1
|
Rakhmatullina AR, Zolotykh MA, Filina YV, Valiullina AK, Zmievskaya EA, Gafurbaeva DU, Sagdeeva AR, Bulatov ER, Rizvanov AA, Miftakhova RR. Multicellular Cancer-Stroma Spheres (CSS) for In Vitro Assessment of CAR-T Cell-Associated Toxicity. Cells 2024; 13:1892. [PMID: 39594640 PMCID: PMC11593285 DOI: 10.3390/cells13221892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
CAR-T therapy has revolutionized the field of oncology, offering a promising treatment option for cancer patients. However, the significant morbidity associated with therapy-related toxicity presents a major challenge to its widespread use. Despite extensive research into the underlying mechanisms of CAR-T therapy-related toxicity, there are still many unknowns. Furthermore, the lack of adequate in vitro models for assessing immunotoxicity and neurotoxicity further complicates the development of safer cellular therapies. Previously in our laboratory, we developed cancer-stroma spheres (CSS) composed of prostate adenocarcinoma PC3 cells and mesenchymal stem cells (MSC). Herein we present evidence that multicellular CSS could serve as a valuable in vitro model for toxicity studies related to CAR-T therapy. CSS containing CD19-overexpressing PC3M cells exhibited increased secretion of CAR-T cell toxicity-associated IL-8, MCP-1, and IP-10 in the presence of anti-CD19 CAR-T cells, compared to spheres derived from single cell types.
Collapse
Affiliation(s)
- Aigul R. Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mariya A. Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuliya V. Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aigul Kh. Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina A. Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dina U. Gafurbaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aisylu R. Sagdeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil R. Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, 420111 Kazan, Russia
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
2
|
Paccalet A, Badawi S, Pillot B, Augeul L, Mechtouff L, Harhous Z, Gouriou Y, Paillard M, Breuilly M, Amaz C, Varillon Y, Leboube S, Brun C, Prieur C, Rioufol G, Mewton N, Ovize M, Bidaux G, Bochaton T, Crola Da Silva C. Deleterious Anti-Inflammatory Macrophage Recruitment in Early Post-Infarction Phase: Unraveling the IL-6/MCP-1/STAT3 Axis. JACC Basic Transl Sci 2024; 9:593-604. [PMID: 38984050 PMCID: PMC11228110 DOI: 10.1016/j.jacbts.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/11/2024]
Abstract
Using a translational approach with an ST-segment myocardial infarction (STEMI) cohort and mouse model of myocardial infarction, we highlighted the role of the secreted IL-6 and MCP-1 cytokines and the STAT3 pathway in heart macrophage recruitment and activation. Cardiac myocytes secrete IL-6 and MCP-1 in response to hypoxic stress, leading to a recruitment and/or polarization of anti-inflammatory macrophages via the STAT3 pathway. In our preclinical model of myocardial infarction, neutralization of IL-6 and MCP-1 or STAT3 pathway reduced infarct size. Together, our data demonstrate that anti-inflammatory macrophages can be deleterious in the acute phase of STEMI.
Collapse
Affiliation(s)
- Alexandre Paccalet
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Sally Badawi
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Bruno Pillot
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Lionel Augeul
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Laura Mechtouff
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Zeina Harhous
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Yves Gouriou
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Mélanie Paillard
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Marine Breuilly
- CIQLE, LyMIC, LABEX CORTEX, Université Claude Bernard Lyon 1, Structure Fédérative de Recherche santé Lyon-Est CNRS UAR3453/Inserm US7, Lyon, France
| | - Camille Amaz
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Yvonne Varillon
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Simon Leboube
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Camille Brun
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Cyril Prieur
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Gilles Rioufol
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Nathan Mewton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- Intensive Cardiological Care Division, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, Bron, France
| | - Michel Ovize
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Gabriel Bidaux
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Thomas Bochaton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Claire Crola Da Silva
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| |
Collapse
|
3
|
Chen J, Gong Y, Sun X, Chen N, Zhao Z, Zhang W, Zheng Y. Prostaglandin E2 may clinically alleviate dry eye disease by inducing Th17 cell differentiation. Chem Biol Drug Des 2024; 103:e14477. [PMID: 38361150 DOI: 10.1111/cbdd.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Dry eye (DE) is a multifactorial ocular surface disease characterised by an imbalance in tear homeostasis. The pathogenesis of DE is complex and related to environmental, immunological (e.g., T helper 17 cells) and other factors. However, the DE disease pathogenesis remains unclear, thereby affecting its clinical treatment. This study aimed to explore the mechanism through which prostaglandin E2 (PGE2) affects DE inflammation by regulating Th17. The DE mouse model was established through subcutaneous injection of scopolamine hydrobromide. The tear secretion test and break-up time (BUT) method were used to detect tear secretion and tear film BUT, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect the concentrations of PGE2, interleukin (IL)-17, IL-6 and tumour necrosis factor (TNF-α) in tear fluid and those of PGE2 and IL-17 in the serum. RT-qPCR and western blotting were used to test the mRNA and protein expression levels of IL-17 and retinoid-related orphan receptor-γt (RORγt). PGE2 was highly expressed in the DE mouse model. The mRNA and protein levels of IL-17 and the key Th17 transcription factor RORγt were increased in tissues of the DE mice. Moreover, PGE2 promoted tear secretion, reduced the BUT, increased the IL-17 concentration in tears and increased the Th17 cell proportion in DE, whereas the PGE2 receptor inhibitor AH6809 reversed the effects of PGE2 on tear secretion, BUT, and the Th17 cell proportion in draining lymph node (DLN) cells. Taken together, the study findings indicate that PGE2 could induce DE-related symptoms by promoting Th17 differentiation.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Ophthalmology Department of Kunming First People's Hospital, Kunming, China
| | - Yu Gong
- Kunming Medical University, Kunming, China
| | - Xiaoyu Sun
- Kunming Medical University, Kunming, China
| | - Nuo Chen
- Kunming Medical University, Kunming, China
| | - Zijun Zhao
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Weijia Zhang
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yixin Zheng
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Rosado-Galindo H, Domenech M. Substrate topographies modulate the secretory activity of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2023; 14:208. [PMID: 37605275 PMCID: PMC10441765 DOI: 10.1186/s13287-023-03450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) secrete a diversity of factors with broad therapeutic potential, yet current culture methods limit potency outcomes. In this study, we used topographical cues on polystyrene films to investigate their impact on the secretory profile and potency of bone marrow-derived MSCs (hBM-MSCs). hBM-MSCs from four donors were cultured on topographic substrates depicting defined roughness, curvature, grooves and various levels of wettability. METHODS The topographical PS-based array was developed using razor printing, polishing and plasma treatment methods. hBM-MSCs from four donors were purchased from RoosterBio and used in co-culture with peripheral blood mononuclear cells (PBMCs) from Cell Applications Inc. in an immunopotency assay to measure immunosuppressive capacity. Cells were cultured on low serum (2%) for 24-48 h prior to analysis. Image-based analysis was used for cell quantification and morphology assessment. Metabolic activity of BM-hMSCs was measured as the mitochondrial oxygen consumption rate using an extracellular flux analyzer. Conditioned media samples of BM-hMSCs were used to quantify secreted factors, and the data were analyzed using R statistics. Enriched bioprocesses were identify using the Gene Ontology tool enrichGO from the clusterprofiler. One-way and two-way ANOVAs were carried out to identify significant changes between the conditions. Results were deemed statistically significant for combined P < 0.05 for at least three independent experiments. RESULTS Cell viability was not significantly affected in the topographical substrates, and cell elongation was enhanced at least twofold in microgrooves and surfaces with a low contact angle. Increased cell elongation correlated with a metabolic shift from oxidative phosphorylation to a glycolytic state which is indicative of a high-energy state. Differential protein expression and gene ontology analyses identified bioprocesses enriched across donors associated with immune modulation and tissue regeneration. The growth of peripheral blood mononuclear cells (PBMCs) was suppressed in hBM-MSCs co-cultures, confirming enhanced immunosuppressive potency. YAP/TAZ levels were found to be reduced on these topographies confirming a mechanosensing effect on cells and suggesting a potential role in the immunomodulatory function of hMSCs. CONCLUSIONS This work demonstrates the potential of topographical cues as a culture strategy to improve the secretory capacity and enrich for an immunomodulatory phenotype in hBM-MSCs.
Collapse
Affiliation(s)
- Heizel Rosado-Galindo
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA
| | - Maribella Domenech
- Bioengineering Program, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Road 108, KM 1.1., Mayagüez, PR, 00680, USA.
| |
Collapse
|
5
|
Knock-out of 5-lipoxygenase in overexpressing tumor cells-consequences on gene expression and cellular function. Cancer Gene Ther 2023; 30:108-123. [PMID: 36114329 PMCID: PMC9842508 DOI: 10.1038/s41417-022-00531-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
5-Lipoxygenase (5-LO), the central enzyme in the biosynthesis of leukotrienes, is frequently expressed in human solid malignancies even though the enzyme is not present in the corresponding healthy tissues. There is little knowledge on the consequences of this expression for the tumor cells regarding gene expression and cellular function. We established a knockout (KO) of 5-LO in different cancer cell lines (HCT-116, HT-29, U-2 OS) and studied the consequences on global gene expression using next generation sequencing. Furthermore, cell viability, proliferation, migration and multicellular tumor spheroid (MCTS) formation were studied in these cells. Our results show that 5-LO influences the gene expression and cancer cell function in a cell type-dependent manner. The enzyme affected genes involved in cell adhesion, extracellular matrix formation, G protein signaling and cytoskeleton organization. Furthermore, absence of 5-LO elevated TGFβ2 expression in HCT-116 cells while MCP-1, fractalkine and platelet-derived growth factor expression was attenuated in U-2 OS cells suggesting that tumor cell-derived 5-LO shapes the tumor microenvironment. In line with the gene expression data, KO of 5-LO had an impact on cell proliferation, motility and MCTS formation. Interestingly, pharmacological inhibition of 5-LO only partly mimicked the KO suggesting that also noncanonical functions are involved.
Collapse
|
6
|
Koch DW, Schnabel LV, Ellis IM, Bates RE, Berglund AK. TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing. Stem Cell Res Ther 2022; 13:477. [PMID: 36114555 PMCID: PMC9482193 DOI: 10.1186/s13287-022-03172-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) secrete paracrine factors and extracellular matrix proteins that contribute to their ability to support tissue healing and regeneration. Both the transcriptome and the secretome of MSCs can be altered by treating the cells with cytokines, but neither have been thoroughly investigated following treatment with the specific cytokine transforming growth factor (TGF)-β2. Methods RNA-sequencing and western blotting were used to compare gene and protein expression between untreated and TGF-β2-treated equine bone marrow-derived MSCs (BM-MSCs). A co-culture system was utilized to compare equine tenocyte migration during co-culture with untreated and TGF-β2-treated BM-MSCs. Results TGF-β2 treatment significantly upregulated gene expression of collagens, extracellular matrix molecules, and growth factors. Protein expression of collagen type I and tenascin-C was also confirmed to be upregulated in TGF-β2-treated BM-MSCs compared to untreated BM-MSCs. Both untreated and TGF-β2-treated BM-MSCs increased tenocyte migration in vitro. Conclusions Treating equine BM-MSCs with TGF-β2 significantly increases production of paracrine factors and extracellular matrix molecules important for tendon healing and promotes the migration of tenocytes in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03172-9.
Collapse
|
7
|
Ayadilord M, Saharkhiz M, Naseri M, Emadian Razavi F. Expression of immunomodulatory and tissue regenerative biomarkers in human dental pulp derived-mesenchymal stem cells treated with curcumin: an in vitro study. Mol Biol Rep 2022; 49:4411-4420. [PMID: 35301656 DOI: 10.1007/s11033-022-07278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human Dental pulp derived-mesenchymal stem cells (hDP-MSCs) have the capability of selfrenewal, multipotency, as well as immunosuppressive properties. They are ideal candidates for regenerating damaged dental tissue and treating inflammation-related diseases. However, methods (such as genetic variation) to improve the immunomodulatory and regenerative efficiency of MSCs in different diseases still need to be developed. Curcumin (CUR) is known for its broad applications in regenerative medicine and the treatment of inflammatory disorders via its anti-inflammatory and anti-oxidant effects. This study was conducted to investigate the effect and underlying mechanisms of CUR on the immunomodulatory and regenerative function of hDP-MSCs and whether treating these cells with CUR can improve therapeutic efficacy. METHODS AND RESULTS hDP-MSCs were isolated from dental pulp and then treated with CUR. Cell viability rate was observed in hDP-MSCs after treatment of CUR by MTT assay. Real-time quantitative (RT-PCR) was applied to estimate the expression of immunomodulatory and regenerative genes after treatment of CUR. The RT-PCR results showed that VEGF-A and STAT3 markers were up-regulated while HLA-G5 and VCAM-1 markers were down-regulated by CUR (20 µM) treatment in hDP-MSCs (P < 0.001). Besides, this research indicated that there were no significant changes in the expressions of RelA and DSPP after 48 h (P = 0.33, P = 1). CONCLUSION Our findings demonstrate that CUR can enhance the immunomodulatory and regenerative effects of hDP-MSCs and improve their therapeutic efficacy. These findings can give an understanding of the mechanism for improving restorative and immunomodulatory activity in hDP-MSCs by curcumin.
Collapse
Affiliation(s)
- Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Department of Prosthodontics, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
8
|
Suzdaltseva Y, Goryunov K, Silina E, Manturova N, Stupin V, Kiselev SL. Equilibrium among Inflammatory Factors Determines Human MSC-Mediated Immunosuppressive Effect. Cells 2022; 11:1210. [PMID: 35406773 PMCID: PMC8997511 DOI: 10.3390/cells11071210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are thought to be a promising therapeutic agent due to their multiple paracrine and immunomodulatory properties, providing protection from chronic inflammation and promoting tissue repair. MSCs can regulate the balance of pro-inflammatory and anti-inflammatory factors in inflamed tissues, creating a microenvironment necessary for successful healing; however, their interactions with immune cells are still poorly studied. We examined the temporal and spatial changes in gene regulation and the paracrine milieu accompanying the MSC-mediated immunosuppression effect in mixed cultures with activated peripheral blood mononuclear cells (PBMCs). Our data reveal that the peak of suppression of PBMC proliferation was achieved within 48 h following co-culture with MSCs and subsequently did not undergo a significant change. This effect was accompanied by an increase in COX-2 expression and an induction of IDO synthesis in MSCs. At this point, the expression of IL-1, IL-6, IL-8, IFN-γ, MCP-1, and G-CSF was upregulated in co-cultured cells. On the contrary, we observed a decrease in the concentrations of IL-10, IL-13, IL-5, and MIP-1b in co-culture supernatants compared to intact cultures of activated PBMCs. The regulation of IDO, IL-1, IL-6, and G-CSF production was accomplished with the involvement of direct cell-cell contact between MSCs and PBMCs. These findings provide new insights into the use of potential precondition inducers or their combinations to obtain functionally qualified MSCs for more effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Kirill Goryunov
- Department of Cell Technologies, National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Sergey L. Kiselev
- Department of Epigenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia;
| |
Collapse
|
9
|
Markoutsa E, Mayilsamy K, Gulick D, Mohapatra SS, Mohapatra S. Extracellular vesicles derived from inflammatory-educated stem cells reverse brain inflammation-implication of miRNAs. Mol Ther 2022; 30:816-830. [PMID: 34371179 PMCID: PMC8821927 DOI: 10.1016/j.ymthe.2021.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation plays a key role in the development of age-related diseases. In Alzheimer's disease, neuronal cell death is attributed to amyloidbeta oligomers that trigger microglial activation. Stem cells have shown promise as therapies for inflammatory diseases- because of their paracrine activity combined with their ability to respond to the inflammatory environment. However, the mechanisms underlying stem cell-promoted neurological recovery are poorly understood. To elucidate these mechanisms, we first primed stem cells with the secretome of lipopolysaccharide- or amyloidbeta-activated microglia. Then, we compared the immunomodulatory effects of extracellular vesicles (EVs) secreted from primed and non-primed stem cells. Our results demonstrate that EVs from primed cells are more effective in inhibiting microglia and astrocyte activation, amyloid deposition, demyelination, memory loss and motor and anxiety-like behavioral dysfunction, compared to EVs from non-primed cells. MicroRNA (miRNA) profiling revealed the upregulation of at least 19 miRNAs on primed-stem cell EVs. The miRNA targets were identified, and KEGG pathway analysis showed that the overexpressed miRNAs target key genes on the toll-like receptor-4 (TLR4) signaling pathway. Overall, our results demonstrate that priming mesenchymal stem cells (MSCs) with the secretome of activated microglia results in the release of miRNAs from EVs with enhanced immune regulatory potential able to fight neuroinflammation.
Collapse
Affiliation(s)
- Eleni Markoutsa
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA,Corresponding author: Eleni Markoutsa, Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Karthick Mayilsamy
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Dannielle Gulick
- Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA
| | - Shyam S. Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Division of Translational Medicine and Center for Research and Education in Nanobio-engineering, Department of Internal Medicine, University of South Florida Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA,College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- James A. Haley VA Hospital, Tampa, FL 33612, USA,Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, USA,Corresponding author: Subhra Mohapatra, Department of Molecular Medicine, University of South Florida Mrsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Liu H, Zhu X, Cao X, Chi A, Dai J, Wang Z, Deng C, Zhang M. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021; 12:514. [PMID: 34563249 PMCID: PMC8466748 DOI: 10.1186/s13287-021-02579-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects patient health. Despite the elusiveness of innate therapeutic effects, mesenchymal stromal cells (MSCs) hold great promise for inflammation-related diseases. Recent evidence indicates that disease-specific inflammatory cytokines could enhance the therapeutic effects of MSCs. METHODS By establishing a CP/CPPS mouse model and pretreating MSCs with the cytokine interleukin-1β (IL-1β), we studied the IL-1β-primed MSC immunoregulatory ability and targeted migration ability in vitro and in CP/CPPS mice. RESULTS IL-1β levels significantly increased in the prostate tissue and serum of experimental autoimmune prostatitis (EAP) mice. Pretreatment with IL-1β enhanced the immunomodulatory potential and targeted migration of MSCs in vitro. Furthermore, intravenous infusion of IL-1β-primed MSCs dampened inflammation in prostate tissues and alleviated hyperalgesia in EAP mice. The infused MSCs inhibited monocyte infiltration and promoted regulatory T lymphocyte formation in prostate tissue, thus remodeling the local environment. Surprisingly, IL-1β-primed MSCs exhibited improved accumulation in the spleen but not in prostate tissue. Accordingly, infused MSCs reshaped systemic immunity by reducing the proportion of Ly6ChighCD11b+ monocytes and boosting the proportion of CD4+Foxp3+ regulatory T lymphocytes in the spleen and lung. Inflammatory chemokine (C-C motif) ligand 2 (CCL2) decreased through the downregulation of the NF-κB and JNK/MAPK pathways by inflammatory resolution via MSCs infusion to alleviate pain. CONCLUSION In summary, IL-1β-primed MSCs restored systemic immunologic homeostasis to alleviate CP/CPPS by modulating systemic immunity. These findings provide a novel strategy to boost the therapeutic effects of MSC-based therapy for CP/CPPS and reveal the essential role of systematic immunity in the treatment of CP/CPPS with MSC infusion.
Collapse
Affiliation(s)
- Hanchao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Xinning Zhu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohui Cao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, 16 North Guilin Road, Huangshi, 435003, Hubei, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 51008, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| |
Collapse
|
11
|
Park SM, An JH, Lee JH, Kim KB, Chae HK, Oh YI, Song WJ, Youn HY. Extracellular vesicles derived from DFO-preconditioned canine AT-MSCs reprogram macrophages into M2 phase. PLoS One 2021; 16:e0254657. [PMID: 34310627 PMCID: PMC8312919 DOI: 10.1371/journal.pone.0254657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are effective therapeutic agents that ameliorate inflammation through paracrine effect; in this regard, extracellular vesicles (EVs) have been frequently studied. To improve the secretion of anti-inflammatory factors from MSCs, preconditioning with hypoxia or hypoxia-mimetic agents has been attempted and the molecular changes in preconditioned MSC-derived EVs explored. In this study, we aimed to investigate the increase of hypoxia-inducible factor 1-alpha (HIF-1α)/cyclooxygenase-2 (COX-2) in deferoxamine (DFO)-preconditioned canine MSC (MSCDFO) and whether these molecular changes were reflected on EVs. Furthermore, we focused on MSCDFO derived EVs (EVDFO) could affect macrophage polarization via the transfer function of EVs. Results In MSCDFO, accumulation of HIF-1α were increased and production of COX-2 were activated. Also, Inside of EVDFO were enriched with COX-2 protein. To evaluate the transferring effect of EVs to macrophage, the canine macrophage cell line, DH82, was treated with EVs after lipopolysaccharide (LPS) stimulation. Polarization changes of DH82 were evaluated with quantitative real-time PCR and immunofluorescence analyses. When LPS-induced DH82 was treated with EVDFO, phosphorylation of signal transducer and transcription3 (p-STAT3), which is one of key factor of inducing M2 phase, expression was increased in DH82. Furthermore, treated with EVDFO in LPS-induced DH82, the expression of M1 markers were reduced, otherwise, M2 surface markers were enhanced. Comparing with EVDFO and EVnon. Conclusion DFO preconditioning in MSCs activated the HIF-1α/COX-2 signaling pathway; Transferring COX-2 through EVDFO could effectively reprogram macrophage into M2 phase by promoting the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Su-Min Park
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Bo Kim
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung-Kyu Chae
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
- * E-mail: (WJS); (HYY)
| | - Hwa-Young Youn
- Department of Clinical Veterinary Science, Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (WJS); (HYY)
| |
Collapse
|
12
|
Kuang S, He F, Liu G, Sun X, Dai J, Chi A, Tang Y, Li Z, Gao Y, Deng C, Lin Z, Xiao H, Zhang M. CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis. Biomaterials 2021; 275:120963. [PMID: 34153785 DOI: 10.1016/j.biomaterials.2021.120963] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Impaired wound healing presents great health risks to patients. While encouraging, the current clinical successes of mesenchymal stromal cell (MSC)-based therapies for tissue repair have been limited. Genetic engineering could endow MSCs with more robust regenerative capacities. Here, we identified that C-C motif chemokine receptor 2 (CCR2) overexpression enhanced the targeted migration and immunoregulatory potential of MSCs in response to C-C motif chemokine ligand 2 (CCL2) in vitro. Intravenously infusion of CCR2-engineered MSCs (MSCsCCR2) exhibited improved homing efficiencies to injured sites and lungs of diabetic mice. Accordingly, MSCCCR2 infusion inhibited monocyte infiltration, reshaped macrophage inflammatory properties, prompted the accumulation of regulatory T cells (Treg cells) in injured sites, and reshaped systemic immune responses via the lung and spleen in mouse diabetic wound models. In summary, CCR2-engineered MSCs restore immunological homeostasis to accelerate diabetic wound healing via their improved homing and immunoregulatory potentials in response to CCL2. Therefore, these findings provide a novel strategy to explore genetically engineered MSCs as tools to facilitate tissue repair in diabetic wounds.
Collapse
Affiliation(s)
- Shuhong Kuang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng He
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yali Tang
- Core Lab Plat for Medical Science, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuoran Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 51008, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Berglund AK, Long JM, Robertson JB, Schnabel LV. TGF-β2 Reduces the Cell-Mediated Immunogenicity of Equine MHC-Mismatched Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Immunomodulatory Properties. Front Cell Dev Biol 2021; 9:628382. [PMID: 33614658 PMCID: PMC7889809 DOI: 10.3389/fcell.2021.628382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Allogeneic mesenchymal stem cells (MSCs) are a promising cell therapy for treating numerous diseases, but major histocompatibility complex (MHC)-mismatched MSCs can be rejected by the recipient’s immune system. Pre-treating MSCs with transforming growth factor-β2 (TGF-β2) to downregulate surface expression of MHC molecules may enhance the ability of allogeneic MSCs to evade immune responses. We used lymphocyte proliferation assays and ELISAs to analyze the immunomodulatory potential of TGF-β2-treated equine bone marrow-derived MSCs. T cell activation and cytotoxicity assays were then used to measure the in vitro cell-mediated immunogenicity. Similar to untreated MSCs, TGF-β2-treated MSCs inhibited T cell proliferation and did not stimulate MHC-mismatched T cells to proliferate. Additionally, similar quantities of prostaglandin E2 and TGF-β1 were detected in assays with untreated and TGF-β2-treated MSCs supporting that TGF-β2-treated MSCs retain their strong immunomodulatory properties in vitro. Compared to untreated MSCs, TGF-β2-treated MSCs induced less T cell activation and had reduced cell-mediated cytotoxicity in vitro. These results indicate that treating MSCs with TGF-β2 is a promising strategy to reduce the cell-mediated immunogenicity of MHC-mismatched MSCs and facilitate allogeneic MSC therapy.
Collapse
Affiliation(s)
- Alix K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Julie M Long
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - James B Robertson
- Office of Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|