1
|
Narinx F, Sauvage A, Ceusters J, Grulke S, Serteyn D, Monclin S. Subconjunctival autologous muscle-derived mesenchymal stem cell therapy: A novel, minimally invasive approach for treating equine immune-mediated keratitis. Vet Ophthalmol 2024; 27:424-433. [PMID: 38071501 DOI: 10.1111/vop.13175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 11/21/2024]
Abstract
OBJECTIVE To establish the safety of subconjunctival injections of autologous muscle-derived mesenchymal stem cells (mdMSCs) in healthy horses and to evaluate their effect in four horses (six eyes) with severe chronic equine immune-mediated keratitis (IMMK) that was unresponsive to medical treatments. METHODS MdMSCs were cultured from minimally invasive muscle biopsies. In the safety group, four healthy horses received two subconjunctival injections of 2.5 and 5 million cells, respectively, at 1-month interval, to the same eye. Ocular side effects were monitored for 1 month following each injection. In the treatment group, six eyes received four to seven subconjunctival mdMSCs injections (2.5 or 5 million cells per injection) every 4 weeks, approximatively. Medical treatment was discontinued 1 week before and throughout the entire treatment period. A scoring system was used to assess the evolution of the ocular lesions. RESULTS In the safety group, all horses exhibited mild to moderate chemosis and conjunctival hyperemia at the injection site, lasting 24-48 h. In the treatment group, all eyes initially responded positively to therapy, with a reduction in lesion scores observed after the first injection. Four eyes achieved control of the lesions with repeated injections during the 9.2 months of follow-up. CONCLUSION The first subconjunctival injection of mdMSCs resulted in improvement of the ocular lesions. Repeated injections were found to be safe, minimally invasive and showed promise in managing refractory cases of equine IMMK. Further studies are warranted to demonstrate the long-term benefits of these injections and to optimize the therapeutic protocol.
Collapse
Affiliation(s)
- Florine Narinx
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Aurélie Sauvage
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Justine Ceusters
- Center for Oxygen Research and Development, Institute of Chemistry, University of Liège, Liège, Belgium
| | - Sigrid Grulke
- Department of Clinical Sciences, Equine Surgery, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Didier Serteyn
- Center for Oxygen Research and Development, Institute of Chemistry, University of Liège, Liège, Belgium
- Department of Clinical Sciences, Equine Surgery, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| | - Sébastien Monclin
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, Veterinary Teaching Hospital of the University of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Pharoun J, Berro J, Sobh J, Abou-Younes MM, Nasr L, Majed A, Khalil A, Joseph, Stephan, Faour WH. Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. Eur J Pharmacol 2024; 977:176719. [PMID: 38849038 DOI: 10.1016/j.ejphar.2024.176719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells that are able to differentiate into multiple lineages including bone, cartilage, muscle and fat. They hold immunomodulatory properties and therapeutic ability to treat multiple diseases, including autoimmune and chronic degenerative diseases. In this article, we reviewed the different biological properties, applications and clinical trials of MSCs. Also, we discussed the basics of manufacturing conditions, quality control, and challenges facing MSCs in the clinical setting. METHODS Extensive review of the literature was conducted through the databases PubMed, Google Scholar, and Cochrane. Papers published since 2015 and covering the clinical applications and research of MSC therapy were considered. Furthermore, older papers were considered when referring to pioneering studies in the field. RESULTS The most widely studied stem cells in cell therapy and tissue repair are bone marrow-derived mesenchymal stem cells. Adipose tissue-derived stem cells became more common and to a lesser extent other stem cell sources e.g., foreskin derived MSCs. MSCs therapy were also studied in the setting of COVID-19 infections, ischemic strokes, autoimmune diseases, tumor development and graft rejection. Multiple obstacles, still face the standardization and optimization of MSC therapy such as the survival and the immunophenotype and the efficiency of transplanted cells. MSCs used in clinical settings displayed heterogeneity in their function despite their extraction from healthy donors and expression of similar surface markers. CONCLUSION Mesenchymal stem cells offer a rising therapeutic promise in various diseases. However, their potential use in clinical applications requires further investigation.
Collapse
Affiliation(s)
- Jana Pharoun
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jana Berro
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Jeanine Sobh
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | | | - Leah Nasr
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Ali Majed
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Alia Khalil
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Joseph
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Stephan
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, LAU, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
3
|
Urrata V, Toia F, Cammarata E, Franza M, Montesano L, Cordova A, Di Stefano AB. Characterization of the Secretome from Spheroids of Adipose-Derived Stem Cells (SASCs) and Its Potential for Tissue Regeneration. Biomedicines 2024; 12:1842. [PMID: 39200306 PMCID: PMC11351933 DOI: 10.3390/biomedicines12081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
INTRODUCTION Spheroids are spherical aggregates of cells that mimic the three-dimensional (3D) architecture of tissues more closely than traditional two dimensional (2D) cultures. Spheroids of adipose stem cells (SASCs) show special features such as high multilineage differentiation potential and immunomodulatory activity. These properties have been attributed to their secreted factors, such as cytokines and growth factors. Moreover, a key role is played by the extracellular vesicles (EVs), which lead a heterogeneous cargo of proteins, mRNAs, and small RNAs that interfere with the pathways of the recipient cells. PURPOSE The aim of this work was to characterize the composition of the secretome and exosome from SASCs and evaluate their regenerative potential. MATERIALS AND METHODS SASCs were extracted from adipose samples of healthy individuals after signing informed consent. The exosomes were isolated and characterized by Dinamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Western blotting analyses. The expression of mRNAs and miRNAs were evaluated through real-time PCR. Lastly, a wound-healing assay was performed to investigate their regenerative potential on different cell cultures. RESULTS The SASCs' exosomes showed an up-regulation of NANOG and SOX2 mRNAs, typical of stemness maintenance, as well as miR126 and miR146a, related to angiogenic and osteogenic processes. Moreover, the exosomes showed a regenerative effect. CONCLUSIONS The SASCs' secretome carried paracrine signals involved in stemness maintenance, pro-angiogenic and pro-osteogenic differentiation, immune system regulation, and regeneration.
Collapse
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| | - Francesca Toia
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Emanuele Cammarata
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Mara Franza
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Luigi Montesano
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Adriana Cordova
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
- Plastic and Reconstructive Surgery Unit, Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of Biology and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery Section, Department Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy (E.C.); (M.F.); (A.C.); (A.B.D.S.)
| |
Collapse
|
4
|
Mitra S, Tati V, Basu S, Shukla S. Role of Mesenchymal Stem Cell-Derived Conditioned Medium in Modulating the Benzalkonium Chloride-Induced Cytotoxic Effects in Cultured Corneal Epithelial Cells In Vitro. Curr Eye Res 2024; 49:815-825. [PMID: 38646923 DOI: 10.1080/02713683.2024.2342355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE Benzalkonium chloride (BAK) is a common preservative in ophthalmic formulations that causes cytotoxic damage to the corneal epithelial cells. This study aims to explore the role of mesenchymal stem cell (MSC)-derived conditioned medium in modulating the BAK-induced cytotoxic effects in cultured human corneal epithelial cells (HCECs) as a cell-free therapeutic agent. METHODS The in vitro cultured HCECs derived from a HCE cell line were treated with BAK (0.001% and 0.005%, diluted in DMEM/F12, v/v) for 15 min, washed with 1xPBS, and allowed to recover for 24 h in human bone marrow MSC-derived conditioned medium (MSC-CM: undiluted (100%) and diluted (50%, v/v)). On the other hand, HCECs were co-incubated with BAK (0.005%, v/v) and MSC-CM (100% and 50%, v/v) for 24 h. The HCEC-derived conditioned medium (HCE-CM) was used as an optimal control for MSC-CM, whereas HCECs cultured in DMEM/F12 were used as a control. The DMEM/F12 was used as the base medium for the culture of HCECs and preparation of HCE- and MSC-CM. The role of MSC-CM in modulating the metabolic activity, cell death, epithelial repair, and proliferation, in BAK-treated HCECs was evaluated using MTT assay, Propidium iodide staining, scratch assay, and Ki-67 staining, respectively. RESULTS Compared to the control, recovery of BAK-treated (0.001% and 0.005%, for 15 min) HCECs in MSC-CM showed significantly reduced cell death with enhanced metabolic activity, epithelial repair, and proliferation. However, in comparison with HCE-CM, the beneficial effects of MSC-CM were predominantly observed at lower BAK concentration (0.001%, for 15 min). Whereas the co-incubation of BAK (0.005%) and MSC-CM for a longer duration (24 h) was marginally beneficial. CONCLUSIONS Our results suggest that the MSC-CM is effective in modulating the BAK-induced cell death, retardation of metabolic activity and proliferation in cultured HCECs, particularly at lower concentration (0.001%) and shorter exposure (15 min) of BAK.
Collapse
Affiliation(s)
- Sreya Mitra
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vasudeva Tati
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sachin Shukla
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Zhang B, Gao S, Liu S, Gong X, Wu J, Zhang Y, Ma L, Sheng L. Regenerative mechanisms of stem cells and their clinical applications for degenerative eye diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:42. [PMID: 40224196 PMCID: PMC11992415 DOI: 10.4103/jrms.jrms_358_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2025]
Abstract
There are different types of treatment for eye diseases. Although the majority of eye diseases are curable with primary treatments and surgery, some of degenerative eye damages need regeneration that is not gained by conventional procedures. Stem cells, such as mesenchymal stem cells, human embryonic stem cell-derived retinal pigmented epithelium, and inducible pluripotent stem cells, are now considered one of the most important and safe methods for regeneration of various damaged tissues or organs. However, how will stem cell therapy contribute to regeneration and overcome degenerative eye diseases? This review discusses the regenerative mechanisms, clinical applications, and advantages of different types of stem cells for restoring degenerative eye diseases.
Collapse
Affiliation(s)
- Baodong Zhang
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Shusong Gao
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Shibo Liu
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Xuewu Gong
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Wu
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Zhang
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Li Ma
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lijie Sheng
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
6
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Akbar N, Razzaq SS, Salim A, Haneef K. Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration. J Cardiovasc Transl Res 2024; 17:505-522. [PMID: 37875715 DOI: 10.1007/s12265-023-10449-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart regeneration are reviewed.
Collapse
Affiliation(s)
- Nukhba Akbar
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
8
|
Akbaribazm M. Exploring the Regenerative Potential of Stem Cells for Treating Eye Diseases: A Review of the New Findings. OBM GENETICS 2024; 08:1-14. [DOI: 10.21926/obm.genet.2401212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The escalating prevalence of vision loss due to eye diseases has instigated a quest for innovative therapies, given that conventional approaches often fall short in repairing and regenerating damaged eye tissues, particularly the retina. Stem cell-based interventions have emerged as a promising avenue, with numerous studies in animal models and human trials exploring their potential to enhance visual acuity. Beyond addressing conditions like age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies demonstrate efficacy in treating genetic disorders such as retinitis pigmentosa (RP). In severe eye damage necessitating regeneration, stem cells play a pivotal role, leveraging their regenerative capabilities. Noteworthy is the transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), showcasing promising results in preclinical models and clinical studies, leading to improved retinal function without severe side effects. Mesenchymal stem cells (MSCs) have successfully treated optic neuropathy, RP, DR, and glaucoma, yielding positive clinical outcomes. The safety of adult stem cells, particularly MSCs derived from adipose tissue or bone marrow, has been firmly established. This review highlights significant advancements in utilizing human ESC-derived retinal pigmented epithelium and iPSCs for treating eye injuries. While cell-based therapy is relatively nascent, with numerous clinical trials pending review, stem cells' regenerative potential and clinical applications in addressing eye diseases offer substantial promise. This study aims to comprehensively examine the applications of stem cells in the context of eye diseases and their potential role in regenerative medicine.
Collapse
|
9
|
Papa PM, Segabinazzi LGTM, Fonseca-Alves CE, Papa FO, Alvarenga MA. Intratesticular transplantation of allogenic mesenchymal stem cells mitigates testicular destruction after induced heat stress in Miniature-horse stallions. J Equine Vet Sci 2024; 132:104961. [PMID: 37925113 DOI: 10.1016/j.jevs.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Testicular degeneration (TD) is the most frequent cause of sub or infertility in stallions. Currently, mesenchymal stem cells (MSC) have been studied as a therapeutic option for several diseases including induced-TD in laboratory animals. Therefore, this study aimed to evaluate the effect of intratesticular MSC therapy on the testicular histology of stallions submitted to scrotal heat stress. Ten healthy Miniature-horse stallions were submitted to testicular heat stress induced by a heating wrap device (42-45°C). Afterward, the stallions were divided into two groups and treated seven days later. MSCs-treated stallions were treated with an intratesticular injection of 10 × 106 of MSCs diluted in 5 mL of PBS, whereas placebo-treated stallions had 5 mL of PBS intratesticular injected. All stallions had testicular biopsies collected seven days before and one- and 14-days post-heat stress and were castrated 30 days after testicular insult. Tissue sections were stained with H&E and evaluated for the tubular and luminal diameter, epithelial thickness, seminiferous tubules (STs) integrity, the number of spermatozoa in the STs, and the percent of abnormal STs. Significance was set at P≤0.05. In both groups, testicular heat stress damaged the STs (P<0.05). However, STs' parameters were improved in MSCs-treated stallions compared to placebo-treated stallions 30 days after the testicular insult (P<0.05). In conclusion, the results of the present study suggest that intratesticular MSC therapy provided a therapeutic advantage in rescuing acute TD in stallions. However, further studies are essential to evaluate the benefits of this therapy on semen parameters and stallions with idiopathic TD.
Collapse
Affiliation(s)
- Patricia M Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Lorenzo G T M Segabinazzi
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies.
| | - Carlos E Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Frederico O Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Marco A Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| |
Collapse
|
10
|
Soleimani M, Mirshahi R, Cheraqpour K, Baharnoori SM, Massoumi H, Chow C, Shahjahan S, Momenaei B, Ashraf MJ, Koganti R, Ghassemi M, Anwar KN, Jalilian E, Djalilian AR. Intrastromal versus subconjunctival injection of mesenchymal stem/stromal cells for promoting corneal repair. Ocul Surf 2023; 30:187-195. [PMID: 37758115 PMCID: PMC10841412 DOI: 10.1016/j.jtos.2023.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Different approaches to delivery of mesenchymal stem/stromal cells (MSCs) for ameliorating corneal injuries have been investigated. This study was aimed to compare the efficacy of intrastromal and subconjunctival injection of human bone marrow-derived MSCs (hBM-MSCs) in a corneal epithelial injury model. METHODS Twenty-four C57BL/6J mice underwent total corneal and limbal epithelial debridement. Then, the mice were divided into three different groups: (1) intrastromal hBM-MSCs injection, (2) subconjunctival hBM-MSCs injection, and (3) injection of frozen medium as a control. Mice were monitored by slit lamp and underwent anterior segment optical coherence tomography (ASOCT). Following euthanasia, the corneas were further evaluated by histology and immunostaining. RESULTS hBM-MSC injection successfully healed epithelial defects regardless of the delivery route (P < 0.001). However, intrastromal injection was superior to subconjunctival injection in reducing defect area (P = 0.001). Intrastromal injection of hBM-MSCs also significantly reduced corneal opacity and neovascularization and improved ASOCT parameters compared to subconjunctival injection or no treatment (P < 0.001, P = 0.003, and P < 0.001, respectively). Although both of the treatment groups were positive for CK12 and had reduced levels of MUC5AC compared to the control, CK12 staining was stronger in the intrastromal group compared to the subconjunctival group. Also, persistency of MSCs was confirmed by in vivo (up to 2 weeks) and in vitro assessments (up to 4 weeks). CONCLUSIONS Although the injection of hBM-MSC using both intrastromal and subconjunctival methods improve wound healing and reduce neovascularization and opacity, the intrastromal approach is superior in terms of corneal healing.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Mirshahi
- Eye Research Center, The Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Collin Chow
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | | | - Bita Momenaei
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Kandeel M, Morsy MA, Alkhodair KM, Alhojaily S. Mesenchymal Stem Cell-Derived Extracellular Vesicles: An Emerging Diagnostic and Therapeutic Biomolecules for Neurodegenerative Disabilities. Biomolecules 2023; 13:1250. [PMID: 37627315 PMCID: PMC10452295 DOI: 10.3390/biom13081250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of versatile adult stem cells present in various organs. These cells give rise to extracellular vesicles (EVs) containing a diverse array of biologically active elements, making them a promising approach for therapeutics and diagnostics. This article examines the potential therapeutic applications of MSC-derived EVs in addressing neurodegenerative disorders such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Furthermore, the present state-of-the-art for MSC-EV-based therapy in AD, HD, PD, ALS, and MS is discussed. Significant progress has been made in understanding the etiology and potential treatments for a range of neurodegenerative diseases (NDs) over the last few decades. The contents of EVs are carried across cells for intercellular contact, which often results in the control of the recipient cell's homeostasis. Since EVs represent the therapeutically beneficial cargo of parent cells and are devoid of many ethical problems connected with cell-based treatments, they offer a viable cell-free therapy alternative for tissue regeneration and repair. Developing innovative EV-dependent medicines has proven difficult due to the lack of standardized procedures in EV extraction processes as well as their pharmacological characteristics and mechanisms of action. However, recent biotechnology and engineering research has greatly enhanced the content and applicability of MSC-EVs.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Khalid M. Alkhodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sameer Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
12
|
Echalar B, Dostalova D, Palacka K, Javorkova E, Hermankova B, Cervena T, Zajicova A, Holan V, Rossner P. Effects of antimicrobial metal nanoparticles on characteristics and function properties of mouse mesenchymal stem cells. Toxicol In Vitro 2023; 87:105536. [PMID: 36528116 DOI: 10.1016/j.tiv.2022.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles (NPs) have a wide use in various field of industry and in medicine, where they represent a promise for their antimicrobial effects. Simultaneous application of NPs and therapeutic stem cells can speed up tissue regeneration and improve healing process but there is a danger of negative impacts of NPs on stem cells. Therefore, we tested effects of four types of metal antimicrobial NPs on characteristics and function properties of mouse mesenchymal stem cells (MSCs) in vitro. All types of tested NPs, i.e. zinc oxide, silver, copper oxide and titanium dioxide, exerted negative effects on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors by MSCs. However, there were apparent differences in the impact of individual types of NPs on tested characteristics and function properties of MSCs. The results showed that individual types of NPs influence the activity of MSCs, and thus the use of metal NPs during tissue regeneration and in combination with stem cell therapy should be well considered.
Collapse
Affiliation(s)
- Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Dominika Dostalova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Eliska Javorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
13
|
Soleimani M, Masoumi A, Momenaei B, Cheraqpour K, Koganti R, Chang AY, Ghassemi M, Djalilian AR. Applications of mesenchymal stem cells in ocular surface diseases: sources and routes of delivery. Expert Opin Biol Ther 2023; 23:509-525. [PMID: 36719365 PMCID: PMC10313829 DOI: 10.1080/14712598.2023.2175605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are novel, promising agents for treating ocular surface disorders. MSCs can be isolated from several tissues and delivered by local or systemic routes. They produce several trophic factors and cytokines, which affect immunomodulatory, transdifferentiating, angiogenic, and pro-survival pathways in their local microenvironment via paracrine secretion. Moreover, they exert their therapeutic effect through a contact-dependent manner. AREAS COVERED In this review, we discuss the characteristics, sources, delivery methods, and applications of MSCs in ocular surface disorders. We also explore the potential application of MSCs to inhibit senescence at the ocular surface. EXPERT OPINION Therapeutic application of MSCs in ocular surface disorders are currently under investigation. One major research area is corneal epitheliopathies, including chemical or thermal burns, limbal stem cell deficiency, neurotrophic keratopathy, and infectious keratitis. MSCs can promote corneal epithelial repair and prevent visually devastating sequelae of non-healing wounds. However, the optimal dosages and delivery routes have yet to be determined and further clinical trials are needed to address these fundamental questions.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmoud Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Urrata V, Trapani M, Franza M, Moschella F, Di Stefano AB, Toia F. Analysis of MSCs' secretome and EVs cargo: Evaluation of functions and applications. Life Sci 2022; 308:120990. [PMID: 36155182 DOI: 10.1016/j.lfs.2022.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Trapani
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy
| | - Mara Franza
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
15
|
Galderisi U, Peluso G, Di Bernardo G. Clinical Trials Based on Mesenchymal Stromal Cells are Exponentially Increasing: Where are We in Recent Years? Stem Cell Rev Rep 2022; 18:23-36. [PMID: 34398443 PMCID: PMC8365566 DOI: 10.1007/s12015-021-10231-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs), present in the stromal component of several tissues, include multipotent stem cells, progenitors, and differentiated cells. MSCs have quickly attracted considerable attention in the clinical field for their regenerative properties and their ability to promote tissue homeostasis following injury. In recent years, MSCs mainly isolated from bone marrow, adipose tissue, and umbilical cord-have been utilized in hundreds of clinical trials for the treatment of various diseases. However, in addition to some successes, MSC-based therapies have experienced several failures. The number of new trials with MSCs is exponentially growing; still, complete results are only available for a limited number of trials. This dearth does not help prevent potentially inefficacious and unnecessary clinical trials. Results from unsuccessful studies may be useful in planning new therapeutic approaches to improve clinical outcomes. In order to bolster critical analysis of trial results, we reviewed the state of art of MSC clinical trials that have been published in the last six years. Most of the 416 published trials evaluated MSCs' effectiveness in treating cardiovascular diseases, GvHD, and brain and neurological disorders, although some trials sought to treat immune system diseases and wounds and to restore tissue. We also report some unorthodox clinical trials that include unusual studies.
Collapse
Affiliation(s)
- Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA
- Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey
| | | | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy.
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Yang G, Kim YN, Kim H, Lee BK. Effect of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells on Bisphosphonate-Related Osteonecrosis of the Jaw. Tissue Eng Regen Med 2021; 18:975-988. [PMID: 34347277 DOI: 10.1007/s13770-021-00372-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe sequela caused by bisphosphonates (BPs), which are widely used to treat osteoporosis or other malignancies. However, the mechanism underlying BRONJ remains unclear. Recently, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been studied for treatment of diverse diseases and injuries. This study aimed to investigate the therapeutic effects of hUC-MSCs in BRONJ. METHODS The therapeutic effects of hUC-MSCs were examined in rat bone marrow (rBM)-derived cells using cell viability, colony-forming, and real-time PCR assays and FACS for analyzing essential proinflammatory and bone regeneration markers in vitro. To demonstrate the in vivo therapeutic and adverse effects of transfused hUC-MSCs, micro-CT, H&E staining, IHC (Angiogenesis marker gene expression) staining, and parathyroid hormone (PTH)/calcium assay were conducted in a BRONJ-induced animal model. RESULTS BP-induced cytotoxicity and inflammation in rBM-derived cells decreased, after co-culture with hUC-MSCs. The expression levels of bone regeneration markers (RUNX2, OSX, and BMP-2) significantly increased in BP-treated rBM-derived cells, after co-culture with hUC-MSCs. The BP-induced abnormal shift in RANKL/OPG expression ratio in rBM-derived cells was normalized by hUC-MSCs. Consistent with these in vitro results, transfused hUC-MSCs markedly decreased BRONJ and significantly healed injured mucosa in the BRONJ-induced animal model. The animals exhibited serious destruction of the kidney structure and increases in serum PTH and calcium levels, which were significantly normalized by hUC-MSC transfusion. CONCLUSION hUC-MSCs exerted therapeutic effects on BRONJ in vitro and in vivo through their anti-cytotoxicity, anti-inflammatory activity and ability to recover bone regeneration.
Collapse
Affiliation(s)
- Gwanghyun Yang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Young-Nam Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Bu-Kyu Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea. .,Department of Oral and Maxillofacial Surgery, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells 2021; 10:cells10030588. [PMID: 33799995 PMCID: PMC8001847 DOI: 10.3390/cells10030588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Collapse
|