1
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
2
|
Hamel K, Robinson J, Rogers E, Lassiter H, Frazier T, Sanchez C. Quality Control in Human Adipose-Derived Stromal/Stem Cells and Tissue Engineering Fat Models for Aging Studies. Methods Mol Biol 2024. [PMID: 38997535 DOI: 10.1007/7651_2024_559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Adipose tissue is recognized not only as an endocrine organ but also as a reservoir for adipose-derived stromal/stem cells (ASCs). ASCs have stimulated the interest of both the scientific and medical communities due to their therapeutic potential and applications in tissue engineering and regenerative medicine. ASCs are leveraged for their multipotency and their paracrine function. ASC behavior is highly variable and donor dependent. Donor age, body mass index, disease status, sex, and ethnicity can lead to differential overall function and quality. The impact of donor age and passage on ASC behavior has been well documented, impacting cell proliferation and differentiation potential and thus must be taken into careful consideration when conducting in vitro studies. Pooling of ASCs from different donors reduces heterogeneity among individual donors and produces ASCs with a consistent differentiation and paracrine profiles, an advantage for studies in biological aging. This chapter provides a detailed overview for studies related to quality control for ASC pools considering biological and chronological aging in ASCs. There are hallmarks of biological aging and specific assays associated with the evaluation of each hallmark. Nevertheless, here we present the assays that provide a standardized characterization and qualification of donor pools for their regenerative potential, considering chronological and biological age of the pool. The assays included in this chapter are considered quality control standards to evaluate cell proliferation, differentiation, colony-forming units, and cellular senescence from different donor age and cell passage cohorts.
Collapse
Affiliation(s)
- Katie Hamel
- Obatala Sciences, Inc., New Orleans, LA, USA
| | | | - Emma Rogers
- Obatala Sciences, Inc., New Orleans, LA, USA
| | | | | | | |
Collapse
|
3
|
Liu X, Wang B. Adipose stem cell-derived exosomes promote wound healing by regulating the let-7i-5p/GAS7 axis. J Cosmet Dermatol 2024; 23:2279-2287. [PMID: 38429909 DOI: 10.1111/jocd.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Injury to skin tissue is devastating for human health, making it imperative to devise strategies for hastening wound healing. Normal wound healing is a complex process comprising overlapping steps, including hemostasis, inflammatory response, proliferation, and matrix remodeling. This study investigated the effects of adipose stem cell-derived exosomes (ADSC-exos) on wound healing and the underlying mechanisms. METHODS In vitro hydrogen peroxide (H2O2)-treated human keratinocyte (HaCaT) cell lines and in vivo animal wound models were established for this purpose. The cell migration was assessed using transwell and wound healing assays, while exosome biomarker expressions were studied using western blot. Moreover, adipose stem cells were identified using flow cytometry, alizarin red S and oil red O staining, and transmission electron microscopy. RESULTS Results indicated that H2O2 treatment inhibited the cell viability and migration of HaCaT cells while being promoted by ADSC-exos. Mechanistic investigations revealed that microRNA-let-7i-5p (let-7i-5p) in ADSC-exos was carried into the HaCaT cells, inhibiting the expression of growth arrest-specific-7 (GAS7). Rescue experiments further verified these results, which indicated that GAS7 overexpression reversed the effect of let-7i-5p on the viability and migration of HaCaT cells, suggesting ADSC-exos promoted wound healing via the let-7i-5p/GAS7 axis. CONCLUSION Adipose stem cell-derived-exos enhanced the viability and migration of HaCaT via carrying let-7i-5p and targeting GAS7, ultimately promoting wound healing in rats.
Collapse
Affiliation(s)
- Xiaosong Liu
- Department of Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Biao Wang
- Department of Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Wang M, Zhao J, Li J, Meng M, Zhu M. Insights into the role of adipose-derived stem cells and secretome: potential biology and clinical applications in hypertrophic scarring. Stem Cell Res Ther 2024; 15:137. [PMID: 38735979 PMCID: PMC11089711 DOI: 10.1186/s13287-024-03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.
Collapse
Affiliation(s)
- Menglin Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jianyu Zhao
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jiacheng Li
- Department of Plastic Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Meng
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
5
|
Hamel KM, Frazier TP, Williams C, Duplessis T, Rowan BG, Gimble JM, Sanchez CG. Adipose Tissue in Breast Cancer Microphysiological Models to Capture Human Diversity in Preclinical Models. Int J Mol Sci 2024; 25:2728. [PMID: 38473978 PMCID: PMC10931959 DOI: 10.3390/ijms25052728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.
Collapse
Affiliation(s)
- Katie M. Hamel
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Trivia P. Frazier
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Christopher Williams
- Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Jeffrey M. Gimble
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Cecilia G. Sanchez
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| |
Collapse
|
6
|
Zamboni WC, Charlab R, Burckart GJ, Stewart CF. Effect of Obesity on the Pharmacokinetics and Pharmacodynamics of Anticancer Agents. J Clin Pharmacol 2023; 63 Suppl 2:S85-S102. [PMID: 37942904 DOI: 10.1002/jcph.2326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/12/2023] [Indexed: 11/10/2023]
Abstract
An objective of the Precision Medicine Initiative, launched in 2015 by the US Food and Drug Administration and National Institutes of Health, is to optimize and individualize dosing of drugs, especially anticancer agents, with high pharmacokinetic and pharmacodynamic variability. The American Society of Clinical Oncology recently reported that 40% of obese patients receive insufficient chemotherapy doses and exposures, which may lead to reduced efficacy, and recommended pharmacokinetic studies to guide appropriate dosing in these patients. These issues will only increase in importance as the incidence of obesity in the population increases. This publication reviews the effects of obesity on (1) tumor biology, development of cancer, and antitumor response; (2) pharmacokinetics and pharmacodynamics of small-molecule anticancer drugs; and (3) pharmacokinetics and pharmacodynamics of complex anticancer drugs, such as carrier-mediated agents and biologics. These topics are not only important from a scientific research perspective but also from a drug development and regulator perspective. Thus, it is important to evaluate the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents in all categories of body habitus and especially in patients who are obese and morbidly obese. As the effects of obesity on the pharmacokinetics and pharmacodynamics of anticancer agents may be highly variable across drug types, the optimal dosing metric and algorithm for difference classes of drugs may be widely different. Thus, studies are needed to evaluate current and novel metrics and methods for measuring body habitus as related to optimizing the dose and reducing pharmacokinetic and pharmacodynamic variability of anticancer agents in patients who are obese and morbidly obese.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Caroline Institute of Nanomedicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rosane Charlab
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
7
|
Trevellin E, Bettini S, Pilatone A, Vettor R, Milan G. Obesity, the Adipose Organ and Cancer in Humans: Association or Causation? Biomedicines 2023; 11:biomedicines11051319. [PMID: 37238992 DOI: 10.3390/biomedicines11051319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Epidemiological observations, experimental studies and clinical data show that obesity is associated with a higher risk of developing different types of cancer; however, proof of a cause-effect relationship that meets the causality criteria is still lacking. Several data suggest that the adipose organ could be the protagonist in this crosstalk. In particular, the adipose tissue (AT) alterations occurring in obesity parallel some tumour behaviours, such as their theoretically unlimited expandability, infiltration capacity, angiogenesis regulation, local and systemic inflammation and changes to the immunometabolism and secretome. Moreover, AT and cancer share similar morpho-functional units which regulate tissue expansion: the adiponiche and tumour-niche, respectively. Through direct and indirect interactions involving different cellular types and molecular mechanisms, the obesity-altered adiponiche contributes to cancer development, progression, metastasis and chemoresistance. Moreover, modifications to the gut microbiome and circadian rhythm disruption also play important roles. Clinical studies clearly demonstrate that weight loss is associated with a decreased risk of developing obesity-related cancers, matching the reverse-causality criteria and providing a causality correlation between the two variables. Here, we provide an overview of the methodological, epidemiological and pathophysiological aspects, with a special focus on clinical implications for cancer risk and prognosis and potential therapeutic interventions.
Collapse
Affiliation(s)
- Elisabetta Trevellin
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Anna Pilatone
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Roberto Vettor
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Gabriella Milan
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| |
Collapse
|