogeneity is an urgent clinical need for effective treatment. Mass cytometry (MC) can be used to perform high‐dimensional single‐cell proteomics analysis of heterogeneous samples via cytometry by time‐of‐flight (CyTOF), in order to achieve more accurate observation and classification of phenotypes within a cell population. This study aimed to develop a high‐dimensional MC method for the detection and analysis of heterogeneity in renal tumors. Materials and Methods We collected tissue samples from 8 patients with different types of renal tumors. Single‐cell suspensions were prepared and stained using a panel of 28 immune cell‐centric antibodies and a panel of 21 stem‐like cell‐centric antibodies. The stained cells were detected using CyTOF. Result Renal tumors were divided into 25 immune cell subsets (4 CD4+ T cells, 7 CD8+ T cells, 1 B cells, 8 macrophages, 1 dendritic cells, 2 natural killer (NK) cells, 1 granulocyte, and 1 other subset) and 7 stem‐like cells subsets (based on positivity of vimentin, CD326, CD34, CD90, CD13, CD44, and CD47). Different types of renal tumors have different cell subsets with significantly different characteristics. Conclusion High‐dimensional single‐cell proteomics analysis using MC aids in the discovery and analysis of renal tumors heterogeneity. Additionally, it can be used to accurately classify the immune cell population and analyze the expression of stem cell‐related markers in renal tumors. Our findings provide a valuable resource for deciphering tumor heterogeneity and might improve the clinical management of patients with renal tumors.
Collapse
Affiliation(s)
- Zhijian Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jiaxin Hu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhao Qin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zhiyong Lai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, China
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi key laboratory for genomic and personalized medicine, Guangxi collaborative innovation center for genomic and personalized medicine, Nanning, China.,Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Teng YD. Functional multipotency of stem cells: Biological traits gleaned from neural progeny studies. Semin Cell Dev Biol 2019; 95:74-83. [DOI: 10.1016/j.semcdb.2019.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022]
|
21
|
Sverdlov ED, Chernov IP. Cancer Stem Complex, Not a Cancer Stem Cell, Is the Driver of Cancer Evolution. BIOCHEMISTRY (MOSCOW) 2019; 84:1028-1039. [DOI: 10.1134/s0006297919090050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Pickup KE, Pardow F, Carbonell-Caballero J, Lioutas A, Villanueva-Cañas JL, Wright RHG, Beato M. Expression of Oncogenic Drivers in 3D Cell Culture Depends on Nuclear ATP Synthesis by NUDT5. Cancers (Basel) 2019; 11:cancers11091337. [PMID: 31510016 PMCID: PMC6770457 DOI: 10.3390/cancers11091337] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
The growth of cancer cells as oncospheres in three-dimensional (3D) culture provides a robust cell model for understanding cancer progression, as well as for early drug discovery and validation. We have previously described a novel pathway in breast cancer cells, whereby ADP (Adenosine diphosphate)-ribose derived from hydrolysis of poly (ADP-Ribose) and pyrophosphate (PPi) are converted to ATP, catalysed by the enzyme NUDT5 (nucleotide diphosphate hydrolase type 5). Overexpression of the NUDT5 gene in breast and other cancer types is associated with poor prognosis, increased risk of recurrence and metastasis. In order to understand the role of NUDT5 in cancer cell growth, we performed phenotypic and global expression analysis in breast cancer cells grown as oncospheres. Comparison of two-dimensional (2D) versus 3D cancer cell cultures from different tissues of origin suggest that NUDT5 increases the aggressiveness of the disease via the modulation of several key driver genes, including ubiquitin specific peptidase 22 (USP22), RAB35B, focadhesin (FOCAD) and prostagladin E synthase (PTGES). NUDT5 functions as a master regulator of key oncogenic pathways and of genes involved in cell adhesion, cancer stem cell (CSC) maintenance and epithelial to mesenchyme transition (EMT). Inhibiting the enzymatic activities of NUDT5 prevents oncosphere formation and precludes the activation of cancer driver genes. These findings highlight NUDT5 as an upstream regulator of tumour drivers and may provide a biomarker for cancer stratification, as well as a novel target for drug discovery for combinatorial drug regimens for the treatment of aggressive cancer types and metastasis.
Collapse
Affiliation(s)
- Katherine E Pickup
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Felicitas Pardow
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - José Carbonell-Caballero
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Antonios Lioutas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - José Luis Villanueva-Cañas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Roni H G Wright
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.
- Department of Life Science, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
23
|
Oliveira MN, Breznik B, Pillat MM, Pereira RL, Ulrich H, Lah TT. Kinins in Glioblastoma Microenvironment. CANCER MICROENVIRONMENT 2019; 12:77-94. [PMID: 31420805 DOI: 10.1007/s12307-019-00229-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Abstract
Tumour progression involves interactions among various cancer cell clones, including the cancer stem cell subpopulation and exogenous cellular components, termed cancer stromal cells. The latter include a plethora of tumour infiltrating immunocompetent cells, among which are also immuno-modulatory mesenchymal stem cells, which by vigorous migration to growing tumours and susequent transdifferentiation into various types of tumour-residing stromal cells, may either inhibit or support tumour progression. In the light of the scarce therapeutic options existing for the most malignant brain tumour glioblastoma, mesenchymal stem cells may represent a promising novel tool for cell therapy, e.g. drug delivery vectors. Here, we review the increasing number of reports on mutual interactions between mesenchymal stem cells and glioblastoma cells in their microenvironment. We particularly point out two novel aspects: the different responses of cancer cells to their microenvironmental cues, and to the signalling by kinin receptors that complement the immuno-modulating cytokine-signalling networks. Inflammatory glioblastoma microenvironment is characterised by increasing expression of kinin receptors during progressive glioma malignancy, thus making kinin signalling and kinins themselves rather important in this context. In general, their role in tumour microenvironment has not been explored so far. In addition, kinins also regulate blood brain barrier-related drug transfer as well as brain tumour angiogenesis. These studies support the on-going research on kinin antagonists as candidates in the development of anti-invasive agents for adjuvant glioblastoma therapy.
Collapse
Affiliation(s)
- Mona N Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineus Prestes 748, São Paulo, SP, 05508-000, Brazil.,Jožef Stefan International Postgraduate School, Jamova, 39 1000, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Micheli M Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineus Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Ricardo L Pereira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineus Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineus Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.,Department of Biochemistry, Faculty of Chemistry and Chemical Engineering, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| |
Collapse
|
24
|
A Soft Matrix Enhances the Cancer Stem Cell Phenotype of HCC Cells. Int J Mol Sci 2019; 20:ijms20112831. [PMID: 31185668 PMCID: PMC6600428 DOI: 10.3390/ijms20112831] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/18/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) comprise a small portion of cancer cells, have greater self-renewal ability and metastatic potential than non-CSCs and are resistant to drugs and radiotherapy. CSCs and non-CSCs, which can reversibly change their stemness states, typically play roles in plasticity and cancer cell heterogeneity. Furthermore, the component that plays a key role in affecting CSC plasticity remains unknown. In this study, we utilized mechanically tunable polyacrylamide (PA) hydrogels to simulate different stiffnesses of the liver tissue matrix in various stages. Our results showed that hepatocellular carcinoma (HCC) cells were small and round in a soft matrix. The soft matrix increased the expression levels of liver cancer cells with stemness properties (LCSC) surface markers in HCC cells and the number of side population (SP) cells. Moreover, the soft matrix elicited early cell cycle arrest in the G1 phase and increased the cell sphere-forming ability. In addition, cells grown on the soft matrix showed enhanced chemoresistance and tumorigenicity potential. In summary, our study demonstrated that a soft matrix increases the stemness of HCC cells.
Collapse
|
25
|
Rahimi K, Füchtbauer AC, Fathi F, Mowla SJ, Füchtbauer EM. Isolation of cancer stem cells by selection for miR-302 expressing cells. PeerJ 2019; 7:e6635. [PMID: 30941272 PMCID: PMC6440458 DOI: 10.7717/peerj.6635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer stem cells are believed to be a major reason for long-term therapy failure because they are multi-drug resistant and able to rest mitotically inactive in the hypoxic center of tumors. Due to their variable number and their often low proliferation rate, cancer stem cells are difficult to purify in decent quantities and to grow in cell culture systems, where they are easily outcompeted by faster growing more 'differentiated', i.e., less stem cell-like tumor cells. METHODS Here we present a proof of principle study based on the idea to select cancer stem cells by means of the expression of a stem cell-specific gene. A selectable egfp-neo coding sequence was inserted in the last exon of the non-coding murine miR-302 host gene. As a stem cell specific regulatory element, 2.1 kb of the genomic region immediately upstream of the miR-302 host gene transcription start site was used. Stable transgenic CJ7 embryonic stem cells were used to induce teratomas. RESULTS After three weeks, tumors were removed for analysis and primary cultures were established. Stem cell-like cells were selected from these culture based on G418 selection. When the selection was removed, stem cell morphology and miR-302 expression were rapidly lost, indicating that it was not the original ES cells that had been isolated. CONCLUSIONS We show the possibility to use drug resistance expressed from a regulatory sequence of a stem cell-specific marker, to isolate and propagate cancer stem cells that otherwise might be hidden in the majority of tumor cells.
Collapse
Affiliation(s)
- Karim Rahimi
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed J. Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|