1
|
Walsh SK, Shelley JC, Henak CR. Mechanobiology of Cartilage Impact Via Real-Time Metabolic Imaging. J Biomech Eng 2020; 142:100802. [PMID: 32542333 DOI: 10.1115/1.4047534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/08/2022]
Abstract
Cartilage loading is important in both structural and biological contexts, with overloading known to cause osteoarthritis (OA). Cellular metabolism, which can be evaluated through the relative measures of glycolysis and oxidative phosphorylation, is important in disease processes across tissues. Details of structural damage coupled with cellular metabolism in cartilage have not been evaluated. Therefore, the aim of this study was to characterize the time- and location-dependent metabolic response to traumatic impact loading in articular cartilage. Cartilage samples from porcine femoral condyles underwent a single traumatic injury that created cracks in most samples. Before and up to 30 min after loading, samples underwent optical metabolic imaging. Optical metabolic imaging measures the fluorescent intensity of byproducts of the two metabolic pathways, flavin adenine dinucleotide for oxidative phosphorylation and nicotinamide adenine dinucleotide ± phosphate for glycolysis, as well as the redox ratio between them. Images were taken at varied distances from the center of the impact. Shortly after impact, fluorescence intensity in both channels decreased, while redox ratio was unchanged. The most dramatic metabolic response was measured closest to the impact center, with suppressed fluorescence in both channels relative to baseline. Redox ratio varied nonlinearly as a function of distance from the impact. Finally, both lower and higher magnitude loading reduced flavin adenine dinucleotide fluorescence, whereas reduced nicotinamide adenine dinucleotide ± phosphate fluorescence was associated only with low strain loads and high contact pressure loads, respectively. In conclusion, this study performed novel analysis of metabolic activity following induction of cartilage damage and demonstrated time-, distance-, and load-dependent response to traumatic impact loading.
Collapse
Affiliation(s)
- Shannon K Walsh
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Joshua C Shelley
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Corinne R Henak
- Department of Mechanical Engineering, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53706; Department of Biomedical Engineering, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53706; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 3031 Mechanical Engineering Building, 1513 University Ave. Madison, WI 53705
| |
Collapse
|
2
|
Abu-Hakmeh AE, Fleck AKM, Wan LQ. Temporal effects of cytokine treatment on lubricant synthesis and matrix metalloproteinase activity of fibroblast-like synoviocytes. J Tissue Eng Regen Med 2018; 13:87-98. [DOI: 10.1002/term.2771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ahmad E. Abu-Hakmeh
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering; Rensselaer Polytechnic Institute; Troy New York
| | - Allison K. M. Fleck
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering; Rensselaer Polytechnic Institute; Troy New York
| | - Leo Q. Wan
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering; Rensselaer Polytechnic Institute; Troy New York
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York
- Center for Modeling, Simulation and Imaging in Medicine; Rensselaer Polytechnic Institute; Troy New York
| |
Collapse
|
3
|
Lee Y, Choi J, Hwang NS. Regulation of lubricin for functional cartilage tissue regeneration: a review. Biomater Res 2018; 22:9. [PMID: 29568558 PMCID: PMC5857089 DOI: 10.1186/s40824-018-0118-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/05/2018] [Indexed: 01/20/2023] Open
Abstract
Background Lubricin is chondrocyte-secreted glycoprotein that primarily conducts boundary lubrication between joint surfaces. Besides its cytoprotective function and extracellular matrix (ECM) attachment, lubricin is recommended as a novel biotherapeutic protein that restore functional articular cartilage. Likewise, malfunction of lubrication in damaged articular cartilage caused by complex and multifaceted matter is a major concern in the field of cartilage tissue engineering. Main body Although a noticeable progress has been made toward cartilage tissue regeneration through numerous approaches such as autologous chondrocyte implantation, osteochondral grafts, and microfracture technique, the functionality of engineered cartilage is a challenge for complete reconstruction of cartilage. Thus, delicate modulation of lubricin along with cell/scaffold application will expand the research on cartilage tissue engineering. Conclusion In this review, we will discuss the empirical analysis of lubricin from fundamental interpretation to the practical design of gene expression regulation.
Collapse
Affiliation(s)
- Yunsup Lee
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Jaehoon Choi
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Nathaniel S Hwang
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea.,2Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 152-742 Republic of Korea.,3N-Bio/BioMAX Institute, Seoul National University, Seoul, 152-742 Republic of Korea
| |
Collapse
|
4
|
Peng G, McNary SM, Athanasiou KA, Reddi AH. Surface zone articular chondrocytes modulate the bulk and surface mechanical properties of the tissue-engineered cartilage. Tissue Eng Part A 2015; 20:3332-41. [PMID: 24947008 DOI: 10.1089/ten.tea.2014.0099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central hypothesis of functional tissue engineering is that an engineered construct can serve as a viable replacement tissue in vivo by replicating the structure and function of native tissue. In the case of articular cartilage, this requires the reproduction of the bulk mechanical and surface lubrication properties of native hyaline cartilage. Cartilage tissue engineering has primarily focused on achieving the bulk mechanical properties of native cartilage such as the compressive aggregate modulus and tensile strength. A scaffold-free self-assembling process has been developed that produces engineered cartilage with compressive properties approaching native tissue levels. Thus, the next step in this process is to begin addressing the friction coefficient and wear properties of these engineered constructs. The superficial zone protein (SZP), also known as lubricin or PRG4, is a boundary mode lubricant that is synthesized by surface zone (SZ) articular chondrocytes. Under conditions of high loading and low sliding speeds, SZP reduces friction and wear at the articular surface. The objective of this investigation was to determine whether increasing the proportion of SZ chondrocytes in cartilage constructs, in the absence of external stimuli such as growth factors and mechanical loading, would enhance the secretion of SZP and improve their frictional properties. In this study, cartilage constructs were engineered through a self-assembling process with varying ratios of SZ and middle zone (MZ) chondrocytes (SZ:MZ): 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs containing different ratios of SZ and MZ chondrocytes did not significantly differ in the glycosaminoglycan composition or compressive aggregate modulus. In contrast, tensile properties and collagen content were enhanced in nearly all constructs containing greater amounts of SZ chondrocytes. Increasing the proportion of SZ chondrocytes had the hypothesized effect of improving the synthesis and secretion of SZP. However, increasing the SZ chondrocyte fraction did not significantly reduce the friction coefficient. These results demonstrate that additional factors, such as SZP-binding macromolecules, surface roughness, and adhesion, need to be examined to modulate the lubrication properties of engineered cartilage.
Collapse
Affiliation(s)
- Gordon Peng
- 1 Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Sacramento, California
| | | | | | | |
Collapse
|
5
|
Kim HD, Heo J, Hwang Y, Kwak SY, Park OK, Kim H, Varghese S, Hwang NS. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng Part A 2014; 21:757-66. [PMID: 25266634 DOI: 10.1089/ten.tea.2014.0233] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application.
Collapse
Affiliation(s)
- Hwan D Kim
- 1 School of Chemical and Biological Engineering, BioMAX Institute, Seoul National University , Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Rocha B, Calamia V, Casas V, Carrascal M, Blanco FJ, Ruiz-Romero C. Secretome Analysis of Human Mesenchymal Stem Cells Undergoing Chondrogenic Differentiation. J Proteome Res 2014; 13:1045-54. [DOI: 10.1021/pr401030n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Beatriz Rocha
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
| | - Valentina Calamia
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
| | - Vanessa Casas
- CSIC/UAB Proteomics
Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo
Superior de Investigaciones Científicas, 08193-Bellaterra, Spain
| | - Montserrat Carrascal
- CSIC/UAB Proteomics
Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-Consejo
Superior de Investigaciones Científicas, 08193-Bellaterra, Spain
| | - Francisco J. Blanco
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
- RIER-RED
de Inflamación
y Enfermedades Reumáticas, INIBIC−CHUAC, 15006-A Coruña, Spain
| | - Cristina Ruiz-Romero
- Rheumatology Division,
ProteoRed/ISCIII Proteomics Group, INIBIC—Hospital Universitario
de A Coruña, C/Xubias 84, 15006-A Coruña, Spain
- CIBER-BBN Instituto
de Salud Carlos III, INIBIC−CHUAC, 15006-A Coruña, Spain
| |
Collapse
|
8
|
Mhanna R, Öztürk E, Schlink P, Zenobi-Wong M. Probing the microenvironmental conditions for induction of superficial zone protein expression. Osteoarthritis Cartilage 2013; 21:1924-32. [PMID: 23978656 DOI: 10.1016/j.joca.2013.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the in vitro conditions which promote expression of superficial zone protein (SZP). METHODS Chondrocytes from 6-month-old calves were expanded in monolayer culture and the expression of SZP in alginate bead and monolayer culture was quantified with quantitative real time-polymerase chain reaction (qRT-PCR) and immunostaining. The effect of oxygen tension on SZP expression was determined by qRT-PRC analysis of cells cultured in two dimension (2D) and three dimension (3D) under hypoxic (1% pO2) or normoxic (21% pO2) conditions. Finally, to examine the effect of cyclic tensile strain on expression of SZP in 2D and 3D cultures, chondrocytes encapsulated in alginate beams or seeded on type I collagen coated polydimethylsiloxane (PDMS) chambers were subjected to 5% strain at 1 Hz, 2 h/day for 4 days or 2 h at the fourth day of culture and mRNA levels were quantified. RESULTS Bovine chondrocytes in monolayer showed a drastic decrease in SZP expression, similar in trend to the commonly reported downregulation of type II collagen (Col2). Chondrocytes embedded in alginate beads for 4 days re-expressed SZP but not Col2. SZP expression was higher under normoxic conditions whereas Col2 was upregulated only in alginate beads under hypoxic conditions. Cyclic mechanical strain showed a tendency to upregulate mRNA levels of SZP. CONCLUSIONS A microenvironment encompassing a soft encapsulation material and 21% oxygen is sufficient for fibroblastic chondrocytes to re-express SZP. These results serve as a guideline for the design of stratified engineered articular cartilage and suggest that microenvironmental cues (oxygen tension level) strongly influence the pattern of SZP expression in vivo.
Collapse
Affiliation(s)
- R Mhanna
- Cartilage Engineering + Regeneration Laboratory, ETHZ, Schafmattstrasse 22, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
9
|
McNary SM, Athanasiou KA, Reddi AH. Transforming growth factor β-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Eng Part A 2013; 20:921-9. [PMID: 24116978 DOI: 10.1089/ten.tea.2013.0043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The phenotype of articular chondrocytes is dependent on the cytoskeleton, specifically the actin microfilament architecture. Articular chondrocytes in monolayer culture undergo dedifferentiation and assume a fibroblastic phenotype. This process can be reversed by altering the actin cytoskeleton by treatment with cytochalasin. Whereas dedifferentiation has been studied on chondrocytes isolated from the whole cartilage, the effects of cytoskeletal alteration on specific zones of cells such as superficial zone chondrocytes are not known. Chondrocytes from the superficial zone secrete superficial zone protein (SZP), a lubricating proteoglycan that reduces the coefficient of friction of articular cartilage. A better understanding of this phenomenon may be useful in elucidating chondrocyte dedifferentiation in monolayer and accumulation of the cartilage lubricant SZP, with an eye toward tissue engineering functional articular cartilage. In this investigation, the effects of cytoskeletal modulation on the ability of superficial zone chondrocytes to secrete SZP were examined. Primary superficial zone chondrocytes were cultured in monolayer and treated with a combination of cytoskeleton modifying reagents and transforming growth factor β (TGFβ) 1, a critical regulator of SZP production. Whereas cytochalasin D maintains the articular chondrocyte phenotype, the hallmark of the superficial zone chondrocyte, SZP, was inhibited in the presence of TGFβ1. A decrease in TGFβ1-induced SZP accumulation was also observed when the microtubule cytoskeleton was modified using paclitaxel. These effects of actin and microtubule alteration were confirmed through the application of jasplakinolide and colchicine, respectively. As Rho GTPases regulate actin organization and microtubule polymerization, we hypothesized that the cytoskeleton is critical for TGFβ-induced SZP accumulation. TGFβ-mediated SZP accumulation was inhibited by small molecule inhibitors ML141 (Cdc42), NSC23766 (Rac1), and Y27632 (Rho effector Rho Kinase). On the other hand, lysophosphatidic acid, an upstream activator of Rho, increased SZP synthesis in response to TGFβ1. These results suggest that SZP production is dependent on the functional cytoskeleton, and Rho GTPases contribute to SZP accumulation by modulating the actions of TGFβ.
Collapse
Affiliation(s)
- Sean M McNary
- 1 Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Sacramento, California
| | | | | |
Collapse
|
10
|
Schuurman W, Harimulyo EB, Gawlitta D, Woodfield TBF, Dhert WJA, van Weeren PR, Malda J. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics. J Tissue Eng Regen Med 2013; 10:315-24. [DOI: 10.1002/term.1726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/08/2012] [Accepted: 01/22/2013] [Indexed: 01/15/2023]
Affiliation(s)
- W. Schuurman
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Sciences; Utrecht University; The Netherlands
| | - E. B. Harimulyo
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
| | - D. Gawlitta
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
| | - T. B. F. Woodfield
- Department of Orthopaedic Surgery; University of Otago; Christchurch New Zealand
| | - W. J. A. Dhert
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
- Faculty of Veterinary Sciences; University of Utrecht; The Netherlands
| | - P. R. van Weeren
- Department of Equine Sciences, Faculty of Veterinary Sciences; Utrecht University; The Netherlands
| | - J. Malda
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
| |
Collapse
|
11
|
Kaupp JA, Tse MY, Pang SC, Kenworthy G, Hetzler M, Waldman SD. The effect of moving point of contact stimulation on chondrocyte gene expression and localization in tissue engineered constructs. Ann Biomed Eng 2013; 41:1106-19. [PMID: 23417513 DOI: 10.1007/s10439-013-0763-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/11/2013] [Indexed: 11/29/2022]
Abstract
Tissue engineering is a promising approach for articular cartilage repair. However, using current technologies, the developed engineered constructs generally do not possess an organized superficial layer, which contributes to the tissue's durability and unique mechanical properties. In this study, we investigated the efficacy of applying a moving point of contract-type stimulation (MPS) to stimulate the production of a superficial-like layer in the engineered constructs. MPS was applied to chondrocyte-agarose hydrogels at a frequency of 0.5, 1 or 2 Hz, under a constant compressive load of 10 mN for durations between 5 and 60 min over 3 consecutive days. Expression and localization of superficial zone constituents was conducted by qRT-PCR and in situ hybridization. Finite element modeling was also constructed to gain insight into the relationship between the applied stimulus and superficial zone constituent expression. Gene expression of superficial zone markers were affected in a frequency dependent manner with a physiologic frequency of 1 Hz producing maximal expression of PRG4, biglycan, decorin and collagen II. In situ hybridization revealed that localization of these markers predominantly occurred at 500-1000 μm below the construct surface which correlated to sub-surface strains between 10 and 25% as determined by finite element modeling. These results indicate that while mechanical stimuli can be used to enhance the expression of superficial zone constituents in engineered cartilage constructs, the resultant subsurface loading is a critical factor for localizing expression. Future studies will investigate altering the applied stimulus to further localize superficial zone constituent expression at the construct surface.
Collapse
Affiliation(s)
- J A Kaupp
- Department of Mechanical and Materials Engineering, McLaughlin Hall, Room 205, Queen University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Chen T, Hilton MJ, Brown EB, Zuscik MJ, Awad HA. Engineering superficial zone features in tissue engineered cartilage. Biotechnol Bioeng 2012; 110:1476-86. [PMID: 23239161 DOI: 10.1002/bit.24799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/22/2012] [Accepted: 11/23/2012] [Indexed: 12/11/2022]
Abstract
A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here, we report that hydrodynamic conditions that mimic the motion-induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and Type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features.
Collapse
Affiliation(s)
- Tony Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
13
|
Coates EE, Riggin CN, Fisher JP. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J Orthop Res 2012; 30:1886-97. [PMID: 22674584 DOI: 10.1002/jor.22166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/17/2012] [Indexed: 02/06/2023]
Abstract
Articular cartilage resists load and provides frictionless movement at joint surfaces. The tissue is organized into the superficial, middle, deep, and calcified zones throughout its depth, each which serve distinct functions. Proteoglycan 4 (PRG4), found in the superficial zone, is a critical component of the joint's lubricating mechanisms. Maintenance of both the chondrocyte and zonal chondrocyte phenotype remain challenges for in vitro culture and tissue engineering. Here we investigate the expression of PRG4 mRNA and protein by primary bovine superficial zone chondrocytes, middle/deep zone chondrocytes, and mesenchymal stem cells encapsulated in alginate hydrogels with hyaluronic acid (HA) and chondroitin sulfate (CS) additives. Chondrogenic phenotype and differentiation markers are evaluated by mRNA expression, histochemical, and immunohistochemical staining. Results show middle/deep cells express no measurable PRG4 mRNA by day 7. In contrast, superficial zone cells express elevated PRG4 mRNA throughout culture time. This expression can be significantly enhanced up to 15-fold by addition of both HA and CS to scaffolds. Conversely, PRG4 mRNA expression is downregulated (up to 5-fold) by CS and HA in differentiating MSCs, possibly due to build up of entrapped protein. HA and CS demonstrate favorable effects on chondrogenesis by upregulating transcription factor Sox9 mRNA (up to 4.6-fold) and downregulating type I collagen mRNA (up to 18-fold). Results highlight the important relationship between matrix components and expression of critical lubricating proteins in an engineered cartilage scaffold.
Collapse
Affiliation(s)
- Emily E Coates
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
14
|
Han E, Ge C, Chen AC, Schumacher BL, Sah RL. Compaction enhances extracellular matrix content and mechanical properties of tissue-engineered cartilaginous constructs. Tissue Eng Part A 2012; 18:1151-60. [PMID: 22372815 PMCID: PMC3360506 DOI: 10.1089/ten.tea.2011.0300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 01/27/2012] [Indexed: 11/13/2022] Open
Abstract
Many cell-based tissue-engineered cartilaginous constructs are mechanically softer than native tissue and have low content and abnormal proportions of extracellular matrix (ECM) constituents. We hypothesized that the load-bearing mechanical properties of cartilaginous constructs improve with the inclusion of collagen (COL) and proteoglycan (PG) during assembly. The objectives of this work were to determine (1) the effect of addition of PG, COL, or COL+PG on compressive properties of 2% agarose constructs and (2) the ability of mechanical compaction to concentrate matrix content and improve the compressive properties of such constructs. The inclusion of COL+PG improved the compressive properties of hydrogel constructs compared with PG or COL alone. Mechanical compaction increased the PG and COL concentrations in and compressive stiffness of the constructs. Chondrocytes included in the constructs maintained high viability after compaction. These results support the concepts that the assembly of cartilaginous constructs with COL+PG and application of mechanical compaction enhance the ECM content and compressive properties of engineered cartilaginous constructs.
Collapse
Affiliation(s)
- EunHee Han
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Chenghao Ge
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Albert C. Chen
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Barbara L. Schumacher
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Robert L. Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, California
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
15
|
McNary SM, Athanasiou KA, Reddi AH. Engineering lubrication in articular cartilage. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:88-100. [PMID: 21955119 DOI: 10.1089/ten.teb.2011.0394] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional tissue engineering of articular cartilage that begins to explore and incorporate methods of lubrication.
Collapse
Affiliation(s)
- Sean M McNary
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, California, USA
| | | | | |
Collapse
|
16
|
Klein TJ, Malda J, Sah RL, Hutmacher DW. Tissue engineering of articular cartilage with biomimetic zones. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:143-57. [PMID: 19203206 DOI: 10.1089/ten.teb.2008.0563] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones.
Collapse
Affiliation(s)
- Travis J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | | | | |
Collapse
|
17
|
Chen YM, Gong JP, Tanaka M, Yasuda K, Yamamoto S, Shimomura M, Osada Y. Tuning of cell proliferation on tough gels by critical charge effect. J Biomed Mater Res A 2009; 88:74-83. [DOI: 10.1002/jbm.a.31869] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Han E, Bae WC, Hsieh-Bonassera ND, Wong VW, Schumacher BL, Görtz S, Masuda K, Bugbee WD, Sah RL. Shaped, stratified, scaffold-free grafts for articular cartilage defects. Clin Orthop Relat Res 2008; 466:1912-20. [PMID: 18506565 PMCID: PMC2584257 DOI: 10.1007/s11999-008-0291-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 04/23/2008] [Indexed: 01/31/2023]
Abstract
One goal of treatment for large articular cartilage defects is to restore the anatomic contour of the joint with tissue having a structure similar to native cartilage. Shaped and stratified cartilaginous tissue may be fabricated into a suitable graft to achieve such restoration. We asked if scaffold-free cartilaginous constructs, anatomically shaped and targeting spherically-shaped hips, can be created using a molding technique and if biomimetic stratification of the shaped constructs can be achieved with appropriate superficial and middle/deep zone chondrocyte subpopulations. The shaped, scaffold-free constructs were formed from the alginate-released bovine calf chondrocytes with shaping on one (saucer), two (cup), or neither (disk) surfaces. The saucer and cup constructs had shapes distinguishable quantitatively (radius of curvature of 5.5 +/- 0.1 mm for saucer and 2.8 +/- 0.1 mm for cup) and had no adverse effects on the glycosaminoglycan and collagen contents and their distribution in the constructs as assessed by biochemical assays and histology, respectively. Biomimetic stratification of chondrocyte subpopulations in saucer- and cup-shaped constructs was confirmed and quantified using fluorescence microscopy and image analysis. This shaping method, combined with biomimetic stratification, has the potential to create anatomically contoured large cartilaginous constructs.
Collapse
Affiliation(s)
- EunHee Han
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412 USA
| | - Won C. Bae
- Department of Radiology, University of California-San Diego, La Jolla, CA USA
| | - Nancy D. Hsieh-Bonassera
- Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, CA USA
| | - Van W. Wong
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412 USA
| | - Barbara L. Schumacher
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412 USA
| | - Simon Görtz
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, CA USA
| | - Koichi Masuda
- Department of Orthopedic Surgery and Biochemistry, Rush Medical College at Rush University Medical Center, Chicago, IL USA
| | - William D. Bugbee
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, CA USA
| | - Robert L. Sah
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412 USA ,Whitaker Institute of Biomedical Engineering, University of California-San Diego, La Jolla, CA USA
| |
Collapse
|
19
|
Abstract
Cartilage of articular joints grows and matures to achieve characteristic sizes, forms, and functional properties. Through these processes, the tissue not only serves as a template for bone growth but also yields mature articular cartilage providing joints with a low-friction, wear-resistant bearing material. The study of cartilage growth and maturation is a focus of both cartilage biologists and bioengineers with one goal of trying to create biologic tissue substitutes for the repair of damaged joints. Experimental approaches both in vivo and in vitro are being used to better understand the mechanisms and regulation of growth and maturation processes. This knowledge may facilitate the controlled manipulation of cartilage size, shape, and maturity to meet the criteria needed for successful clinical applications. Mathematical models are also useful tools for quantitatively describing the dynamically changing composition, structure and function of cartilage during growth and maturation and may aid the development of tissue engineering solutions. Recent advances in methods of cartilage formation and culture which control the size, shape, and maturity of these tissues are numerous and provide contrast to the physiologic development of cartilage.
Collapse
Affiliation(s)
- Gregory M Williams
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | | | | |
Collapse
|
20
|
Tanaka E, Detamore MS, Tanimoto K, Kawai N. Lubrication of the temporomandibular joint. Ann Biomed Eng 2007; 36:14-29. [PMID: 17985243 DOI: 10.1007/s10439-007-9401-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
Although tissue engineering of the temporomandibular joint (TMJ) structures is in its infancy, tissue engineering provides the revolutionary possibility for treatment of temporomandibular disorders (TMDs). Recently, several reviews have provided a summary of knowledge of TMJ structure and function at the biochemical, cellular, or mechanical level for tissue engineering of mandibular cartilage, bone and the TMJ disc. As the TMJ enables large relative movements, joint lubrication can be considered of great importance for an understanding of the dynamics of the TMJ. The tribological characteristics of the TMJ are essential for reconstruction and tissue engineering of the joint. The purpose of this review is to provide a summary of advances relevant to the tribological characteristics of the TMJ and to serve as a reference for future research in this field. This review consists of four parts. Part 1 is a brief review of the anatomy and function of the TMJ articular components. In Part 2, the biomechanical and biochemical factors associated with joint lubrication are described: the articular surface topology with microscopic surface roughness and the biomechanical loading during jaw movements. Part 3 includes lubrication theories and possible mechanisms for breakdown of joint lubrication. Finally, in Part 4, the requirement and possibility of tissue engineering for treatment of TMDs with degenerative changes as a future treatment regimen will be discussed in a tribological context.
Collapse
Affiliation(s)
- Eiji Tanaka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | | | | | | |
Collapse
|
21
|
Porter RM, Akers RM, Howard RD, Forsten-Williams K. Alginate Encapsulation Impacts the Insulin-like Growth Factor-I System of Monolayer-Expanded Equine Articular Chondrocytes and Cell Response to Interleukin-1β. ACTA ACUST UNITED AC 2007; 13:1333-45. [PMID: 17518712 DOI: 10.1089/ten.2006.0345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alginate hydrogel culture has been shown to reestablish chondrocytic phenotype following monolayer expansion; however, previous studies have not adequately addressed how culture conditions affect the signaling systems responsible for chondrocyte metabolic activity. Here we investigate whether chondrocyte culture history influences the insulin-like growth factor-I (IGF-I) signaling system and its regulation by interleukin-1 (IL-1). Articular chondrocytes (ACs) from equine stifle joints were expanded by serial passage and were either encapsulated in alginate beads or maintained in monolayer culture for 10 days. Alginate-derived cells (ADCs) and monolayer-derived cells (MDCs) were then plated at high density, stimulated with IL-1beta (1 and 10 ng/mL) or IGF-I (50 ng/mL) for 48 h, and assayed for levels of type I IGF receptor (IGF-IR), IGF binding proteins (IGFBPs), and endogenously secreted IGF-I. Intermediate alginate culture yielded relatively low IGF-IR levels that increased in response to IL-1beta, whereas higher receptor levels on MDCs were reduced by cytokine. MDCs also secreted substantially more IGFBP-2, the predominant binding protein in conditioned media (CM), though IL-1beta suppressed levels for both cell populations. Concentrations of autocrine/paracrine IGF-I paralleled IGFBP-2 secretion. Disparate basal levels of IGF-IR and IGFBP-2, but not IGF-I, were attributed to relative transcript expression. Systemic differences coincided with varied effects of IL-1beta and IGF-I on cell growth and type I collagen expression. We conclude that culture strategy impacts the IGF-I signaling system of ACs, potentially altering their capacity to mediate cartilage repair. Consideration of hormonal regulators may be an essential element to improve chondrocyte culture protocols used in tissue engineering applications.
Collapse
Affiliation(s)
- Ryan M Porter
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211, USA
| | | | | | | |
Collapse
|
22
|
Cheng C, Conte E, Pleshko-Camacho N, Hidaka C. Differences in matrix accumulation and hypertrophy in superficial and deep zone chondrocytes are controlled by bone morphogenetic protein. Matrix Biol 2007; 26:541-53. [PMID: 17618099 PMCID: PMC2080576 DOI: 10.1016/j.matbio.2007.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 12/25/2022]
Abstract
Despite the knowledge that superficial zone chondrocytes (SZC, located within 100 mum of the articular surface) and deep zone chondrocytes (DZC, located near the calcified zone) have distinct phenotypes, previous studies on bone morphogenetic proteins (BMPs) have not differentiated its effects on SZC versus DZC. Using a pellet culture model we have compared phenotype, morphology and matrix accumulation in SZC and DZC with or without adenovirus-mediated overexpression of BMP2 or -7 or the BMP antagonist Noggin. Greater accumulation of proteoglycan (PG)-rich matrix in the untreated DZC was associated with a hypertrophic phenotype with large cell diameters and high gene expression levels of runt-related transcription factor-2 (Runx2) as well as higher endogenous BMP activity. Noggin overexpression decreased matrix accumulation and cell diameters in SZC and DZC, confirming a role for endogenous BMP in both processes. In DZC, overexpression of either BMP2 or -7 increased cell diameter without increasing PG-rich matrix accumulation. In contrast, in SZC, BMP overexpression increased matrix accumulation and type II collagen gene expression without increasing cell diameter. These data indicate that differences in endogenous BMP activity level and responsiveness to BMPs define, in part, the differences between the SZC and DZC phenotype. They also suggest that SZC may be a more appropriate target for BMP therapy than DZC.
Collapse
Affiliation(s)
- Christina Cheng
- Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, New York, NY, United States
| | | | | | | |
Collapse
|
23
|
Blewis ME, Schumacher BL, Klein TJ, Schmidt TA, Voegtline MS, Sah RL. Microenvironment regulation of PRG4 phenotype of chondrocytes. J Orthop Res 2007; 25:685-95. [PMID: 17262831 DOI: 10.1002/jor.20307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Articular cartilage is a heterogeneous tissue with superficial (S), middle (M), and deep (D) zones. Chondrocytes in the S zone secrete the lubricating PRG4 protein, while chondrocytes from the M and D zones are more specialized in producing large amounts of the glycosaminoglycan (GAG) component of the extracellular matrix. Soluble and insoluble chemicals and mechanical stimuli regulate cartilage development, growth, and homeostasis; however, the mechanisms of regulation responsible for the distinct PRG4-positive and negative phenotypes of chondrocytes are unknown. The objective of this study was to determine if interaction between S and M chondrocytes regulates chondrocyte phenotype, as determined by coculture in monolayer at different ratios of S:M (100:0, 75:25, 50:50, 25:75, 0:100) and at different densities (240,000, 120,000, 60,000, and 30,000 cells/cm(2)), and by measurement of PRG4 secretion and expression, and GAG accumulation. Coculture of S and M cells resulted in significant up-regulation in PRG4 secretion and the percentage of cells expressing PRG4, with simultaneous down-regulation of GAG accumulation. Tracking M cells with PKH67 dye in coculture revealed that they maintained a PRG4-negative phenotype, and proliferated less than S cells. Taken together, these results indicate that the up-regulated PRG4 expression in coculture is a result of preferential proliferation of PRG4-expressing S cells. This finding may have practical implications for generating a large number of phenotypically normal S cells, which can be limited in source, for tissue engineering applications.
Collapse
Affiliation(s)
- Megan E Blewis
- Department of Bioengineering, University of California-San Diego, La Jolla, California 92093-0412, USA
| | | | | | | | | | | |
Collapse
|