1
|
Zhang H, Liu J, Chen B, Chen X, Wei S, Zhang G, Yan X, Xue X, He G, Lin J, Feng H, Chu W. Human Amniotic Epithelial Stem Cells Promote Functional Recovery After Spinal Cord Injury In Rats By Regulating The Polarization Of Macrophages. Mol Neurobiol 2025; 62:4617-4630. [PMID: 39470871 DOI: 10.1007/s12035-024-04539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Spinal cord injury (SCI) is a catastrophic nerve injury caused by extremely severe damage to the spinal cord, for which effective treatments are currently unavailable. Human amniotic epithelial stem cells (hAESCs) are considered promising candidates for transplantation in various clinical and preclinical applications, due to their lack of limitations such as ethical barriers, immune rejection, tumorigenicity, or cell origin. Nevertheless, the effectiveness and mechanism by which hAESCs treat SCI remain elusive. To assess the motor function recovery process following SCI in rats, the Basso Beattie Bresnahan (BBB) behavior test, inclined plate scale and motor evoked potential (MEP) analysis were used in this study after transplantation of hAESCs at different doses. And the underlying mechanism was investigated by histological and molecular methods. The transplantation of hAESCs can significantly promote the recovery of motor function in SCI group, and the higher the dose, the better the effect. Compared with SCI group, hAESCs group had reduced tissue damage, significantly increased the number of neurons, neurofilaments and myelin sheath, and significantly reduced syringomyelia and glial scars. In addition, hAESCs inhibited the Levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) and increased the expression of the interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13), and promoted the shift of M1-polarized macrophages to M2-polarized macrophages. Our results demonstrate that hAESCs promoted the recovery of motor function after SCI by promoting M2 polarization of macrophages and reducing neuroinflammation. These findings may provide novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jingjing Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Beike Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shijun Wei
- Chongqing Stem Cell and Neural Regeneration Engineering Technology Research Center, Chongqing, 508216, China
| | - Guanghui Zhang
- Chongqing Stem Cell and Neural Regeneration Engineering Technology Research Center, Chongqing, 508216, China
| | - Xiaomin Yan
- Chongqing Stem Cell and Neural Regeneration Engineering Technology Research Center, Chongqing, 508216, China
| | - Xingsen Xue
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guangjian He
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiangkai Lin
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weihua Chu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Wu H, Zhang Y, Liu C, Tang X, Wang L, Meng L, Lu M. The Combination of Super-Active Platelet Lysate and Acellular Amniotic Membrane Enhances Endometrial Receptivity, While Simultaneously Facilitating Endometrial Repair in Rats. J Inflamm Res 2024; 17:11097-11109. [PMID: 39713713 PMCID: PMC11662643 DOI: 10.2147/jir.s483446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
Purpose To investigate the combined effects of super-active platelet lysate (sPL) and acellular amniotic membrane (AAM) in promoting endometrial repair and enhancing endometrial receptivity in rats. Methods The characteristics of sPL-AAM were examined through scanning electron microscopy, contact angle tester, and release experiments. We aimed to establish a rat model for endometrial injury. We divided sixty-four rats into four groups: the Injury group (Control group), the AAM group, the sPL group, and the sPL-AAM group. Our study compared the endometrial thickness, gland count, and fibrotic area recovery in rats at 6 days and 18 days post-treatment. Immunohistochemistry was utilized to assess the expressions of CD34 and ANG. Additionally, we used ELISA to detect the levels of IL-6 and TNF-α, while Western Blot was employed to compare the expressions of CK19, Integrin β3, and TGF-β1. One month after the treatment, we evaluated and compared the pregnancy recovery among the groups. Results Compared to the Injury group, the sPL-AAM group demonstrated enhanced endometrial regeneration in rats at both 6 days and 18 days post-treatment, resulting in a favorable pregnancy outcome. This was achieved by promoting angiogenesis, suppressing the inflammatory response, and reducing fibrosis. The observed effects were superior to those of the sPL group alone. While sPL, when administered alone, showed some degree of endometrial restoration at 6 days post-treatment, its efficacy was diminished at 18 days post-treatment. The impact of AAM alone appeared inconspicuous compared to the injury group. This suggests that sPL serves as the primary agent in facilitating endometrial repair, while AAM functions as a carrier to extend the duration of sPL's effectiveness. Conclusion sPL-AAM can release effective cytokines, repair endometrial damage in rats, enhance endometrial receptivity, and ultimately improve pregnancy outcomes.
Collapse
Affiliation(s)
- Huaying Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Yi Zhang
- National and Local Joint Stem Cell Research & Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd, Harbin, People’s Republic of China
| | - Chunxiang Liu
- National and Local Joint Stem Cell Research & Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd, Harbin, People’s Republic of China
| | - Xiaohan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Liqun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Lingqi Meng
- National and Local Joint Stem Cell Research & Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd, Harbin, People’s Republic of China
| | - Meisong Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Kou Y, Li J, Zhu Y, Liu J, Ren R, Jiang Y, Wang Y, Qiu C, Zhou J, Yang Z, Jiang T, Huang J, Ren X, Li S, Qiu C, Wei X, Yu L. Human Amniotic Epithelial Stem Cells Promote Colonic Recovery in Experimental Colitis via Exosomal MiR-23a-TNFR1-NF-κB Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401429. [PMID: 39378064 PMCID: PMC11600273 DOI: 10.1002/advs.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/20/2024] [Indexed: 11/28/2024]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, manifests as chronic intestinal inflammation with debilitating symptoms, posing a significant burden on global healthcare. Moreover, current therapies primarily targeting inflammation can lead to immunosuppression-related complications. Human amniotic epithelial stem cells (hAESCs), which exhibit low immunogenicity and ethical acceptability, have gained attention as potential therapeutics. In this study, it is demonstrated that their encapsulation in a hydrogel and administration via anal injection enhanced the colonic mucosal barrier repair in a murine colitis model induced by dextran sodium sulfate during the recovery phase. The underlying mechanism involved the release of exosomes from hAESCs enriched with microRNA-23a-3p, which post-transcriptionally reduced tumor necrosis factor receptor 1 expression, suppressing the nuclear factor-κB pathway in colonic epithelial cells, thus played a key role in inflammation. The novel approach shows potential for IBD treatment by restoring intestinal epithelial homeostasis without the immunosuppressive therapy-associated risks. Furthermore, the approach provides an alternative strategy to target the key molecular pathways involved in inflammation and promotes intestinal barrier function using hAESCs and their secreted exosomes. Overall, this study provides key insights to effectively treat IBD, addresses the unmet needs of patients, and reduces related healthcare burden.
Collapse
Affiliation(s)
- Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yingyi Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Ruizhe Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Yunyun Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Zhuoheng Yang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Tuoying Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Jianan Huang
- Eye Center the Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009China
| | - Xiangyi Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Shiguang Li
- Department of ObstetricsWomen's HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310006China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| | - Xiyang Wei
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineLiangzhu LaboratoryZhejiang UniversityHangzhouZhejiang310012China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw HospitalMOE Laboratory of Biosystems Homeostasis & Protection of College of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- College of Life Sciences‐iCell Biotechnology Regenerative Biomedicine LaboratoryZhejiang University‐Lishui Joint Innovation Center for Life and HealthLishuiZhejiang323010China
| |
Collapse
|
4
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
5
|
Chen K, Wang H, Zhao X, Wang J, Jin Q, Tong X, Zheng S. A Novel Method to Repair Thin Endometrium and Restore Fertility Based on Menstruation-Derived Stem Cell. Reprod Sci 2024; 31:1662-1673. [PMID: 38294669 PMCID: PMC11111544 DOI: 10.1007/s43032-024-01458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Thin endometrium (TE), which mainly occurs as a result of severe damage to the endometrial basalis, is one of the prominent etiologies of menstrual abnormalities, infertility, and recurrent miscarriage in women. Previous studies have demonstrated that mesenchymal stem cells (MSCs) are considered ideal cells with multipotency for regenerative medicine and exhibit therapeutic effects on TE through their cellular secretions. However, there is limited research on strategies to enhance MSC secretion to improve their therapeutic efficacy. Herein, we isolated menstrual blood-derived mesenchymal stem cells (MenSCs) from menstruation and transformed them into decidualized stromal cells (DSCs), which are specialized cells with enhanced secretory functions. To assess the therapeutic potential of DSCs compared to MenSCs, we conducted a series of experiments in cells and animals. The results demonstrated that DSCs exhibited changes in morphology compared to MenSCs, with a decrease in cell proliferation but a significant improvement in secretion function. Furthermore, DSCs facilitated the restoration of endometrial thickness and increased the number of glands and blood vessel formation. Most importantly, the pregnancy rates in rats were effectively restored, bringing them closer to normal levels. These findings greatly contribute to our understanding of stem cell therapy for TE and strongly suggest that DSCs could hold significant promise as a potential treatment option for TE.
Collapse
Affiliation(s)
- Kai Chen
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Huiru Wang
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xin Zhao
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Jingxin Wang
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Qi Jin
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianhong Tong
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Shengxia Zheng
- Reproductive Medicine Center & Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
6
|
Huang Y, Hao X, Lin Z, Li L, Jiang H, Zhang H, Geng X, Zhu H, Wen H. Bio-distribution and toxicity potential of human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Sci Rep 2024; 14:12251. [PMID: 38806615 PMCID: PMC11133417 DOI: 10.1038/s41598-024-63118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated promising advantages in the therapies of many diseases, while its multi-directional differentiation potential and immunotoxicity are the major concerns hindered their clinical translation. In this study, human umbilical Mesenchymal stem cell (hUC-MSCs) were labeled with a near-infrared fluorescent dye DiR before infused into cynomolgus monkeys, and the amount of hUC-MSCs in the peripheral blood were dynamically estimated from 5 min to 28 days post a single administration at 3 × 106 cells/kg and 2 × 107 cells/kg intravenously. As results, some hUC-MSCs distributed to the whole body within 5 min, while most of the cells accumulate in the lungs along with the systemic blood circulation, and subsequently released into the blood. The toxicity potentials of hUC-MSCs were investigated in another 30 cynomolgus monkeys, and the cells were repeatedly administrated at doses of 3 × 106 cells/kg and 2 × 107 cells/kg for 5 times on a weekly basis, with a recovery period of 1 months. hUC-MSCs showed no obvious toxic effects in cynomolgus monkeys, except xenogeneic immune rejection to human stem cells. Low levels of the hUC-MSC gene were detected in the peripheral blood of a few animals administered 2 × 107 cells/kg at 30 min subsequent to the first and last administration, and there was no significant difference in the copy number of the hUC-MSC gene in the blood samples compared with the first and last administration, indicating that the hUC-MSC was not significantly amplified in vivo, and it its safe in non-human primates. Our study for the first time verified the safety of long-term use of hUC-MSCs in primates. We have pioneered a technology for the real-time detection of hUC-MSCs in peripheral blood and provide dynamicand rapid monitoring of the distribution characteristics of hUC-MSCs in vivo. Here, we provide data supporting the application of such products for clinical treatment and the application of stem cells in major refractory diseases and regenerative medicine.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Xiaofang Hao
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Zhi Lin
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Lulu Li
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Hua Jiang
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Hezhan Zhang
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Xingchao Geng
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Co., Ltd., Shanghai, People's Republic of China.
| | - Hairuo Wen
- Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Road, Beijing, Economic-Technological Development Area, Beijing, 100176, People's Republic of China.
| |
Collapse
|
7
|
Chen P, Ye C, Huang Y, Xu B, Wu T, Dong Y, Jin Y, Zhao L, Hu C, Mao J, Wu R. Glutaminolysis regulates endometrial fibrosis in intrauterine adhesion via modulating mitochondrial function. Biol Res 2024; 57:13. [PMID: 38561846 PMCID: PMC10983700 DOI: 10.1186/s40659-024-00492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS The activation model of ESCs was constructed by TGF-β1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.
Collapse
Affiliation(s)
- Pei Chen
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Chaoshuang Ye
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yunke Huang
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Bingning Xu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Tianyu Wu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yuanhang Dong
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Li Zhao
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Changchang Hu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Jingxia Mao
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China
| | - Ruijin Wu
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Liu PC, Song YT, Zhao LM, Jiang YL, Hu JG, Dong L, Zhou XL, Zhou L, Li Y, Li-Ling J, Xie HQ. Establishment and comparison of different procedures for modeling intrauterine adhesion in rats: A preliminary study. Heliyon 2024; 10:e25365. [PMID: 38322868 PMCID: PMC10844578 DOI: 10.1016/j.heliyon.2024.e25365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
The establishment of a stable animal model for intrauterine adhesion (IUA) can significantly enhance research on the pathogenesis and pathological changes of this disease, as well as on the development of innovative therapeutic approaches. In this study, three different modeling methods, including phenol mucilage combined mechanical scraping, ethanol combined mechanical scraping and ethanol modeling alone were designed. The morphological characteristics of the models were evaluated. The underlying mechanisms and fertility capacity of the ethanol modeling group were analyzed and compared to those of the sham surgery group. All three methods resulted in severe intrauterine adhesions, with ethanol being identified as a reliable modeling agent and was subsequently subjected to further evaluation. Immunohistochemistry and RT-PCR results indicated that the ethanol modeling group exhibited an increase in the degree of fibrosis and inflammation, as well as a significant reduction in endometrial thickness, gland number, vascularization, and endometrial receptivity, ultimately resulting in the loss of fertility capacity. The aforementioned findings indicate that the intrauterine perfusion of 95 % ethanol is efficacious in inducing the development of intrauterine adhesions in rats. Given its cost-effectiveness, efficacy, and stability in IUA formation, the use of 95 % ethanol intrauterine perfusion may serve as a novel platform for evaluating innovative anti-adhesion materials and bioengineered therapies.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Yan-Ling Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Jun-Gen Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Dong
- Regenerative Medicine Research Center of Topregmed, Chengdu, Sichuan, China
| | - Xing-li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Huang D, Liang J, Yang J, Yang C, Wang X, Dai T, Steinberg T, Li C, Wang F. Current Status of Tissue Regenerative Engineering for the Treatment of Uterine Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:558-573. [PMID: 37335062 DOI: 10.1089/ten.teb.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the recent developments in tissue engineering, scientists have attempted to establish seed cells from different sources, create cell sheets through various technologies, implant them on scaffolds with various spatial structures, or load scaffolds with cytokines. These research results are very optimistic, bringing hope to the treatment of patients with uterine infertility. In this article, we reviewed articles related to the treatment of uterine infertility from the aspects of experimental treatment strategy, seed cells, scaffold application, and repair criteria so as to provide a basis for future research.
Collapse
Affiliation(s)
- Di Huang
- Shandong First Medical University, Jinan, China
| | - Junhui Liang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Yang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunrun Yang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tianyu Dai
- Shandong First Medical University, Jinan, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Wang
- Departments of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Bausyte R, Vaigauskaite - Mazeikiene B, Borutinskaite V, Valatkaite E, Besusparis J, Valkiuniene RB, Kazenaite E, Ramasauskaite D, Navakauskiene R. Human endometrium-derived mesenchymal stem/stromal cells application in endometrial-factor induced infertility. Front Cell Dev Biol 2023; 11:1227487. [PMID: 37731819 PMCID: PMC10507732 DOI: 10.3389/fcell.2023.1227487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Endometrial-factor induced infertility remains one of the most significant pathology among all fertility disorders. Stem cell-based therapy is considered to be the next-generation approach. However, there are still issues about successfully retrieving human endometrium-derived mesenchymal stem/stromal cells (hEnMSCs). Moreover, we need to establish a better understanding of the effect of hEnMSCs on the endometrial recovery and the clinical outcome. According to these challenges we created a multi-step study. Endometrium samples were collected from females undergoing assisted reproductive technology (ART) procedure due to couple infertility. These samples were obtained using an endometrium scratching. The hEnMSCs were isolated from endometrium samples and characterized with flow cytometry analysis. Groups of endometrium injured female mice were established by the mechanical injury to uterine horns and the intraperitoneal chemotherapy. The hEnMSCs suspension was injected to some of the studied female mice at approved time intervals. Histological changes of mice uterine horns were evaluated after Masson's trichrome original staining, hematoxylin and eosin (H&E) staining. The fertility assessment of mice was performed by counting formed embryo implantation sites (ISs). The expression of fibrosis related genes (Col1a1, Col3a1, Acta2, and CD44) was evaluated by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results showed that endometrium scratching is an effective procedure for mesenchymal stem/stromal cells (MSCs) collection from human endometrium. Isolated hEnMSCs met the criteria for defining MSCs. Moreover, hEnMSCs-based therapy had a demonstrably positive effect on the repair of damaged uterine horns, including a reduction of fibrosis, intensity of inflammatory cells such as lymphocytes and polymorphonuclear cells (PMNs) and the number of apoptotic bodies. The injured mice which recieved hEnMSCs had higher fertility in comparison to the untreated mice. Gene expression was reflected in histology changes and outcomes of conception. In conclusion, hEnMSCs demonstrated a positive impact on endometrium restoration and outcomes of endometrial-factor induced infertility. Further exploration is required in order to continue exploring the multifactorial associations between stem cell therapy, gene expression, endometrial changes and reproductive health, so we can identify individually effective and safe treatment strategies for endometrial-factor induced infertility, which is caused by mechanical effect or chemotherapy, in daily clinical practise.
Collapse
Affiliation(s)
- Raminta Bausyte
- Life Sciences Center, Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
- Center of Obstetrics and Gynaecology of Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Brigita Vaigauskaite - Mazeikiene
- Life Sciences Center, Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
- Center of Obstetrics and Gynaecology of Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Veronika Borutinskaite
- Life Sciences Center, Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Elvina Valatkaite
- Life Sciences Center, Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Justinas Besusparis
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Ruta Barbora Valkiuniene
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Edita Kazenaite
- Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, Vilnius, Lithuania
| | - Diana Ramasauskaite
- Center of Obstetrics and Gynaecology of Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ruta Navakauskiene
- Life Sciences Center, Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Riedel RN, Pérez-Pérez A, Sánchez-Margalet V, Varone CL, Maymó JL. Human amniotic epithelial stem cells: Hepatic differentiation and regenerative properties in liver disease treatment. Placenta 2023; 134:39-47. [PMID: 36870301 DOI: 10.1016/j.placenta.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The placenta and the extraembryonic tissues represent a valuable source of cells for regenerative medicine. In particular, the amniotic membrane possesses cells with stem cells characteristics that have attracted research attention. Human amniotic epithelial cells (hAECs) have unique and desirable features that position them over other stem cells, not only because of the unlimited potential supplied of, the easy access to placental tissues, and the minimal ethical and legal barriers associated, but also due to the embryonic stem cells markers expression and their ability to differentiate into the three germ layers. In addition, they are non-tumorigenic and have immunomodulatory and anti-inflammatory properties. Hepatic failure is one of the major causes of morbidity and mortality worldwide. Organ transplantation is the best way to treat acute and chronic liver failure, but there are several associated obstacles. Stem cells have been highlighted as alternative hepatocytes source because of their potential for hepatogenic differentiation. HAECs, in particular, have some properties that make them suitable for hepatocyte differentiation. In this work, we review the general characteristics of the epithelial stem cells isolated from human amniotic membrane as well as their ability to differentiate to hepatic cells. We also revise their regenerative properties, with the focus on their potential application in the liver disease treatment.
Collapse
Affiliation(s)
- Rodrigo N Riedel
- Instituto de Química Biológica (IQUIBICEN), CONICET- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° piso, 1428, Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | - Cecilia L Varone
- Instituto de Química Biológica (IQUIBICEN), CONICET- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° piso, 1428, Buenos Aires, Argentina
| | - Julieta L Maymó
- Instituto de Química Biológica (IQUIBICEN), CONICET- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° piso, 1428, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Rezayat F, Esmaeil N, Rezaei A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev Rep 2023; 19:368-381. [PMID: 36331801 DOI: 10.1007/s12015-022-10464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother's immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Immunology, School of Medicine, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
14
|
The Role of Endometrial Stem/Progenitor Cells in Recurrent Reproductive Failure. J Pers Med 2022; 12:jpm12050775. [PMID: 35629197 PMCID: PMC9143189 DOI: 10.3390/jpm12050775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL), collectively referred to as recurrent reproductive failure (RRF), are both challenging conditions with many unanswered questions relating to causes and management options. Both conditions are proposed to be related to an aberrant endometrial microenvironment, with different proposed aetiologies related to a restrictive or permissive endometrium for an invading embryo. The impressive regenerative capacity of the human endometrium has been well-established and has led to the isolation and characterisation of several subtypes of endometrial stem/progenitor cells (eSPCs). eSPCs are known to be involved in the pathogenesis of endometrium-related disorders (such as endometriosis) and have been proposed to be implicated in the pathogenesis of RRF. This review appraises the current knowledge of eSPCs, and their involvement in RRF, highlighting the considerable unknown aspects in this field, and providing avenues for future research to facilitate much-needed advances in the diagnosis and management of millions of women suffering with RRF.
Collapse
|
15
|
Zhu X, Kazemi A, Dong Y, Pan Q, Jin P, Cheng B, Yang Y. Effectiveness of Nano Bioactive Glass Fiber Loaded with Platelet-Rich Plasma on Thermal Wound Healing Process in Rats. J Biomed Nanotechnol 2022; 18:535-545. [PMID: 35484761 DOI: 10.1166/jbn.2022.3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study we evaluated the impact of topical application of bioactive glass fibers loaded PRP on a deep seconddegree thermal wound and its healing process sub-streaming molecular pathway of re-epithelialization. Wistar rats were randomly divided into four groups: normal control group, model group (deep second-degree thermal wound), PRP group, and PRP+nanobioactive glass fiber group. After treatment, the changes of wounds were observed daily. H&E staining was used to evaluate the pathological changes and also, qRT-PCR was used to detect the mRNA expression of KGF, IL-1, IL-6, IL-10, TGF-β, EGF, VEGF, HIF-1α, integrin α3 and integrin β1 in wound tissues. In the current study, we observed that PRP group and the PRP group basically re-epithelized on the 21st day. The wound healing rates of the PRP+nanobioactive glass fiber group and PRP group at each time point were higher than those in the model group, while there was no significant difference in wound healing rate between the PRP+nanobioactive glass fiber group and PRP group at each time point. H&E staining showed that the pathological scores of skin wound repairing in the PRP+nanobioactive glass fiber group on the 7th, 14th and 21st day were higher than that of in the model group. The qPCR results suggested the mRNA expression of IL-1, IL-6 and IL-10 in the PRP+nanobioactive glass fiber group and the PRP group were lower than those in the untreated group on the 14th day; the expression of VEGF and EGF mRNA were higher on the 3rd day; the mRNA expression of TGF-β, HIF-1α showed a tendency of increasing first and decreasing then; integrin β1 mRNA expression increased significantly, which was highest; integrin α3 mRNA expression was higher on day 3rd and 21th, respectively. The PRP+nanobioactive glass fibers and PRP can shorten the wound healing time and improve the healing quality mainly by promoting the wound epithelization through increasing the expression of EGF, VEGF, TGF-β, HIF-1α, Integrin α3, and meanwhile increasing the release of Integrin β1 and other mechanisms.
Collapse
Affiliation(s)
- Xuanru Zhu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Aida Kazemi
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Qiao Pan
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Panshi Jin
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Biao Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, China
| | - Yangog Yang
- Rehabilation Unit, CHU Gabriel Touré, Bamako, 267, Mali
| |
Collapse
|
16
|
Gharibeh N, Aghebati-Maleki L, Madani J, Pourakbari R, Yousefi M, Ahmadian Heris J. Cell-based therapy in thin endometrium and Asherman syndrome. Stem Cell Res Ther 2022; 13:33. [PMID: 35090547 PMCID: PMC8796444 DOI: 10.1186/s13287-021-02698-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Numerous treatment strategies have so far been proposed for treating refractory thin endometrium either without or with the Asherman syndrome. Inconsistency in the improvement of endometrial thickness is a common limitation of such therapies including tamoxifen citrate as an ovulation induction agent, acupuncture, long-term pentoxifylline and tocopherol or tocopherol only, low-dose human chorionic gonadotropin during endometrial preparation, aspirin, luteal gonadotropin-releasing hormone agonist supplementation, and extended estrogen therapy. Recently, cell therapy has been proposed as an ideal alternative for endometrium regeneration, including the employment of stem cells, platelet-rich plasma, and growth factors as therapeutic agents. The mechanisms of action of cell therapy include the cytokine induction, growth factor production, natural killer cell activity reduction, Th17 and Th1 decrease, and Treg cell and Th2 increase. Since cell therapy is personalized, dynamic, interactive, and specific and could be an effective strategy. Despite its promising nature, further research is required for improving the procedure and the safety of this strategy. These methods and their results are discussed in this article.
Collapse
Affiliation(s)
- Nastaran Gharibeh
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Madani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Pourakbari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Making More Womb: Clinical Perspectives Supporting the Development and Utilization of Mesenchymal Stem Cell Therapy for Endometrial Regeneration and Infertility. J Pers Med 2021; 11:jpm11121364. [PMID: 34945836 PMCID: PMC8707522 DOI: 10.3390/jpm11121364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
The uterus is a homeostatic organ, unwavering in the setting of monthly endometrial turnover, placental invasion, and parturition. In response to ovarian steroid hormones, the endometrium autologously prepares for embryo implantation and in its absence will shed and regenerate. Dysfunctional endometrial repair and regeneration may present clinically with infertility and abnormal menses. Asherman's syndrome is characterized by intrauterine adhesions and atrophic endometrium, which often impacts fertility. Clinical management of infertility associated with abnormal endometrium represents a significant challenge. Endometrial mesenchymal stem cells (MSC) occupy a perivascular niche and contain regenerative and immunomodulatory properties. Given these characteristics, mesenchymal stem cells of endometrial and non-endometrial origin (bone marrow, adipose, placental) have been investigated for therapeutic purposes. Local administration of human MSC in animal models of endometrial injury reduces collagen deposition, improves angiogenesis, decreases inflammation, and improves fertility. Small clinical studies of autologous MSC administration in infertile women with Asherman's Syndrome suggested their potential to restore endometrial function as evidenced by increased endometrial thickness, decreased adhesions, and fertility. The objective of this review is to highlight translational and clinical studies investigating the use of MSC for endometrial dysfunction and infertility and to summarize the current state of the art in this promising area.
Collapse
|
18
|
Gu P, Li W, Zhao X, Xu D. The Top 100 Most Cited Articles on Intrauterine Adhesion: a Bibliometric Analysis. Reprod Sci 2021; 29:460-474. [PMID: 34780024 PMCID: PMC8782778 DOI: 10.1007/s43032-021-00794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
Bibliometric analysis is a statistical method that attempts to assess articles by their citations, analyzing their frequency and citation pattern, which subsequently gleans direction and guidance for future research. Over the past few years, articles focused on intrauterine adhesions have been published with increasing frequency. Nevertheless, little is known about the properties and qualities of this research, and no current analysis exists that has examined the progress in intrauterine adhesion research. Web of Science Core Collection, BIOSIS Citation Index, and MEDLINE database were searched to identify articles on intrauterine adhesion published from 1950 to October 2020. The 100 most cited articles were chosen to analyze citation count, citation density, authorship, theme, geographic distribution, time-related flux, level of evidence, and network analysis. An overwhelming majority of these 100 articles were published in the 2010s (35%). Citations per article ranged from 30 to 253. Chinese authors published the most papers in the top 100, followed by the USA, France, Israel, and Italy. The most salient study themes included operative hysteroscopy and adjunctive treatments for improving reproductive outcomes. The most common level of evidence was level II, and there was no statistical difference in the number of citations between the levels. The network analysis indicated that hysteroscopy, hysteroscopic adhesiolysis, infertility, and the reproductive outcome had a great degree of centrality in the 2000s and 2010s. In comparison, placental implantation had a great degree of centrality in the 2000s, and stem cell and fibrosis had a great degree of centrality in the 2010s. The value of IUA investigation has been gradually appreciated recently. Hysteroscopic adhesiolysis was continuously explored to achieve better reproductive outcome. Over time, the main focus of research has gradually shifted from complications to postoperative adjuvant treatment. Moreover, breakthrough progress is needed in underlying mechanism and early prevention of IUA.
Collapse
Affiliation(s)
- Pan Gu
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Waixing Li
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xingping Zhao
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
19
|
López-Martínez S, Rodríguez-Eguren A, de Miguel-Gómez L, Francés-Herrero E, Faus A, Díaz A, Pellicer A, Ferrero H, Cervelló I. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater 2021; 135:113-125. [PMID: 34428563 DOI: 10.1016/j.actbio.2021.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) hydrogels obtained from decellularized tissues are promising biocompatible materials for tissue regeneration. These biomaterials may provide important options for endometrial pathologies such as Asherman's syndrome and endometrial atrophy, which lack effective therapies thus far. First, we performed a proteomic analysis of a decellularized endometrial porcine hydrogel (EndoECM) to describe the specific role of ECM proteins related to regenerative processes. Furthermore, we investigated the ability of a bioengineered system-EndoECM alone or supplemented with growth factors (GFs)-to repair the endometrium in a murine model of endometrial damage. For this model, the uterine horns of female C57BL/6 mice were first injected with 70% ethanol, then four days later, they were treated with: saline (negative control); biotin-labeled EndoECM; or biotin-labeled EndoECM plus platelet-derived GF, basic fibroblast GF, and insulin-like GF 1 (EndoECM+GF). Endometrial regeneration and fertility restoration were evaluated by assessing the number of glands, endometrial area, cell proliferation, neaoangiogenesis, reduction of collagen deposition, and fertility restoration. Interestingly, regenerative effects such as an increased number of endometrial glands, increased area, high cell proliferative index, development of new blood vessels, reduction of collagen deposition, and higher pregnancy rate occurred in mice treated with EndoECM+GF. Thus, a bioengineered system based on EndoECM hydrogel supplemented with GFs may be promising for the clinical treatment of endometrial conditions such as Asherman's syndrome and endometrial atrophy. STATEMENT OF SIGNIFICANCE: In the last years, the bioengineering field has developed new and promising approaches to regenerate tissues or replace damaged and diseased tissues. Bioengineered hydrogels offer an ideal option because these materials can be used not only as treatments but also as carriers of drugs and other therapeutics. The present work demonstrates for the first time how hydrogels derived from pig endometrium loaded with growth factors could treat uterine pathologies in a mouse model of endometrial damage. These findings provide scientific evidence about bioengineered hydrogels based on tissue-specific extracellular matrix offering new options to treat human infertility from endometrial causes such as Asherman's syndrome or endometrial atrophy.
Collapse
Affiliation(s)
- Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Adolfo Rodríguez-Eguren
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Emilio Francés-Herrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Ana Díaz
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Antonio Pellicer
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain; IVIRMA Roma, Largo Ildebrando Pizzetti, 1, Roma 00197, Italy
| | - Hortensia Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain.
| |
Collapse
|
20
|
de Miguel-Gómez L, Romeu M, Pellicer A, Cervelló I. Strategies for managing asherman's syndrome and endometrial atrophy: Since the classical experimental models to the new bioengineering approach. Mol Reprod Dev 2021; 88:527-543. [PMID: 34293229 DOI: 10.1002/mrd.23523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022]
Abstract
Endometrial function is essential for embryo implantation and pregnancy, but managing endometrial thickness that is too thin to support pregnancy or an endometrium of compromised functionality due to intrauterine adhesions is an ongoing challenge in reproductive medicine. Here, we review current and emerging therapeutic and experimental options for endometrial regeneration with a focus on animal models used to study solutions for Asherman's syndrome and endometrial atrophy, which both involve a damaged endometrium. A review of existing literature was performed that confirmed the lack of consensus on endometrial therapeutic options, though promising new alternatives have emerged in recent years (platelet-rich plasma, exosomes derived from stem cells, bioengineering-based techniques, endometrial organoids, among others). In the future, basic research using established experimental models of endometrial pathologies (combined with new high-tech solutions) and human clinical trials with large population sizes are needed to evaluate these emerging and new endometrial therapies.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), La Fe Health Research Institute, Valencia, Spain
- University of Valencia, Valencia, Spain
| | - Mónica Romeu
- Reproductive Medicine Research Group, La Fe Health Research Institute, La Fe University Hospital, Valencia, Spain
- Women's Health Area, Human Reproduction Unit, La Fe University Hospital, Valencia, Spain
| | | | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
21
|
Zhou Y, Zhou J, Xu X, Du F, Nie M, Hu L, Ma Y, Liu M, Yu S, Zhang J, Chen Y. Matrigel/Umbilical Cord-Derived Mesenchymal Stem Cells Promote Granulosa Cell Proliferation and Ovarian Vascularization in a Mouse Model of Premature Ovarian Failure. Stem Cells Dev 2021; 30:782-796. [PMID: 34030464 DOI: 10.1089/scd.2021.0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In women of reproductive age, severe injuries to the ovary are often accompanied by premature ovarian failure (POF), which can result in amenorrhea or infertility. Hormone replacement therapy has been used to treat POF; however, it has limited therapeutic efficiency and may cause several side effects. In this study, we aimed to fabricate a Matrigel scaffold loaded with human umbilical cord-derived mesenchymal stem cells (MSCs) and explore its potential to restore ovarian function and repair ovarian structures in vitro and in vivo. POF mouse models were established by injecting mice with cyclophosphamide for 15 consecutive days. Then, MSC/Matrigel was transplanted into the ovaries of the mice. Five weeks later, the morphology of the ovaries and follicles was observed by hematoxylin/eosin staining, and the tissue fibrosis ratio was measured using Masson's trichrome staining. The number of blood vessels was evaluated by α-smooth muscle actin and CD31 immunofluorescence, and Ki67 expression was used to determine the proliferation of granulosa cells. The expression of vascular endothelial growth factor (VEGF)-A was assessed by western blotting. The Matrigel scaffold regulated the expression of VEGF-A in vitro. Moreover, it promoted MSC survival and proliferation and prevented MSC apoptosis in vivo. After the transplantation of the MSC/Matrigel, the number of follicles was significantly increased in the mice with POF, and the tissue fibrosis ratio was reduced. Furthermore, the MSC/Matrigel significantly improved the proliferation rate of granulosa cells, increased the number of blood vessels, and upregulated the expression of VEGF-A. These findings demonstrate that MSC/Matrigel may support follicular development and help restore ovarian structures in vivo.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Xu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Fangzhou Du
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mengting Nie
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Lvzhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuhao Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mengmeng Liu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shuang Yu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Zhengzhou Institute of Engineering and Technology Affiliated to SIBET, Zhengzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Zhengzhou Institute of Engineering and Technology Affiliated to SIBET, Zhengzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
de Miguel-Gómez L, López-Martínez S, Francés-Herrero E, Rodríguez-Eguren A, Pellicer A, Cervelló I. Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models. Cells 2021; 10:cells10030595. [PMID: 33800355 PMCID: PMC7998473 DOI: 10.3390/cells10030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells (ASCs) were long suspected to exist in the endometrium. Indeed, several types of endometrial ASCs were identified in rodents and humans through diverse isolation and characterization techniques. Putative stromal and epithelial stem cell niches were identified in murine models using label-retention techniques. In humans, functional methods (clonogenicity, long-term culture, and multi-lineage differentiation assays) and stem cell markers (CD146, SUSD2/W5C5, LGR5, NTPDase2, SSEA-1, or N-cadherin) facilitated the identification of three main types of endogenous endometrial ASCs: stromal, epithelial progenitor, and endothelial stem cells. Further, exogenous populations of stem cells derived from bone marrow may act as key effectors of the endometrial ASC niche. These findings are promoting the development of stem cell therapies for endometrial pathologies, with an evolution towards paracrine approaches. At the same time, promising therapeutic alternatives based on bioengineering have been proposed.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Sara López-Martínez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- IVIRMA Rome Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Correspondence: ; Tel.: +34-963-903-305
| |
Collapse
|
23
|
Lin J, Wang Z, Huang J, Tang S, Saiding Q, Zhu Q, Cui W. Microenvironment-Protected Exosome-Hydrogel for Facilitating Endometrial Regeneration, Fertility Restoration, and Live Birth of Offspring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007235. [PMID: 33590681 DOI: 10.1002/smll.202007235] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Thin endometrium is a primary cause of failed embryo transfer, resulting in long-term infertility and negative family outcomes. While hormonal treatments have greatly improved fertility results for some women, these responses remain unsatisfactory due to damage and infection of the complex endometrial microenvironment. In this study, a multifunctional microenvironment-protected exosome-hydrogel is designed for facilitating endometrial regeneration and fertility restoration via in situ microinjection and endometrial regeneration. This exosome hydrogel is formulated via Ag+ -S dynamic coordination and fusion with adipose stem cell-derived exosomes (ADSC-exo), yielding an injectable preparation that is sufficient to mitigate infection risk while also possessing the antigenic contents and paracrine signaling activity of the ADSC source cells, enabling regeneration of the endometrial microenvironment. In vitro, this exosome-hydrogel exerts an outstanding neovascularization-promoting effect, increased human umbilical vein endothelial cell proliferation and tube formation for 1.87 and 2.2 folds. In vivo, microenvironment-protected exosome-hydrogel also reveals to promote neovascularization and tissue regeneration while suppressing local tissue fibrosis. Importantly, regenerated endometrial tissue is more receptive to give embryos and birth to a healthy newborn. This microenvironment-protected exosome-hydrogel system offers a convenient, safe, and noninvasive approach for repairing thin endometrium and fertility restoration.
Collapse
Affiliation(s)
- Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jialyu Huang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Shengluan Tang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
24
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
25
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|