1
|
Ridelfi M, Pierleoni G, Zucconi Galli Fonseca V, Batani G, Rappuoli R, Sala C. State of the Art and Emerging Technologies in Vaccine Design for Respiratory Pathogens. Semin Respir Crit Care Med 2025. [PMID: 39870103 DOI: 10.1055/a-2500-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
In this review, we present the efforts made so far in developing effective solutions to prevent infections caused by seven major respiratory pathogens: influenza virus, respiratory syncytial virus (RSV), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Bordetella pertussis, Streptococcus pneumoniae (pneumococcus), Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Advancements driven by the recent coronavirus disease 2019 (COVID-19) crisis have largely focused on viruses, but effective prophylactic solutions for bacterial pathogens are also needed, especially in light of the antimicrobial resistance (AMR) phenomenon. Here, we discuss various innovative key technologies that can help address this critical need, such as (a) the development of Lung-on-Chip ex vivo models to gain a better understanding of the pathogenesis process and the host-microbe interactions; (b) a more thorough investigation of the mechanisms behind mucosal immunity as the first line of defense against pathogens; (c) the identification of correlates of protection (CoPs) which, in conjunction with the Reverse Vaccinology 2.0 approach, can push a more rational and targeted design of vaccines. By focusing on these critical areas, we expect substantial progress in the development of new vaccines against respiratory bacterial pathogens, thereby enhancing global health protection in the framework of the increasingly concerning AMR emergence.
Collapse
Affiliation(s)
- Matteo Ridelfi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Giampiero Batani
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
2
|
Matheus GG, Chamoun MN, Khosrotehrani K, Sivakumaran Y, Wells TJ. Understanding the pathophysiology of Pseudomonas aeruginosa colonization as a guide for future treatment for chronic leg ulcers. BURNS & TRAUMA 2025; 13:tkae083. [PMID: 39830194 PMCID: PMC11741523 DOI: 10.1093/burnst/tkae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025]
Abstract
Chronic leg wounds represent a major burden of disease worldwide, costing health care systems billions of dollars each year. Aside from the financial implications, they also impose a significant physical and psychosocial burden on the patient, their relatives and/or carers, and the community. Whilst measures such as maintenance of wound hygiene, debridement, dressings and compression are the current standard of care, complete healing is not always achievable and ulcer recurrence is common. Thus, there is still a gap to breach in terms of understanding the intricate pathophysiology of chronic wounds and the role this plays on treatment and management. Pseudomonas aeruginosa has been linked to poor wound healing, with the pathogen being frequently isolated from chronic leg ulcers. Characterized by its multi-drug resistance, targeting P. aeruginosa requires the development of novel therapeutic options. Thus, the aim of this literature review is to describe the pathophysiology of P. aeruginosa in chronic leg ulcers and discuss novel treatment strategies. Here, we describe the key molecular mechanisms driving the observed clinical effect of P. aeruginosa on wounds and discuss novel strategies of molecular targeting of this common bacteria, establishing new approaches that could benefit patients with chronic hard to heal wounds.
Collapse
Affiliation(s)
- Gabriela Gonzalez Matheus
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | | | - Kiarash Khosrotehrani
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Yogeesan Sivakumaran
- Department of Vascular Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Moustafa DA, Lou E, Schafer-Kestenman ME, Mateu-Borrás M, Doménech-Sanchez A, Albertí S, Goldberg JB. Pseudomonas aeruginosa elongation factor-Tu (EF-Tu) is an immunogenic protective protein antigen. Vaccine 2024; 42:126476. [PMID: 39476472 PMCID: PMC11645190 DOI: 10.1016/j.vaccine.2024.126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that infects immunocompromised individuals, especially in the hospital setting. This bacterium is an important pathogen in people with weakened immune systems, injuries, and other underlying physiologic dysfunctions. P. aeruginosa is responsible for up to 20 % of all hospital-acquired pneumonias. It is one of the major causes of nosocomial infections and has been noted to be one of the most common bacteria co-infecting patients with COVID-19 or causing super-infections following COVID-19 infections. Despite improvements in antimicrobial therapy and hospital care, P. aeruginosa bacteremia and pneumonia remain fatal in about 30 % of cases. P. aeruginosa is also the leading cause of chronic life-threatening lung infections in cystic fibrosis patients. This bacterium is naturally antibiotic resistant, and infections are notoriously difficult to treat once established, with no vaccine available. We have previously shown that elongation factor-Tu (EF-Tu), a protein best known for its role in protein synthesis, is surface exposed on P. aeruginosa. As this protein is highly expressed, evolutionally conserved, and essential, we hypothesized it would make a good vaccine target. In this study, we found that P. aeruginosa EF-Tu is immunogenic in people, and that mice can develop an immune response following immunization with recombinant P. aeruginosa EF-Tu. Furthermore, immunized mice were protected from subsequent P. aeruginosa pneumonia and transfer of this vaccine antisera to naïve mice resulted in decreased colonization. Altogether these findings support the consideration of EF-Tu as a new vaccine candidate against P. aeruginosa.
Collapse
Affiliation(s)
- Dina A Moustafa
- Emory-Children's Cystic Fibrosis Center, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emma Lou
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Morgan E Schafer-Kestenman
- Emory-Children's Cystic Fibrosis Center, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Margalida Mateu-Borrás
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Antonio Doménech-Sanchez
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain
| | - Joanna B Goldberg
- Emory-Children's Cystic Fibrosis Center, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Peng X, Luo Y, Yang L, Yang YY, Yuan P, Chen X, Tian G, Ding X. A multiantigenic antibacterial nanovaccine utilizing hybrid membrane vesicles for combating Pseudomonas aeruginosa infections. J Extracell Vesicles 2024; 13:e12524. [PMID: 39400457 PMCID: PMC11472236 DOI: 10.1002/jev2.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P. aeruginosa infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by P. aeruginosa, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Xinran Peng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenPR China
| | - Yuanjing Luo
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenPR China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenPR China
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhenPR China
| | - Xinhai Chen
- Institute of Infectious Diseases, Shenzhen Bay LaboratoryShenzhenChina
| | - Guo‐Bao Tian
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Diseases Control (Sun Yat‐sen University), Ministry of EducationGuangzhouChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Xin Ding
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
- State Key Laboratory of Anti‐Infective Drug Discovery and Development; School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Tian G, Hu J, Qin C, Li L, Ning Y, Zhu S, Xie S, Zou X, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of an Aminoglycoside Trisaccharide Repeating Unit of Pseudomonas aeruginosa Serotype O5 O-Antigen Containing a Rare Dimeric-Man pN3NA. J Am Chem Soc 2024; 146:18427-18439. [PMID: 38946080 DOI: 10.1021/jacs.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-β-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The β-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Yunzhan Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Suqing Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
6
|
Ammazzalorso A, Granese A, De Filippis B. Recent trends and challenges to overcome Pseudomonas aeruginosa infections. Expert Opin Ther Pat 2024; 34:493-509. [PMID: 38683024 DOI: 10.1080/13543776.2024.2348602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Pseudomonas aeruginosa (PA) is a Gram-negative bacterium that can cause a wide range of severe infections in immunocompromised patients. The most difficult challenge is due to its ability to rapidly develop multi drug-resistance. New strategies are urgently required to improve the outcome of patients with PA infections. The present patent review highlights the new molecules acting on different targets involved in the antibiotic resistance. AREA COVERED This review offers an insight into new potential PA treatment disclosed in patent literature. From a broad search of documents claiming new PA inhibitors, we selected and summarized molecules that showed in vitro and in vivo activity against PA spp. in the period 2020 and 2023. We collected the search results basing on the targets explored. EXPERT OPINION This review examined the main patented compounds published in the last three years, with regard to the structural novelty and the identification of innovative targets. The main areas of antibiotic resistance have been explored. The compounds are structurally unrelated to earlier antibiotics, characterized by a medium-high molecular weight and the presence of heterocycle rings. Peptides and antibodies have also been reported as potential alternatives to chemical treatment, hereby expanding the therapeutic possibilities in this field.
Collapse
Affiliation(s)
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
7
|
Howlader DR, Mandal RS, Lu T, Maiti S, Dietz ZK, Das S, Whittier SK, Nagel AC, Biswas S, Varisco DJ, Gardner FM, Ernst RK, Picking WD, Picking WL. Development of a nano-emulsion based multivalent protein subunit vaccine against Pseudomonas aeruginosa. Front Immunol 2024; 15:1372349. [PMID: 38698863 PMCID: PMC11063228 DOI: 10.3389/fimmu.2024.1372349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Pseudomonas aeruginosa (Pa) is an opportunistic bacterial pathogen responsible for severe hospital acquired infections in immunocompromised and elderly individuals. Emergence of increasingly drug resistant strains and the absence of a broad-spectrum prophylactic vaccine against both T3SA+ (type III secretion apparatus) and ExlA+/T3SA- Pa strains worsen the situation in a post-pandemic world. Thus, we formulated a candidate subunit vaccine (called ExlA/L-PaF/BECC/ME) against both Pa types. This bivalent vaccine was generated by combining the C-terminal active moiety of exolysin A (ExlA) produced by non-T3SA Pa strains with our T3SA-based vaccine platform, L-PaF, in an oil-in-water emulsion. The ExlA/L-PaF in ME (MedImmune emulsion) was then mixed with BECC438b, an engineered lipid A analogue and a TLR4 agonist. This formulation was administered intranasally (IN) to young and elderly mice to determine its potency across a diverse age-range. The elderly mice were used to mimic the infection seen in elderly humans, who are more susceptible to serious Pa disease compared to their young adult counterparts. After Pa infection, mice immunized with ExlA/L-PaF/BECC/ME displayed a T cell-mediated adaptive response while PBS-vaccinated mice experienced a rapid onset inflammatory response. Important genes and pathways were observed, which give rise to an anti-Pa immune response. Thus, this vaccine has the potential to protect aged individuals in our population from serious Pa infection.
Collapse
Affiliation(s)
- Debaki R. Howlader
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Rahul Shubhra Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ti Lu
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Suhrid Maiti
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Zackary K. Dietz
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Sean K. Whittier
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Satabdi Biswas
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Francesca M. Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L. Picking
- Department of Veterinary Pathobiology, Center for Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Bond Life Science Center, University of Missouri, Columbia, MO, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Hafion, Inc., Lawrence, KS, United States
| |
Collapse
|
8
|
Zhang Y, Tian L, Zhao X, Jiang X, Qin J, Wang Y, Yu X. Enhanced protective efficacy of an OprF/PcrV bivalent DNA vaccine against Pseudomonas aeruginosa using a hydrogel delivery system. Biomed Pharmacother 2024; 172:116264. [PMID: 38359491 DOI: 10.1016/j.biopha.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
Pseudomonas aeruginosa (PA) is one of the leading pathogens responsible for hospital-acquired infections. With the increasing antibiotic resistance of PA, clinical treatment has become increasingly challenging. DNA vaccines represent a promising approach for combating PA infection. However, the immune response induced by a single antigen is limited, and combination vaccines hold greater therapeutic potential. The highly conserved OprF and PcrV genes are attractive candidate antigens for vaccine development, but the poor delivery of such vaccines has limited their clinical application. In this study, we constructed an OprF/PcrV bivalent DNA vaccine, and a polyaspartamide/polyethylene glycol di-aldehyde (PSIH/PEG DA) hydrogel was formulated to improve DNA delivery. The OprF/PcrV DNA vaccine formulated with the PSIH/PEG DA hydrogel was carefully characterized in vitro and in vivo and showed suitable compatibility. The PSIH/PEG DA hydrogel formulation induced a mixed Th1/Th2/Th17 immune response in mice, leading to a significant increase in antibody titers, lymphocyte proliferation rates, and cytokine levels compared to those in mice treated with single or combined vaccines. The PSIH/PEG DA hydrogel delivery system significantly enhanced the immune protection of the DNA vaccine in a murine pneumonia model, as revealed by the reduced bacterial burden and inflammation in the mouse lungs and increased survival rate. In conclusion, the PSIH/PEG DA hydrogel delivery system can further enhance the immune efficacy of the combination OprF/PcrV DNA vaccine. This research provides a novel optimized strategy for the prevention and treatment of PA infection using DNA vaccines.
Collapse
Affiliation(s)
- Yating Zhang
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linxia Tian
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xuan Zhao
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - XiaoFeng Jiang
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianglei Qin
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071002, China
| | - Xian Yu
- Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
9
|
Lawandi A, Kadri SS, Powers JH. Focusing on antimicrobial resistant infections -are we missing the forest for the trees and the patients for pathogens? FRONTIERS IN ANTIBIOTICS 2023; 2:1329081. [PMID: 39816657 PMCID: PMC11731989 DOI: 10.3389/frabi.2023.1329081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2025]
Abstract
Antimicrobial resistance (AMR) is a challenge because it is associated with worse patient outcomes. To solve the problem will take development of interventions and policies which improve patient outcomes by prolonging survival, improving patient symptoms, function and quality of life. Logically, we should look to focusing resources in areas that would have the greatest impact on public health. AMR takes the approach of focusing on individual pathogens and "pathogen-focused" development. However, evaluating overall infections and their impact on patient outcomes reveals that 17 of 18 infection deaths are associated with susceptible pathogens. Here we discuss recentering on patients and patient outcomes instead of pathogens, and propose six suggestions on how a patient focus impacts areas and incentives for clinical research.
Collapse
Affiliation(s)
- Alexander Lawandi
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
- Division of Infectious Diseases, Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Division of Medical Microbiology, Department of Laboratory Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Critical Care Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Sameer S. Kadri
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
- Critical Care Medicine Branch, National Heart, Lung, Blood Institute, Bethesda, MD, United States
| | - John H. Powers
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
10
|
Moustafa DA, DiGiandomenico A, Raghuram V, Schulman M, Scarff JM, Davis MR, Varga JJ, Dean CR, Goldberg JB. Efficacy of a Pseudomonas aeruginosa serogroup O9 vaccine. Infect Immun 2023; 91:e0024723. [PMID: 37991349 PMCID: PMC10715167 DOI: 10.1128/iai.00247-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
There are currently no approved vaccines against the opportunistic pathogen Pseudomonas aeruginosa. Among vaccine targets, the lipopolysaccharide (LPS) O antigen of P. aeruginosa is the most immunodominant protective candidate. There are 20 different O antigens composed of different repeat sugar structures conferring serogroup specificity, and 10 are found most frequently in infection. Thus, one approach to combat infection by P. aeruginosa could be to generate immunity with a vaccine cocktail that includes all these serogroups. Serogroup O9 is 1 of the 10 serogroups commonly found in infection, but it has never been developed into a vaccine, due in part to the acid-labile nature of the O9 polysaccharide. Our laboratory has previously shown that intranasal administration of an attenuated Salmonella strain expressing the P. aeruginosa serogroup O11 LPS O antigen was effective in clearing bacteria and preventing mortality in mice following intranasal challenge with serogroup O11 P. aeruginosa. Consequently, we set out to develop a P. aeruginosa serogroup O9 vaccine using a similar approach. Here, we show that Salmonella expressing serogroup O9 triggered an antibody-mediated immune response following intranasal administration to mice and that it conferred protection from P. aeruginosa serogroup O9 in a murine model of acute pneumonia.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Antonio DiGiandomenico
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Marc Schulman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Jennifer M. Scarff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael R. Davis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - John J. Varga
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Charles R. Dean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Jazi MA, Chirani AS, Hajikhani B, Ebrahimipour G, Goudarzi M. Unraveling the immunopotentiation of P. aeruginosa PAPI-1 encoded pilin: From immunoinformatics survey to active immunization. Int Immunopharmacol 2023; 125:111197. [PMID: 37951200 DOI: 10.1016/j.intimp.2023.111197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
For protection against Pseudomonas aeruginosa strains, a number of vaccine candidates have been introduced thus far. However, despite significant attempts in recent years, there are currently no effective immunogenic Bacteria components against this pathogen on the market. P. aeruginosa encoding a number of different virulence characteristics, as well as the rapid growth in multiple drug-resistant forms, has raised numerous health issues throughout the world. This pathogen expresses three different subtypes of T4P, including IVa, IVb, and Tad which are involved in various cellular processes. Highly virulent strains of P. aeruginosa can encode well-conserved PAPI-1 associated PilS2 pilus. Designing an efficient pili-based immunotherapy approach targeting P. aeruginosa pilus has remained controversial due to the variability heterogeneousness and hidden well-preserved binding site of T4aP and no approved human study is commercially based on IVa pilin. In this investigation, for the first time, through analytical immunoinformatics, we designed an effective chimeric PilS2 immunogen against numerous clinically important P. aeruginosa strains. Through active immunization against the extremely conserved region of the chimeric PilS2 pilin, we showed that PilS2 chimeric pilin whether administered alone or formulated with alum as an adjuvant could substantially stimulate humoral immunological responses in BALB/c mice. Based on these findings, we conclude that PilS2 pilin is therapeutically effective against a variety of highly virulent strains of P. aeruginosa and can act as a new immunogen for more research towards the creation of efficient immunotherapy techniques against the P. aeruginosa as a dexterous pathogen.
Collapse
Affiliation(s)
- Mojgan Arefian Jazi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Sartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, et alSartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, Foianini E, Fry DE, Garcia AF, Gerardi C, Ghannam W, Giamarellou H, Glushkova N, Gkiokas G, Goff DA, Gomi H, Gottfredsson M, Griffiths EA, Guerra Gronerth RI, Guirao X, Gupta YK, Halle-Ekane G, Hansen S, Haque M, Hardcastle TC, Hayman DTS, Hecker A, Hell M, Ho VP, Hodonou AM, Isik A, Islam S, Itani KMF, Jaidane N, Jammer I, Jenkins DR, Kamara IF, Kanj SS, Jumbam D, Keikha M, Khanna AK, Khanna S, Kapoor G, Kapoor G, Kariuki S, Khamis F, Khokha V, Kiggundu R, Kiguba R, Kim HB, Kim PK, Kirkpatrick AW, Kluger Y, Ko WC, Kok KYY, Kotecha V, Kouma I, Kovacevic B, Krasniqi J, Krutova M, Kryvoruchko I, Kullar R, Labi KA, Labricciosa FM, Lakoh S, Lakatos B, Lansang MAD, Laxminarayan R, Lee YR, Leone M, Leppaniemi A, Hara GL, Litvin A, Lohsiriwat V, Machain GM, Mahomoodally F, Maier RV, Majumder MAA, Malama S, Manasa J, Manchanda V, Manzano-Nunez R, Martínez-Martínez L, Martin-Loeches I, Marwah S, Maseda E, Mathewos M, Maves RC, McNamara D, Memish Z, Mertz D, Mishra SK, Montravers P, Moro ML, Mossialos E, Motta F, Mudenda S, Mugabi P, Mugisha MJM, Mylonakis E, Napolitano LM, Nathwani D, Nkamba L, Nsutebu EF, O’Connor DB, Ogunsola S, Jensen PØ, Ordoñez JM, Ordoñez CA, Ottolino P, Ouedraogo AS, Paiva JA, Palmieri M, Pan A, Pant N, Panyko A, Paolillo C, Patel J, Pea F, Petrone P, Petrosillo N, Pintar T, Plaudis H, Podda M, Ponce-de-Leon A, Powell SL, Puello-Guerrero A, Pulcini C, Rasa K, Regimbeau JM, Rello J, Retamozo-Palacios MR, Reynolds-Campbell G, Ribeiro J, Rickard J, Rocha-Pereira N, Rosenthal VD, Rossolini GM, Rwegerera GM, Rwigamba M, Sabbatucci M, Saladžinskas Ž, Salama RE, Sali T, Salile SS, Sall I, Kafil HS, Sakakushev BE, Sawyer RG, Scatizzi M, Seni J, Septimus EJ, Sganga G, Shabanzadeh DM, Shelat VG, Shibabaw A, Somville F, Souf S, Stefani S, Tacconelli E, Tan BK, Tattevin P, Rodriguez-Taveras C, Telles JP, Téllez-Almenares O, Tessier J, Thang NT, Timmermann C, Timsit JF, Tochie JN, Tolonen M, Trueba G, Tsioutis C, Tumietto F, Tuon FF, Ulrych J, Uranues S, van Dongen M, van Goor H, Velmahos GC, Vereczkei A, Viaggi B, Viale P, Vila J, Voss A, Vraneš J, Watkins RR, Wanjiru-Korir N, Waworuntu O, Wechsler-Fördös A, Yadgarova K, Yahaya M, Yahya AI, Xiao Y, Zakaria AD, Zakrison TL, Zamora Mesia V, Siquini W, Darzi A, Pagani L, Catena F. Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action. World J Emerg Surg 2023; 18:50. [PMID: 37845673 PMCID: PMC10580644 DOI: 10.1186/s13017-023-00518-3] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
Collapse
|
13
|
Fereshteh S, Haririzadeh Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F. Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology. PLoS One 2023; 18:e0289609. [PMID: 37535697 PMCID: PMC10399887 DOI: 10.1371/journal.pone.0289609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.
Collapse
Affiliation(s)
| | | | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Moustafa DA, DiGiandomenico A, Raghuram V, Schulman M, Scarff JM, Davis, MR, Varga JJ, Dean CR, Goldberg JB. Efficacy of a Pseudomonas aeruginosa Serogroup O9 Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548830. [PMID: 37502855 PMCID: PMC10369961 DOI: 10.1101/2023.07.13.548830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There are currently no approved vaccines against the opportunistic pathogen Pseudomonas aeruginosa. Among vaccine targets, the lipopolysaccharide (LPS) O antigen of P. aeruginosa is the most immunodominant protective candidate. There are twenty different O antigens composed of different repeat sugars structures conferring serogroup specificity, and ten are found most frequently in infection. Thus, one approach to combat infection by P. aeruginosa could be to generate immunity with a vaccine cocktail that includes all these serogroups. Serogroup O9 is one of the ten serogroups commonly found in infection, but it has never been developed into a vaccine, likely due, in part, to the acid labile nature of the O9 polysaccharide. Our laboratory has previously shown that intranasal administration of an attenuated Salmonella strain expressing the P. aeruginosa serogroup O11 LPS O antigen was effective in clearing and preventing mortality in mice following intranasal challenge with serogroup O11 P. aeruginosa. Consequently, we set out to develop a P. aeruginosa serogroup O9 vaccine using a similar approach. Here we show that Salmonella expressing serogroup O9 triggered an antibody-mediated immune response following intranasal administration to mice and that it conferred protection from P. aeruginosa serogroup O9 in a murine model of acute pneumonia.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Antonio DiGiandomenico
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Marc Schulman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Jennifer M. Scarff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Michael R. Davis,
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - John J. Varga
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Charles R. Dean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
15
|
Jiang B, Luo Y, Yan N, Shen Z, Li W, Hou C, Xiao L, Ma C, Zhang L, Chen Y, Cheng X, Lian M, Ji C, Zhu Z, Wang Z. An X-ray inactivated vaccine against Pseudomonas aeruginosa Keratitis in mice. Vaccine 2023:S0264-410X(23)00627-8. [PMID: 37353454 DOI: 10.1016/j.vaccine.2023.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide. The rising incidence of multidrug resistance of P. aeruginosa precludes treatment with conventional antibiotics. Herein, we evaluated the protective efficiency and explored the possible underlying mechanism of an X-ray inactivated vaccine (XPa) using a murine P. aeruginosa keratitis model. Mice immunized with XPa exhibit reduced corneal bacterial loads and pathology scores. XPa vaccination induced corneal macrophage polarization toward M2, averting an excessive inflammatory reaction. Furthermore, histological observations indicated that XPa vaccination suppressed corneal fibroblast activation and prevented irreversible visual impairment. The potency of XPa against keratitis highlights its potential utility as an effective and promising vaccine candidate for P. aeruginosa.
Collapse
Affiliation(s)
- Boguang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yingjie Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixue Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Wenfang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chen Hou
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cuicui Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xingjun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Mao Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Chengjie Ji
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu 641400, China
| | - Ziyi Zhu
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Chengdu 641400, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
16
|
Horspool AM, Sen-Kilic E, Malkowski AC, Breslow SL, Mateu-Borras M, Hudson MS, Nunley MA, Elliott S, Ray K, Snyder GA, Miller SJ, Kang J, Blackwood CB, Weaver KL, Witt WT, Huckaby AB, Pyles GM, Clark T, Al Qatarneh S, Lewis GK, Damron FH, Barbier M. Development of an anti- Pseudomonas aeruginosa therapeutic monoclonal antibody WVDC-5244. Front Cell Infect Microbiol 2023; 13:1117844. [PMID: 37124031 PMCID: PMC10140502 DOI: 10.3389/fcimb.2023.1117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant Pseudomonas aeruginosa causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant P. aeruginosa infections continues to decline. Therefore, discovery and development of alternative treatments are necessary. Here, we present pre-clinical efficacy studies on an anti-P. aeruginosa therapeutic monoclonal antibody. Using hybridoma technology, we generated a monoclonal antibody and characterized its binding to P. aeruginosa in vitro using ELISA and fluorescence correlation spectroscopy. We also characterized its function in vitro and in vivo against P. aeruginosa. The anti-P. aeruginosa antibody (WVDC-5244) bound P. aeruginosa clinical strains of various serotypes in vitro, even in the presence of alginate exopolysaccharide. In addition, WVDC-5244 induced opsonophagocytic killing of P. aeruginosa in vitro in J774.1 murine macrophage, and complement-mediated killing. In a mouse model of acute pneumonia, prophylactic administration of WVDC-5244 resulted in an improvement of clinical disease manifestations and reduction of P. aeruginosa burden in the respiratory tract compared to the control groups. This study provides promising pre-clinical efficacy data on a new monoclonal antibody with therapeutic potential for P. aeruginosa infections.
Collapse
Affiliation(s)
- Alexander M. Horspool
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Aaron C. Malkowski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Scott L. Breslow
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Margalida Mateu-Borras
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S. Hudson
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mason A. Nunley
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sean Elliott
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Krishanu Ray
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Greg A. Snyder
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - Sarah Jo Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Catherine B. Blackwood
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Kelly L. Weaver
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Tammy Clark
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - Saif Al Qatarneh
- Department of Pediatrics, Division of Cystic Fibrosis, West Virginia University, Morgantown, WV, United States
| | - George K. Lewis
- University of Maryland, Baltimore School of Medicine, Division of Vaccine Research, Institute of Human Virology, Baltimore, MD, United States
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
17
|
Howlader DR, Das S, Lu T, Mandal RS, Hu G, Varisco DJ, Dietz ZK, Ratnakaram SSK, Ernst RK, Picking WD, Picking WL. A protein subunit vaccine elicits a balanced immune response that protects against Pseudomonas pulmonary infection. NPJ Vaccines 2023; 8:37. [PMID: 36918600 PMCID: PMC10012293 DOI: 10.1038/s41541-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/02/2023] [Indexed: 03/15/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (Pa) causes severe nosocomial infections, especially in immunocompromised individuals and the elderly. Increasing drug resistance, the absence of a licensed vaccine and increased hospitalizations due to SARS-CoV-2 have made Pa a major healthcare risk. To address this, we formulated a candidate subunit vaccine against Pa (L-PaF), by fusing the type III secretion system tip and translocator proteins with LTA1 in an oil-in-water emulsion (ME). This was mixed with the TLR4 agonist (BECC438b). Lung mRNA sequencing showed that the formulation activates genes from multiple immunological pathways eliciting a protective Th1-Th17 response following IN immunization. Following infection, however, the immunized mice showed an adaptive response while the PBS-vaccinated mice experienced rapid onset of an inflammatory response. The latter displayed a hypoxic lung environment with high bacterial burden. Finally, the importance of IL-17 and immunoglobulins were demonstrated using knockout mice. These findings suggest a need for a balanced humoral and cellular response to prevent the onset of Pa infection and that our formulation could elicit such a response.
Collapse
Affiliation(s)
- Debaki R Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Sayan Das
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Rahul Shubhra Mandal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - David J Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - Zackary K Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | | | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, 21201, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA.
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
18
|
Korpi F, Irajian G, Forouhi F, Mohammadian T. A chimeric vaccine targeting Pseudomonas aeruginosa virulence factors protects mice against lethal infection. Microb Pathog 2023; 178:106033. [PMID: 36813005 DOI: 10.1016/j.micpath.2023.106033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Pseudomonas aeruginosa is an important and hazardous nosocomial pathogen in respiratory tract infections and rapidly achieves antibiotic resistance, so it is necessary to develop an effective vaccine to combat the infection. The Type III secretion system (T3SS) protein P. aeruginosa V-antigen (PcrV), outer membrane protein F (OprF), and two kinds of flagellins (FlaA and FlaB) all play important roles in the pathogenesis of P. aeruginosa lung infection and its spread into deeper tissues. In a mouse acute pneumonia model, the protective effects of a chimer vaccine including PcrV, FlaA, FlaB, and OprF (PABF) protein were investigated. PABF immunization prompted robust opsonophagocytic titer of IgG antibodies and decreased bacterial burden, and improved survival afterward intranasal challenge with ten times 50% lethal doses (LD50) of P. aeruginosa strains, indicating its broad-spectrum immunity. Moreover, these findings showed a promise chimeric vaccine candidate to treat and control P. aeruginosa infections.
Collapse
Affiliation(s)
- Fatemeh Korpi
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| | - Gholamreza Irajian
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Forouhi
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| | - Taher Mohammadian
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| |
Collapse
|
19
|
Beg AZ, Rashid F, Talat A, Haseen MA, Raza N, Akhtar K, Dueholm MKD, Khan AU. Functional Amyloids in Pseudomonas aeruginosa Are Essential for the Proteome Modulation That Leads to Pathoadaptation in Pulmonary Niches. Microbiol Spectr 2023; 11:e0307122. [PMID: 36475836 PMCID: PMC9927170 DOI: 10.1128/spectrum.03071-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Persistence and survival of Pseudomonas aeruginosa in chronic lung infections is closely linked to the biofilm lifestyle. One biofilm component, functional amyloid of P. aeruginosa (Fap), imparts structural adaptations for biofilms; however, the role of Fap in pathogenesis is still unclear. Conservation of the fap operon encoding Fap and P. aeruginosa being an opportunistic pathogen of lung infections prompted us to explore its role in lung infection. We found that Fap is essential for establishment of lung infection in rats, as its genetic exclusion led to mild focal infection with quick resolution. Moreover, without an underlying cystic fibrosis (CF) genetic disorder, overexpression of Fap reproduced the CF pathotype. The molecular basis of Fap-mediated pulmonary adaptation was explored through surface-associated proteomics in vitro. Differential proteomics positively associated Fap expression with activation of known proteins related to pulmonary pathoadaptation, attachment, and biofilm fitness. The aggregative bacterial phenotype in the pulmonary niche correlated with Fap-influenced activation of biofilm sustainability regulators and stress response regulators that favored persistence-mediated establishment of pulmonary infection. Fap overexpression upregulated proteins that are abundant in the proteome of P. aeruginosa in colonizing CF lungs. Planktonic lifestyle, defects in anaerobic pathway, and neutrophilic evasion were key factors in the absence of Fap that impaired establishment of infection. We concluded that Fap is essential for cellular equilibration to establish pulmonary infection. Amyloid-induced bacterial aggregation subverted the immune response, leading to chronic infection by collaterally damaging tissue and reinforcing bacterial persistence. IMPORTANCE Pseudomonas aeruginosa is inextricably linked with chronic lung infections. In this study, the well-conserved Fap operon was found to be essential for pathoadaptation in pulmonary infection in a rat lung model. Moreover, the presence of Fap increased pathogenesis and biofilm sustainability by modulating bacterial physiology. Hence, a pathoadaptive role of Fap in pulmonary infections can be exploited for clinical application by targeting amyloids. Furthermore, genetic conservation and extracellular exposure of Fap make it a commendable target for such interventions.
Collapse
Affiliation(s)
- Ayesha Z. Beg
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Absar Talat
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Azam Haseen
- Department of Cardiothoracic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nadeem Raza
- Department of Anaesthesiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Kafil Akhtar
- Pathology Department, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Asad U. Khan
- Medical Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
20
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
21
|
Intranasal Vaccination with rePcrV Protects against Pseudomonas aeruginosa and Generates Lung Tissue-Resident Memory T Cells. J Immunol Res 2022; 2022:1403788. [DOI: 10.1155/2022/1403788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are immune sentinels that bear a key role in the local immune system and rapidly respond to infection. Our previous studies showed that mucosal immunization via intranasal pathways was more effective than intramuscular route. However, the mechanism of enhanced protective immunity remains unclear. Here, we formulated a Pseudomonas aeruginosa vaccine composed of type III secretion protein PcrV from P. aeruginosa and curdlan adjuvant and then administered by the intranasal route. Flow cytometry and immunofluorescence staining showed that the ratio of CD44+CD62L-CD69+CD4+ TRM cells induced by this vaccine was significantly increased, and IL-17A production was notably enhanced. Further analysis revealed that vaccinated mice can protect against the P. aeruginosa challenge even after administration with FTY720 treatment. What is more, our results showed that CD4+ TRM might be involved in the recruitment of neutrophils and provided partial protection against Pseudomonas aeruginosa. Taken together, these data demonstrated that CD4+ TRM cells were elicited in lung tissues after immunization with rePcrV and contributed to protective immunity. Furthermore, it provided novel strategies for the development of vaccines for P. aeruginosa and other respiratory-targeted vaccines.
Collapse
|
22
|
Multicomponent Pseudomonas aeruginosa Vaccines Eliciting Th17 Cells and Functional Antibody Responses Confer Enhanced Protection against Experimental Acute Pneumonia in Mice. Infect Immun 2022; 90:e0020322. [PMID: 36069593 PMCID: PMC9584304 DOI: 10.1128/iai.00203-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative pathogen Pseudomonas aeruginosa is a common cause of pneumonia in hospitalized patients. Its increasing antibiotic resistance and widespread occurrence present a pressing need for vaccines. We previously showed that a P. aeruginosa type III secretion system protein, PopB, elicits a strong Th17 response in mice after intranasal (IN) immunization and confers antibody-independent protection against pneumonia in mice. In the current study, we evaluated the immunogenicity and protective efficacy in mice of the combination of PopB (purified with its chaperone protein PcrH) and OprF/I, an outer membrane hybrid fusion protein, compared with immunization with the proteins individually either by the intranasal (IN) or subcutaneous (SC) routes. Our results show that after vaccination, a Th17 recall response from splenocytes was detected only in mice vaccinated with PopB/PcrH, either alone or in combination with OprF/I. Mice immunized with the combination of PopB/PcrH and OprF/I had enhanced protection in an acute lethal P. aeruginosa pneumonia model, regardless of vaccine route, compared with mice vaccinated with either alone or adjuvant control. Immunization generated IgG titers against the vaccine proteins and whole P. aeruginosa cells. Interestingly, none of these antisera had opsonophagocytic killing activity, but antisera from mice immunized with vaccines containing OprF/I, had the ability to block IFN-γ binding to OprF/I, a known virulence mechanism. Hence, vaccines combining PopB/PcrH with OprF/I that elicit functional antibodies lead to a broadly and potently protective vaccine against P. aeruginosa pulmonary infections.
Collapse
|
23
|
Reig S, Le Gouellec A, Bleves S. What Is New in the Anti–Pseudomonas aeruginosa Clinical Development Pipeline Since the 2017 WHO Alert? Front Cell Infect Microbiol 2022; 12:909731. [PMID: 35880080 PMCID: PMC9308001 DOI: 10.3389/fcimb.2022.909731] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are considered “critical-priority” bacteria by the World Health Organization (WHO) since 2017 taking into account criteria such as patient mortality, global burden disease, and worldwide trend of multi-drug resistance (MDR). Indeed P. aeruginosa can be particularly difficult to eliminate from patients due to its combinatory antibiotic resistance, multifactorial virulence, and ability to over-adapt in a dynamic way. Research is active, but the course to a validated efficacy of a new treatment is still long and uncertain. What is new in the anti–P. aeruginosa clinical development pipeline since the 2017 WHO alert? This review focuses on new solutions for P. aeruginosa infections that are in active clinical development, i.e., currently being tested in humans and may be approved for patients in the coming years. Among 18 drugs of interest in December 2021 anti–P. aeruginosa development pipeline described here, only one new combination of β-lactam/β-lactamase inhibitor is in phase III trial. Derivatives of existing antibiotics considered as “traditional agents” are over-represented. Diverse “non-traditional agents” including bacteriophages, iron mimetic/chelator, and anti-virulence factors are significantly represented but unfortunately still in early clinical stages. Despite decade of efforts, there is no vaccine currently in clinical development to prevent P. aeruginosa infections. Studying pipeline anti–P. aeruginosa since 2017 up to now shows how to provide a new treatment for patients can be a difficult task. Given the process duration, the clinical pipeline remains unsatisfactory leading best case to the approval of new antibacterial drugs that treat CRPA in several years. Beyond investment needed to build a robust pipeline, the Community needs to reinvent medicine with new strategies of development to avoid the disaster. Among “non-traditional agents”, anti-virulence strategy may have the potential through novel and non-killing modes of action to reduce the selective pressure responsible of MDR.
Collapse
Affiliation(s)
- Sébastien Reig
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université-CNRS, UMR7255, Marseille, France
- *Correspondence: Sébastien Reig, ; Sophie Bleves,
| | - Audrey Le Gouellec
- Laboratoire Techniques de l’Ingénierie Médicale et de la Complexité (UMR5525), Centre National de la Recherche Scientifique, Université Grenoble Alpes, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Bleves
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université-CNRS, UMR7255, Marseille, France
- *Correspondence: Sébastien Reig, ; Sophie Bleves,
| |
Collapse
|
24
|
Jamshidi MP, Cairns C, Chong S, St Michael F, Vinogradov EV, Cox AD, Sauvageau J. Synthesis and Immunogenicity of a Methyl Rhamnan Pentasaccharide Conjugate from Pseudomonas aeruginosa A-Band Polysaccharide. ACS Infect Dis 2022; 8:1347-1355. [PMID: 35674342 DOI: 10.1021/acsinfecdis.2c00184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa was added to the World Health Organization's priority pathogen list for research and development of new antibiotics in 2017. Alongside the development of new antibiotics to fight antimicrobial-resistant P. aeruginosa, vaccines would be an appealing addition to the toolbox health professionals have against this bacteria, which causes life-threatening respiratory infections. Recently, the structure of a novel immunogenic terminal carbohydrate moiety on the cell surface of P. aeruginosa was elucidated, consisting of a 3-O-methyl (1→4)-α-d-rhamnan pentasaccharide. As isolating this oligosaccharide from P. aeruginosa in sufficient amounts for producing a conjugate vaccine is challenging, herein we describe the synthesis of 3-O-methyl d-rhamnose oligosaccharide. We also report the conjugation of the synthetic pentasaccharide to human serum albumin and its resulting immunogenicity.
Collapse
Affiliation(s)
- Mohammad P Jamshidi
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Chantelle Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Simon Chong
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Frank St Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Evgeny V Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Andrew D Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Janelle Sauvageau
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
25
|
Rahbar MR, Mubarak SMH, Hessami A, Khalesi B, Pourzardosht N, Khalili S, Zanoos KA, Jahangiri A. A unique antigen against SARS-CoV-2, Acinetobacter baumannii, and Pseudomonas aeruginosa. Sci Rep 2022; 12:10852. [PMID: 35760825 PMCID: PMC9237110 DOI: 10.1038/s41598-022-14877-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
The recent outbreak of COVID-19 has increased hospital admissions, which could elevate the risk of nosocomial infections, such as A. baumannii and P. aeruginosa infections. Although effective vaccines have been developed against SARS-CoV-2, no approved treatment option is still available against antimicrobial-resistant strains of A. baumannii and P. aeruginosa. In the current study, an all-in-one antigen was designed based on an innovative, state-of-the-art strategy. In this regard, experimentally validated linear epitopes of spike protein (SARS-CoV-2), OmpA (A. baumannii), and OprF (P. aeruginosa) were selected to be harbored by mature OmpA as a scaffold. The selected epitopes were used to replace the loops and turns of the barrel domain in OmpA; OprF311–341 replaced the most similar sequence within the OmpA, and three validated epitopes of OmpA were retained intact. The obtained antigen encompasses five antigenic peptides of spike protein, which are involved in SARS-CoV-2 pathogenicity. One of these epitopes, viz. QTQTNSPRRARSV could trigger antibodies preventing super-antigenic characteristics of spike and alleviating probable autoimmune responses. The designed antigen could raise antibodies neutralizing emerging variants of SARS-CoV-2 since at least two epitopes are consensus. In conclusion, the designed antigen is expected to raise protective antibodies against SARS-CoV-2, A. baumannii, and P. aeruginosa.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaden M H Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kobra Ahmadi Zanoos
- Young Researchers Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St., P.O. Box 1435915371, Tehran, Iran.
| |
Collapse
|
26
|
Hart RJ, Morici LA. Vaccination to Prevent Pseudomonas aeruginosa Bloodstream Infections. Front Microbiol 2022; 13:870104. [PMID: 35418967 PMCID: PMC8996235 DOI: 10.3389/fmicb.2022.870104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
The bacterium Pseudomonas aeruginosa (Pa) is ubiquitous in the environment and causes opportunistic infections in humans. Pa is increasingly becoming one of the most difficult to treat microorganisms due to its intrinsic and acquired resistance to multiple antibiotics. The World Health Organization estimates that at least 700,000 people die each year from drug resistant microbial infections and have listed Pa as one of three bacterial species for which there is the most critical need for the development of novel therapeutics. Pa is a common cause of bloodstream infections (BSI) and bacterial sepsis. With nearly 49 million sepsis cases and 11 million deaths worldwide, an effective vaccine against Pa could prevent the morbidity and mortality resulting from Pa BSI and lessen our dependence on antibiotics. We reviewed the current landscape of Pa vaccines in pre-clinical and clinical stages over the last two decades. It is readily apparent that Pa vaccine development efforts have been largely directed at the prevention of pulmonary infections, likely due to Pa's devastating impact on individuals with cystic fibrosis. However, the increase in nosocomial infections, BSI-related sepsis, and the emergence of widespread antibiotic resistance have converged as a major threat to global public health. In this perspective, we draw attention to potential Pa vaccine candidates and encourage a renewed effort for prophylactic vaccine development to prevent drug-resistant Pa BSI.
Collapse
Affiliation(s)
- Robert J Hart
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lisa A Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
27
|
Gonzaga ZJC, Zhang J, Rehm BHA. Intranasal Delivery of Antigen-Coated Polymer Particles Protects against Pseudomonas aeruginosa Infection. ACS Infect Dis 2022; 8:744-756. [PMID: 35238554 DOI: 10.1021/acsinfecdis.1c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is intrinsically resistant to multiple antibiotics, causing severe and persistent infections in immunocompromised individuals. This bacterium has been listed as a priority pathogen by the WHO in 2017, and there is no vaccine available for human use. In this study, 10 vaccine candidate antigens were selected for particulate vaccine design. We engineered Escherichia coli to assemble biopolymer particles (BPs) that were either coated with epitopes (Ag) derived from OprF/I-AlgE proteins or PopB or PopB-Ag or coated with single or double copies of epitopes (10Ag and 10Ag(2x)) derived from OprF, OprI, AlgE, OprL, PopB, PilA, PilO, FliC, Hcp1, and CdrA. Antigen-coated BPs showed a diameter of 0.93-1.16 μm with negative surface charge. Antigens attached to BPs were identified by mass spectrometry. Vaccination with BP-Ag, BP-PopB, BP-PopBAg, PB-10Ag, and BP-10Ag(2x) with and without Alhydrogel adjuvant induced significant antigen-specific humoral and cell-mediated immune responses in mice. All particulate vaccines with Alhydrogel induced protection in an acute pneumonia murine model of P. aeruginosa infection, contributing to up to 80% survival when administered intramuscularly, and the addition of Alhydrogel boosted immunity. The BP-10Ag(2x) vaccine candidate showed the best performance and even induced protective immunity in the absence of Alhydrogel. Intramuscular administration of the BP-10Ag(2x) without Alhydrogel vaccine resulted in 60% survival. Intranasal vaccination induced immunity, contributing to about 90% survival. Overall, our data suggest that vaccination with BPs coated with P. aeruginosa antigens induce protective immunity against P. aeruginosa infections. The possibility of intranasal delivery will strongly facilitate administration and use of BP vaccines.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
28
|
Marashi SMA, Nikkhahi F, Hamedi D, Shahbazi G. Isolation, Characterization and in vitro Evaluation of Specific Bacteriophages Targeting Extensive Drug Resistance Strains of Pseudomonas aeruginosa Isolated from Septic Burn Wounds. Infect Chemother 2022; 54:153-164. [PMID: 35384426 PMCID: PMC8987173 DOI: 10.3947/ic.2021.0132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background Antibiotic resistant bacteria and various infections caused by them especially extensive drug resistance (XDR) strains and worrying statistics of mortality due to these strains and also the lack of a clear vision for development and production of new effective antibiotics have made the necessity of using alternative therapies more apparent. Materials and Methods In this study, specific phages affecting the Pseudomonas aeruginosa XDR strain were extracted from hospital wastewater and their laboratory characteristics along with lysis effect on 40 XDR strains of P. aeruginosa were investigated. Results The results indicated that three isolated phages (PaB1, PaBa2 and PaBa3) belonged to the Myoviridae and Pododoviridae families and were specific to Pseudomonas aeruginosa strains. More than 98% of phages absorbed their host in less than 10 minutes (Adsorption time <10 min) and completed their lytic cycle after 40 minutes (latent time = 40 min). Burst size of PaBa1, PaBa2 and PaBa3 was 240, 250 and 220 pfu/cell, respectively. PaBa1 lysed 62.5% of the XDR strains with the highest efficiency. The three Phage cocktail was effective against 67.5% of the studied strains. Conclusion The results of this study indicate the significant potential of these phages for therapeutic use and prophylaxis of infections caused by this bacterium.
Collapse
Affiliation(s)
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Dariush Hamedi
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Gholamhassan Shahbazi
- Department of Microbiology and Immunology, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
29
|
Lebreton F, Snesrud E, Hall L, Mills E, Galac M, Stam J, Ong A, Maybank R, Kwak YI, Johnson S, Julius M, Ly M, Swierczewski B, Waterman PE, Hinkle M, Jones A, Lesho E, Bennett JW, McGann P. A panel of diverse Pseudomonas aeruginosa clinical isolates for research and development. JAC Antimicrob Resist 2021; 3:dlab179. [PMID: 34909689 DOI: 10.1093/jacamr/dlab179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Pseudomonas aeruginosa is a leading cause of community- and hospital-acquired infections. Successful treatment is hampered by its remarkable ability to rapidly develop resistance to antimicrobial agents, primarily through mutation. In response, WHO listed carbapenem-resistant P. aeruginosa as a Priority 1 (Critical) pathogen for research and development of new treatments. A key resource in developing effective countermeasures is access to diverse and clinically relevant strains for testing. Herein we describe a panel of 100 diverse P. aeruginosa strains to support this endeavour. Methods WGS was performed on 3785 P. aeruginosa isolates in our repository. Isolates were cultured from clinical samples collected from healthcare facilities around the world between 2003 and 2017. Core-genome MLST and high-resolution SNP-based phylogenetic analyses were used to select a panel of 100 strains that captured the genetic diversity of this collection. Antibiotic susceptibility testing was also performed using 14 clinically relevant antibiotics. Results This 100-strain diversity panel contained representative strains from 91 different STs, including genetically distinct strains from major epidemic clones ST-111, ST-235, ST-244 and ST-253. Seventy-one distinct antibiotic susceptibility profiles were identified ranging from pan-susceptible to pan-resistant. Known resistance alleles as well as the most prevalent mutations underlying the antibiotic susceptibilities were characterized for all isolates. Conclusions This panel provides a diverse and comprehensive set of P. aeruginosa strains for use in developing solutions to antibiotic resistance. The isolates and available metadata, including genome sequences, are available to industry, academia, federal and other laboratories at no additional cost.
Collapse
Affiliation(s)
- Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Erik Snesrud
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsey Hall
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Emma Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Madeline Galac
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason Stam
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ana Ong
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rosslyn Maybank
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Yoon I Kwak
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheila Johnson
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael Julius
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melissa Ly
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Brett Swierczewski
- Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Mary Hinkle
- Infectious Diseases Unit, Rochester General Hospital, Rochester, NY, USA
| | - Anthony Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Emil Lesho
- Infectious Diseases Unit, Rochester General Hospital, Rochester, NY, USA
| | - Jason W Bennett
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
30
|
Denman S, Tellam R, Vuocolo T, Ingham A, Wijffels G, James P, Colditz I. Fleece rot and dermatophilosis (lumpy wool) in sheep: opportunities and challenges for new vaccines. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During prolonged wetting of the fleece, proliferation of bacterial flora often dominated by Pseudomonas aeruginosa or Dermatophilus congolensis can induce dermatitis and fleece damage termed fleece rot and dermatophilosis respectively, which predispose sheep to blowfly strike. A large research effort in the 1980s and 1990s on vaccines to control fleece rot and dermatophilosis met with limited success. This review examines theoretical and technological advances in microbial ecology, pathogenesis, immunology, vaccine development and the characterisation of microbial virulence factors that create new opportunities for development of vaccines against these diseases. Genomic technologies have now created new opportunities for examining microbial dynamics and pathogen virulence in dermatitis. An effective vaccine requires the combination of appropriate antigens with an adjuvant that elicits a protective immune response that ideally provides long-lasting protection in the field. A clinical goal informed by epidemiological, economic and animal welfare values is needed as a measure of vaccine efficacy. Due to dependence of fleece rot and dermatophilosis on sporadic wet conditions for their expression, vaccine development would be expedited by in vitro correlates of immune protection. The efficacy of vaccines is influenced by genetic and phenotypic characteristics of the animal. Advances in understanding vaccine responsiveness, immune defence in skin and immune competence in sheep should also inform any renewed efforts to develop new fleece rot and dermatophilosis vaccines. The commercial imperatives for new vaccines are likely to continue to increase as the animal welfare expectations of society intensify and reliance on pharmacotherapeutics decrease due to chemical resistance, market pressures and societal influences. Vaccines should be considered part of an integrated disease control strategy, in combination with genetic selection for general immune competence and resistance to specific diseases, as well as management practices that minimise stress and opportunities for disease transmission. The strategy could help preserve the efficacy of pharmacotherapeutics as tactical interventions to alleviate compromised welfare when adverse environmental conditions lead to a break down in integrated strategic disease control. P. aeruginosa and D. congolensis are formidable pathogens and development of effective vaccines remains a substantial challenge.
Collapse
|
31
|
Kotze AC, James PJ. Control of sheep flystrike: what's been tried in the past and where to from here. Aust Vet J 2021; 100:1-19. [PMID: 34761372 PMCID: PMC9299489 DOI: 10.1111/avj.13131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
Flystrike remains a serious financial and animal welfare issue for the sheep industry in Australia despite many years of research into control methods. The present paper provides an extensive review of past research on flystrike, and highlights areas that hold promise for providing long-term control options. We describe areas where the application of modern scientific advances may provide increased impetus to some novel, as well as some previously explored, control methods. We provide recommendations for research activities: insecticide resistance management, novel delivery methods for therapeutics, improved breeding indices for flystrike-related traits, mechanism of nematode-induced scouring in mature animals. We also identify areas where advances can be made in flystrike control through the greater adoption of well-recognised existing management approaches: optimal insecticide-use patterns, increased use of flystrike-related Australian Sheep Breeding Values, and management practices to prevent scouring in young sheep. We indicate that breeding efforts should be primarily focussed on the adoption and improvement of currently available breeding tools and towards the future integration of genomic selection methods. We describe factors that will impact on the ongoing availability of insecticides for flystrike control and on the feasibility of vaccination. We also describe areas where the blowfly genome may be useful in providing impetus to some flystrike control strategies, such as area-wide approaches that seek to directly suppress or eradicate sheep blowfly populations. However, we also highlight the fact that commercial and feasibility considerations will act to temper the potential for the genome to act as the basis for providing some control options.
Collapse
Affiliation(s)
- A C Kotze
- CSIRO Agriculture and Food, St Lucia, Queensland, 4067, Australia
| | - P J James
- QAAFI, University of Queensland, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
32
|
Outer Membrane Vesicles Displaying a Heterologous PcrV-HitA Fusion Antigen Promote Protection against Pulmonary Pseudomonas aeruginosa Infection. mSphere 2021; 6:e0069921. [PMID: 34612675 PMCID: PMC8510544 DOI: 10.1128/msphere.00699-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Along with surging threats and antibiotic resistance of Pseudomonas aeruginosa in health care settings, it is imperative to develop effective vaccines against P. aeruginosa infection. In this study, we used an Asd (aspartate-semialdehyde dehydrogenase)-based balanced-lethal host-vector system of a recombinant Yersinia pseudotuberculosis mutant to produce self-adjuvanting outer membrane vesicles (OMVs). The OMVs were used as a carrier to deliver the heterologous PcrV-HitAT (PH) fusion antigen of P. aeruginosa for vaccine evaluation. Intramuscular vaccination with OMVs carrying the PH antigen (referred to rOMV-PH) afforded 73% protection against intranasal challenge with 5 × 106 (25 50% lethal doses) of the cytotoxic PA103 strain and complete protection against a noncytotoxic PAO1 strain. In contrast, vaccination with the PH-deficient OMVs or PH antigen alone failed to offer effective protection against the same challenge. Immune analysis showed that the rOMV-PH vaccination induced potent humoral and Th1/Th17 responses compared to the PH vaccination. The rOMV-PH vaccination rapidly cleared P. aeruginosa burdens with coordinated production of proinflammatory cytokines in mice. Moreover, antigen-specific CD4+ and CD8+ T cells and their producing cytokines (tumor necrosis factor alpha and interleukin-17A), rather than antibodies, were essential for protection against pneumonic P. aeruginosa infection. Our studies demonstrated that the recombinant Y. pseudotuberculosis OMVs delivering heterologous P. aeruginosa antigens could be a new promising vaccine candidate for preventing the spread of drug-resistant P. aeruginosa. IMPORTANCE Hospital- and community-acquired infections with Pseudomonas aeruginosa cause a high rate of morbidity and mortality in patients who have underlying medical conditions. The spread of multidrug-resistant P. aeruginosa strains is becoming a great challenge for treatment using antibiotics. Thus, a vaccine as one of the alternative strategies is urgently required to prevent P. aeruginosa infection.
Collapse
|
33
|
Howlader DR, Das S, Lu T, Hu G, Varisco DJ, Dietz ZK, Walton SP, Ratnakaram SSK, Gardner FM, Ernst RK, Picking WD, Picking WL. Effect of Two Unique Nanoparticle Formulations on the Efficacy of a Broadly Protective Vaccine Against Pseudomonas Aeruginosa. Front Pharmacol 2021; 12:706157. [PMID: 34483911 PMCID: PMC8416447 DOI: 10.3389/fphar.2021.706157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for a wide range of infections in humans. In addition to its innate antibiotic resistance, P. aeruginosa is very effective in acquiring resistance resulting in the emergence of multi-drug resistance strains and a licensed vaccine is not yet available. We have previously demonstrated the protective efficacy of a novel antigen PaF (Pa Fusion), a fusion of the type III secretion system (T3SS) needle tip protein, PcrV, and the first of two translocator proteins, PopB. PaF was modified to provide a self-adjuvanting activity by fusing the A1 subunit of the heat-labile enterotoxin from Enterotoxigenic E. coli to its N-terminus to give L-PaF. In addition to providing protection against 04 and 06 serotypes of P. aeruginosa, L-PaF elicited opsonophagocytic killing and stimulated IL-17A secretion, which have been predicted to be required for a successful vaccine. While monomeric recombinant subunit vaccines can be protective in mice, this protection often does not transfer to humans where multimeric formulations perform better. Here, we use two unique formulations, an oil-in-water (o/w) emulsion and a chitosan particle, as well as the addition of a unique TLR4 agonist, BECC438 (a detoxified lipid A analogue designated Bacterial Enzymatic Combinatorial Chemistry 438), as an initial step in optimizing L-PaF for use in humans. The o/w emulsion together with BECC438 provided the best protective efficacy, which correlated with high levels of opsonophagocytic killing and IL-17A secretion, thereby reducing the lung burden among all the vaccinated groups tested.
Collapse
Affiliation(s)
- Debaki R Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - David J Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Zackary K Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Sierra P Walton
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Francesca M Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
34
|
Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev 2021; 176:113811. [PMID: 34022269 DOI: 10.1016/j.addr.2021.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.
Collapse
|
35
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
36
|
Gonzaga ZJC, Merakou C, DiGiandomenico A, Priebe GP, Rehm BHA. A Pseudomonas aeruginosa-Derived Particulate Vaccine Protects against P. aeruginosa Infection. Vaccines (Basel) 2021; 9:803. [PMID: 34358220 PMCID: PMC8309987 DOI: 10.3390/vaccines9070803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 01/05/2023] Open
Abstract
Despite numerous efforts to develop an effective vaccine against Pseudomonas aeruginosa, no vaccine has yet been approved for human use. This study investigates the utility of the P. aeruginosa inherently produced polyhydroxyalkanaote (PHA) inclusions and associated host-cell proteins (HCP) as a particulate vaccine platform. We further engineered PHA inclusions to display epitopes derived from the outer membrane proteins OprF/OprI/AlgE (Ag) or the type III secretion system translocator PopB. PHA and engineered PHA beads induced antigen-specific humoral, cell-mediated immune responses, anti-HCP and anti-polysaccharide Psl responses in mice. Antibodies mediated opsonophagocytic killing and serotype-independent protective immunity as shown by 100% survival upon challenge with P. aeruginosa in an acute pneumonia murine model. Vaccines were stable at 4 °C for at least one year. Overall, our data suggest that vaccination with subcellular empty PHA beads was sufficient to elicit multiple immune effectors that can prevent P. aeruginosa infection.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111, Australia;
| | - Christina Merakou
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (C.M.); (G.P.P.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Antonio DiGiandomenico
- Discovery Microbiome, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 34321, USA;
| | - Gregory P. Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (C.M.); (G.P.P.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111, Australia;
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
37
|
Beg AZ, Farhat N, Khan AU. Designing multi-epitope vaccine candidates against functional amyloids in Pseudomonas aeruginosa through immunoinformatic and structural bioinformatics approach. INFECTION GENETICS AND EVOLUTION 2021; 93:104982. [PMID: 34186254 DOI: 10.1016/j.meegid.2021.104982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) displays high drug resistance and biofilm-mediated adaptability, which makes its infections difficult to treat. Alternative intervention methods and targets have made such infections treatment manageable. One of the biofilm components, functional amyloids of Pseudomonas (Fap) is correlated positively with virulence and mucoidy phenotype found in infection in cystic fibrosis (CF) patients. Extracellular accessibility, conservation across P. aeruginosa isolates and linkage with lung infections phenotype in CF patients, makes Fap a promising intervention target. Furthermore, the reported effect of bacterial amyloid on neuronal function and immune response makes it a targetable candidate. In the current study, Fap C protein and its immediate interactions were explored to extract antigenic T-cell and B-cell epitopes. A combination of epitopes and peptide adjuvants has been linked to derive vaccine candidate structures. The vaccine candidates were validated for antigenicity, allergenicity, physiochemical properties, stability and interactions with TLRs and MHC alleles. Immunosimulation studies have demonstrated that vaccines elicit Th1 dominated response, which can assist in good prognosis of infection in CF patients.
Collapse
Affiliation(s)
- Ayesha Z Beg
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Farhat
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India; Centre for Bioinformatic on Antimicrobial Resistance, IBU, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
38
|
Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021; 9:vaccines9060670. [PMID: 34207253 PMCID: PMC8234409 DOI: 10.3390/vaccines9060670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Human infections caused by the opportunist pathogens Burkholderia cepacia complex and Pseudomonas aeruginosa are of particular concern due to their severity, their multiple antibiotic resistance, and the limited eradication efficiency of the current available treatments. New therapeutic options have been pursued, being vaccination strategies to prevent or limit these infections as a rational approach to tackle these infections. In this review, immunization and immunotherapy approaches currently available and under study against these bacterial pathogens is reviewed. Ongoing active and passive immunization clinical trials against P. aeruginosa infections is also reviewed. Novel identified bacterial targets and their possible exploitation for the development of immunization and immunotherapy strategies against P. aeruginosa and B. cepacia complex and infections are also presented and discussed.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
39
|
Tao Q, Guo L, Diao H, Feng L. Facile antibacterial materials with turbine-like structure for P. aeruginosa infected scald wound healing. Biomater Sci 2021; 9:3830-3837. [PMID: 33881420 DOI: 10.1039/d1bm00483b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a popular hospital pathogen and the major cause of morbidity and mortality in patients with cystic fibrosis (CF) and impaired immune system. Herein, we designed and synthesized a series of organic molecules MTEBT-n (n = 1, 2, 3) to specifically and effectively kill P. aeruginosa. Hydrophobic triphenylamine was selected as the skeleton, and hydrophilic primary ammonium salts that can easily penetrate the cell walls of Gram-negative bacteria and accumulate in the bacteria were used to adjust the hydrophilic-hydrophobic ratio of the molecules, resulting in different antibacterial activity. As the hydrophilic-hydrophobic ratio increased in the structures from MTEBT-1 to MTEBT-3, the antibacterial activity of the three molecules were gradually enhanced with killing effects of 25%, 75% and 95% against P. aeruginosa, respectively. The antibacterial mechanisms of MTEBT-n were demonstrated to destroy the bacterial membrane, which could effectively prevent the development of drug resistance. In addition, MTEBT-3 with the highest antibacterial activity could inhibit P. aeruginosa biofilm very well, and heal the P. aeruginosa infected scald wounds. This work provides a potential organic antimicrobial material for clinical antimicrobial therapy of P. aeruginosa infection, and offers a molecular engineering strategy for designing new antimicrobials.
Collapse
Affiliation(s)
- Qin Tao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P.R. China.
| | - Lixia Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, P.R. China
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, P.R. China.
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P.R. China.
| |
Collapse
|
40
|
Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S, Tondi S, Vezzani G, Viviani V, Delany I, Scarselli M, Schiavetti F. Strategies to Tackle Antimicrobial Resistance: The Example of Escherichia coli and Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:4943. [PMID: 34066555 PMCID: PMC8125385 DOI: 10.3390/ijms22094943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.
Collapse
Affiliation(s)
- Giada Antonelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Luigia Cappelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Paolo Cinelli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Cuffaro
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Benedetta Manca
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Sonia Nicchi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Serena Tondi
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Vezzani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Viola Viviani
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Isabel Delany
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Maria Scarselli
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| | - Francesca Schiavetti
- GSK Vaccines, 53100 Siena, Italy; (G.A.); (L.C.); (P.C.); (R.C.); (B.M.); (S.N.); (S.T.); (G.V.); (V.V.); (I.D.)
| |
Collapse
|
41
|
Flagella hook protein FlgE is a novel vaccine candidate of Pseudomonas aeruginosa identified by a genomic approach. Vaccine 2021; 39:2386-2395. [PMID: 33775439 DOI: 10.1016/j.vaccine.2021.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
Infections due to Pseudomonas aeruginosa (PA) are becoming a serious threat to patients in intensive care units. A PA vaccine is a practical and economical solution to solve the problems caused by PA infection successfully. In recent years, several antigen candidates have been tested in animal and human clinical trials, but none of them has been approved to date. An alternative strategy for antigen screening and protective antigens is in urgent demand. In this study, we generated a genome-wide library of PA protein fragments tagged with maltose-binding protein (MBP). Using sera from patients who recovered after PA infection, we identified a novel protective antigen, FlgE, which is the structural component of the flagella hook. Vaccination with recombinant FlgE (reFlgE) induced a Th2-predominant immune response and reduced bacterial load and inflammation in PA-infected mice. Anti-reFlgE antibodies recognized native FlgE on the bacterial membrane in vitro and conferred protection in mice, which may be due to the mediation of opsonophagocytic killing and inhibition of bacterial motility. In addition, the combination of reFlgE with rePcrVNH, an engineered antigen we reported previously, provided elevated protection against PA infection. Our data demonstrate that FlgE is a promising vaccine candidate for PA and provide a new strategy for the efficient screening of antigens of other pathogens.
Collapse
|
42
|
Immunoproteomic analysis of Clostridium botulinum type B secretome for identification of immunogenic proteins against botulism. Biotechnol Lett 2021; 43:1019-1036. [PMID: 33629143 PMCID: PMC7904509 DOI: 10.1007/s10529-021-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
Objectives To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. Results In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. Conclusions Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03091-4.
Collapse
|
43
|
Defining the Mechanistic Correlates of Protection Conferred by Whole-Cell Vaccination against Pseudomonas aeruginosa Acute Murine Pneumonia. Infect Immun 2021; 89:IAI.00451-20. [PMID: 33199354 PMCID: PMC7822147 DOI: 10.1128/iai.00451-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe pulmonary infections associated with high morbidity and mortality in immunocompromised patients. The development of a vaccine against P. aeruginosa could help prevent infections caused by this highly antibiotic-resistant microorganism. Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe pulmonary infections associated with high morbidity and mortality in immunocompromised patients. The development of a vaccine against P. aeruginosa could help prevent infections caused by this highly antibiotic-resistant microorganism. We propose that identifying the vaccine-induced correlates of protection against P. aeruginosa will facilitate the development of a vaccine against this pathogen. In this study, we investigated the mechanistic correlates of protection of a curdlan-adjuvanted P. aeruginosa whole-cell vaccine (WCV) delivered intranasally. The WCV significantly decreased bacterial loads in the respiratory tract after intranasal P. aeruginosa challenge and raised antigen-specific antibody titers. To study the role of B and T cells during vaccination, anti-CD4, -CD8, and -CD20 depletions were performed prior to WCV vaccination and boosting. The depletion of CD4+, CD8+, or CD20+ cells had no impact on the bacterial burden in mock-vaccinated animals. However, depletion of CD20+ B cells, but not CD8+ or CD4+ T cells, led to the loss of vaccine-mediated bacterial clearance. Also, passive immunization with serum from WCV group mice alone protected naive mice against P. aeruginosa, supporting the role of antibodies in clearing P. aeruginosa. We observed that in the absence of T cell-dependent antibody production, mice vaccinated with the WCV were still able to reduce bacterial loads. Our results collectively highlight the importance of the humoral immune response for protection against P. aeruginosa and suggest that the production of T cell-independent antibodies may be sufficient for bacterial clearance induced by whole-cell P. aeruginosa vaccination.
Collapse
|
44
|
Sabzehali F, Rahimi H, Goudarzi H, Goudarzi M, Yoosefi Izad MH, Salimi Chirani A, Jalali SA, Faghihloo E. Functional engineering of OprF-OprI-PopB as a chimeric immunogen and its cross-protective evaluation with GM-CSF against Pseudomonas aeruginosa: A comprehensive immunoinformatics evaluation. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Colditz I, Vuocolo T, Denman S, Ingham A, Wijffels G, James P, Tellam R. Fleece rot in sheep: a review of pathogenesis, aetiology, resistance and vaccines. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Jahangiri A, Neshani A, Mirhosseini SA, Ghazvini K, Zare H, Sedighian H. Synergistic effect of two antimicrobial peptides, Nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microb Pathog 2020; 150:104700. [PMID: 33346078 DOI: 10.1016/j.micpath.2020.104700] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Infections caused by drug-resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa are now a global problem that requires the immediate development of new antimicrobial drugs. Combination therapy and using antimicrobial peptides are two strategies with high potential to solve this issue. By these strategies, this study aimed to determine the antimicrobial effect of Nisin and P10 antimicrobial peptides on extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates, and investigate the most effective combination of an antimicrobial peptide with an antibiotic. MATERIAL AND METHODS This study was performed on five resistant clinical isolates and one standard strain for each kind of bacterium. First, the minimum inhibitory concentrations of two antimicrobial peptides (Nisin and P10) and five common antibiotics for the treatment of Gram-negative bacteria (ceftazidime, tobramycin, ciprofloxacin, doripenem, and colistin) was determined using Scanner-Assisted Colorimetric MIC Method. Then, the combination effect of P10+Nisin, P10+antibiotics, Nisin + antibiotics was investigated using checkerboard method. RESULTS The MIC value of Nisin and P10 against studied pathogens were 64-256 and 8-32 μg/ml, respectively. P10+Nisin combination showed synergistic effect against standard strains and additive effect against drug-resistant clinical isolates. It was also found that the combination effect of P10+ceftazidim, P10+doripenem, and Nisin + colistin was synergistic in most cases. Nisin + tobramycin combination showed synergistic effect in exposure to standard strains, while the synergy is strain-dependent against drug-resistant clinical isolates. CONCLUSION In conclusion, the synergism of Nisin + colistin and P10+ceftazidime/doripenem could be of great therapeutic value as antimicrobial drugs against infections caused by colistin-resistant P.aeruginosa and XDR A. baumannii.
Collapse
Affiliation(s)
- Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosna Zare
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Das S, Howlader DR, Zheng Q, Ratnakaram SSK, Whittier SK, Lu T, Keith JD, Picking WD, Birket SE, Picking WL. Development of a Broadly Protective, Self-Adjuvanting Subunit Vaccine to Prevent Infections by Pseudomonas aeruginosa. Front Immunol 2020; 11:583008. [PMID: 33281815 PMCID: PMC7705240 DOI: 10.3389/fimmu.2020.583008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Infections caused by the opportunistic pathogen Pseudomonas aeruginosa can be difficult to treat due to innate and acquired antibiotic resistance and this is exacerbated by the emergence of multi-drug resistant strains. Unfortunately, no licensed vaccine yet exists to prevent Pseudomonas infections. Here we describe a novel subunit vaccine that targets the P. aeruginosa type III secretion system (T3SS). This vaccine is based on the novel antigen PaF (Pa Fusion), a fusion of the T3SS needle tip protein, PcrV, and the first of two translocator proteins, PopB. Additionally, PaF is made self-adjuvanting by the N-terminal fusion of the A1 subunit of the mucosal adjuvant double-mutant heat-labile enterotoxin (dmLT). Here we show that this triple fusion, designated L-PaF, can activate dendritic cells in vitro and elicits strong IgG and IgA titers in mice when administered intranasally. This self-adjuvanting vaccine expedites the clearance of P. aeruginosa from the lungs of challenged mice while stimulating host expression of IL-17A, which may be important for generating a protective immune response in humans. L-PaF's protective capacity was recapitulated in a rat pneumonia model, further supporting the efficacy of this novel fusion vaccine.
Collapse
Affiliation(s)
- Sayan Das
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Debaki R Howlader
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Qi Zheng
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Siva Sai Kumar Ratnakaram
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Sean K Whittier
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States.,Hafion LLC, Lawrence, KS, United States
| | - Ti Lu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Johnathan D Keith
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William D Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Susan E Birket
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States.,Hafion LLC, Lawrence, KS, United States
| |
Collapse
|
48
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
49
|
Xu W, Li L, Wen X, Liu Q, Liu Y, Wang X, Lei L, Chen Q, Liu L. Construction of Genomic Library and High-Throughput Screening of Pseudomonas aeruginosa Novel Antigens for Potential Vaccines. Biol Pharm Bull 2020; 43:1469-1475. [PMID: 32779581 DOI: 10.1248/bpb.b19-01052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hospital-acquired infections with Pseudomonas aeruginosa have become a great challenge in caring for critically ill and immunocompromised patients. The cause of high mortality is the presence of multi-drug resistant (MDR) strains, which confers a pressing need for vaccines. Although vaccines against P. aeruginosa have been in development for more than several decades, there is no vaccine for patients at present. In this study, we purified genomic DNA of P. aeruginosa from sera of patients affected, constructed genome-wide library with random recombinants, and screened candidate protein antigens by evaluating their protective effects in vivo. After 13-round of screening, 115 reactive recombinants were obtained, among which 13 antigens showed strong immunoreactivity (more than 10% reaction to PcrV, a well-characterized V-antigen of P. aeruginosa). These 13 antigens were: PpiA, PtsP, OprP, CAZ10_34235, HmuU_2, PcaK, CarAd, RecG, YjiR_5, LigD, KinB, RtcA, and PscF. In vivo studies showed that vaccination with PscF protected against lethal P. aeruginosa challenge, and decreased lung inflammation and injury. A genomic library of P. aeruginosa could be constructed in this way for the first time, which could not only screen candidate antigens but also in a high-throughput way. PscF was considered as an ideal promising vaccine candidate for combating P. aeruginosa infection and was supported for further evaluation of its safety and efficacy.
Collapse
Affiliation(s)
- Wanting Xu
- The Second Affiliated Hospital of Chengdu
| | - Lei Li
- The Second Affiliated Hospital of Chengdu
| | | | - Qun Liu
- The Second Affiliated Hospital of Chengdu
| | - Yan Liu
- The Second Affiliated Hospital of Chengdu
| | - Xingyong Wang
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Langhuan Lei
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Qiushan Chen
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Li Liu
- The Second Affiliated Hospital of Chengdu
| |
Collapse
|
50
|
Ahmadbeigi Y, Chirani AS, Soleimani N, Mahdavi M, Goudarzi M. Immunopotentiation of the engineered low-molecular-weight pilin targeting Pseudomonas aeruginosa: A combination of immunoinformatics investigation and active immunization. Mol Immunol 2020; 124:70-82. [PMID: 32540517 DOI: 10.1016/j.molimm.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
Abstract
Several vaccine candidates have been introduced for immunization against Pseudomonas aeruginosa strains. Despite extensive efforts in recent decades, there is no accurate immunogenic candidate against this pathogen in the market yet. Due to the rapid increase in several drug-resistant strains, P. aeruginosa has caused various health concerns worldwide. It encodes many specific virulence features, which can be used as an appropriate vaccine candidate. The primary stage of the pathogenesis of P. aeruginosa is the expression of many dynamic adhesive molecules, such as type IV pili (T4P), which acts as a principal colonization factor. It has been confirmed that three different subtypes of T4P, including type IVa (T4aP), type IVb (T4bP) and tight adherence (Tad) pili are expressed by P. aeruginosa. The IVa fimbriae type is almost the main cause of challenges to design an effective pili based-immunotherapy method. Nevertheless, in terms of heterogeneity, variability and hidden conserved binding site of T4aP, this attitude has been remained controversial and there is no permitted human study based on IVa pilin commercially. The engineered synthetic peptide-based vaccines are highly talented to mimic the target. In this research, for the first time, some dominant immunogenic features of the Flp protein, such as both B- and T-cell-associated epitopes, presence of IgE-associated epitopes, solvent-accessible surface area were evaluated by analytical immunoinformatics methods. In addition, we designed the engineered Flp pilin as an effective immunogenic substance against several clinically important P. aeruginosa strains. Moreover, by practical active immunization approaches, the humoral and cellular immune response against the extremely conserved region of the engineered synthetic Flp (EFlp) formulated in Montanide ISA 266 compared to the control group. The results of active immunization against EFlp significantly signified that EFlp-Montanide ISA 266 (EFLP-M) strongly could induce both humoral and cellular immune responses. We concluded that Flp pilin has therapeutic potential against numerous clinically significant P. aeruginosa strains and can be served as a novel immunogen for further investigations for development of effective immunotherapy methods against P. aeruginosa as a dexterous pathogen.
Collapse
Affiliation(s)
- Yasaman Ahmadbeigi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Alireza Salimi Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran; Departments of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|