1
|
Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials 2021; 275:120906. [PMID: 34139506 DOI: 10.1016/j.biomaterials.2021.120906] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
Myocardial infarction is the first cause of worldwide mortality, with an increasing incidence also reported in developing countries. Over the past decades, preclinical research and clinical trials continually tested the efficacy of cellular and acellular-based treatments. However, none of them resulted in a drug or device currently used in combination with either percutaneous coronary intervention or coronary artery bypass graft. Inflammatory, proliferation and remodelling phases follow the ischaemic event in the myocardial tissue. Only recently, single-cell sequencing analyses provided insights into the specific cell populations which determine the final fibrotic deposition in the affected region. In this review, ischaemia, inflammation, fibrosis, angiogenesis, cellular stress and fundamental cellular and molecular components are evaluated as therapeutic targets. Given the emerging evidence of biomaterial-based systems, the increasing use of injectable hydrogels/scaffolds and epicardial patches is reported both as acellular and cellularised/functionalised treatments. Since several variables influence the outcome of any experimented treatment, we return to the pathological basis with an unbiased view towards any specific process or cellular component. Thus, by evaluating the benefits and limitations of the approaches based on these targets, the reader can weigh the rationale of each of the strategies that reached the clinical trials stage. As recent studies focused on the relevance of the extracellular matrix in modulating ischaemic remodelling and enhancing myocardial regeneration, we aim to portray current trends in the field with this review. Finally, approaches towards feasible translational studies that are as yet unexplored are also suggested.
Collapse
|
2
|
Yap KK, Gerrand YW, Dingle AM, Yeoh GC, Morrison WA, Mitchell GM. Liver sinusoidal endothelial cells promote the differentiation and survival of mouse vascularised hepatobiliary organoids. Biomaterials 2020; 251:120091. [PMID: 32408048 DOI: 10.1016/j.biomaterials.2020.120091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/15/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
The structural and physiological complexity of currently available liver organoids is limited, thereby reducing their relevance for drug studies, disease modelling, and regenerative therapy. In this study we combined mouse liver progenitor cells (LPCs) with mouse liver sinusoidal endothelial cells (LSECs) to generate hepatobiliary organoids with liver-specific vasculature. Organoids consisting of 5x103 cells were created from either LPCs, or a 1:1 combination of LPC/LSECs. LPC organoids demonstrated mild hepatobiliary differentiation in vitro with minimal morphological change; in contrast LPC/LSEC organoids developed clusters of polygonal hepatocyte-like cells and biliary ducts over a 7 day period. Hepatic (albumin, CPS1, CYP3A11) and biliary (GGT1) genes were significantly upregulated in LPC/LSEC organoids compared to LPC organoids over 7 days, as was albumin secretion. LPC/LSEC organoids also had significantly higher in vitro viability compared to LPC organoids. LPC and LPC/LSEC organoids were transplanted into vascularised chambers created in Fah-/-/Rag2-/-/Il2rg-/- mice (50 LPC organoids, containing 2.5x105 LPCs, and 100 LPC/LSEC organoids, containing 2.5x105 LPCs). At 2 weeks, minimal LPCs survived in chambers with LPC organoids, but robust hepatobiliary ductular tissue was present in LPC/LSEC organoids. Morphometric analysis demonstrated a 115-fold increase in HNF4α+ cells in LPC/LSEC organoid chambers (17.26 ± 4.34 cells/mm2 vs 0.15 ± 0.15 cells/mm2, p = 0.018), and 42-fold increase in Sox9+ cells in LPC/LSEC organoid chambers (28.29 ± 6.05 cells/mm2 vs 0.67 ± 0.67 cells/mm2, p = 0.011). This study presents a novel method to develop vascularised hepatobiliary organoids, with both in vitro and in vivo results confirming that incorporating LSECs with LPCs into organoids significantly increases the differentiation of hepatobiliary tissue within organoids and their survival post-transplantation.
Collapse
Affiliation(s)
- Kiryu K Yap
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia.
| | - Yi-Wen Gerrand
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia
| | - Aaron M Dingle
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia
| | - George C Yeoh
- Harry Perkins Institute of Medical Research & Centre for Medical Research, University of Western Australia, Western Australia, Australia
| | - Wayne A Morrison
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia; Australian Catholic University, Victoria, Australia
| | - Geraldine M Mitchell
- O'Brien Institute, Department of St Vincent's Institute, Victoria, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia; Australian Catholic University, Victoria, Australia
| |
Collapse
|
3
|
Yap KK, Yeoh GC, Morrison WA, Mitchell GM. The Vascularised Chamber as an In Vivo Bioreactor. Trends Biotechnol 2018; 36:1011-1024. [DOI: 10.1016/j.tibtech.2018.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
4
|
Taylor CJ, Church JE, Williams MD, Gerrand YW, Keramidaris E, Palmer JA, Galea LA, Penington AJ, Morrison WA, Mitchell GM. Hypoxic preconditioning of myoblasts implanted in a tissue engineering chamber significantly increases local angiogenesis via upregulation of myoblast vascular endothelial growth factor-A expression and downregulation of miRNA-1, miRNA-206 and angiopoietin-1. J Tissue Eng Regen Med 2017; 12:e408-e421. [PMID: 28477583 DOI: 10.1002/term.2440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/01/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Vascularization is a major hurdle for growing three-dimensional tissue engineered constructs. This study investigated the mechanisms involved in hypoxic preconditioning of primary rat myoblasts in vitro and their influence on local angiogenesis postimplantation. Primary rat myoblast cultures were exposed to 90 min hypoxia at <1% oxygen followed by normoxia for 24 h. Real time (RT) polymerase chain reaction evaluation indicated that 90 min hypoxia resulted in significant downregulation of miR-1 and miR-206 (p < 0.05) and angiopoietin-1 (p < 0.05) with upregulation of vascular endothelial growth factor-A (VEGF-A; p < 0.05). The miR-1 and angiopoietin-1 responses remained significantly downregulated after a 24 h rest phase. In addition, direct inhibition of miR-206 in L6 myoblasts caused a significant increase in VEGF-A expression (p < 0.05), further establishing that changes in VEGF-A expression are influenced by miR-206. Of the myogenic genes examined, MyoD was significantly upregulated, only after 24 h rest (p < 0.05). Preconditioned or control myoblasts were implanted with Matrigel™ into isolated bilateral tissue engineering chambers incorporating a flow-through epigastric vascular pedicle in severe combined immunodeficiency mice and the chamber tissue harvested 14 days later. Chambers implanted with preconditioned myoblasts had a significantly increased percentage volume of blood vessels (p = 0.0325) compared with chambers implanted with control myoblasts. Hypoxic preconditioned myoblasts promote vascularization of constructs via VEGF upregulation and downregulation of angiopoietin-1, miR-1 and miR-206. The relatively simple strategy of hypoxic preconditioning of implanted cells - including non-stem cell types - has broad, future applications in tissue engineering of skeletal muscle and other tissues, as a technique to significantly increase implant site angiogenesis.
Collapse
Affiliation(s)
- C J Taylor
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia.,Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia.,Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - J E Church
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - M D Williams
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia.,Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Y-W Gerrand
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia.,Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - E Keramidaris
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia
| | - J A Palmer
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia.,Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - L A Galea
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia
| | - A J Penington
- Pediatric Plastic and Maxillofacial Surgery, Royal Children's Hospital, Parkville, Victoria, Australia
| | - W A Morrison
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia.,Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - G M Mitchell
- O'Brien Institute Department, St Vincent's Institute, Melbourne, Australia.,Department of Surgery, St Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
5
|
Pereira LX, Viana CTR, Orellano LAA, Almeida SA, Vasconcelos AC, Goes ADM, Birbrair A, Andrade SP, Campos PP. Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration. Life Sci 2017; 176:67-74. [PMID: 28336399 DOI: 10.1016/j.lfs.2017.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 02/07/2023]
Abstract
AIMS Several alternative cellular approaches using biomaterials to host insulin-producing cells derived from stem cells have been developed to overcome the limitations of type 1 diabetes treatment (exogenous insulin injection). However, none seem to fulfill all requirements needed to induce pancreatic cells successful colonization of the scaffolds. Here, we report a polymeric platform adherent to the native mice pancreas filled with human adipose stem cells (hASCs) that was able to induce growth of pancreatic parenchyma. MAIN METHODS Synthetic polyether-polyurethane discs were placed adjacent to pancreas of normoglycemic and streptozotocin-induced diabetic mice. At day 4 post implantation, 1×106 hASCs were injected intra-implant in groups of normoglycemic and diabetic mice. Immunohistochemistry analysis of the implants was performed to identify insulin positive cells in the newly formed tissue. In addition, metabolic, inflammatory and angiogenic parameters were carried out in those mice. KEY FINDINGS This study provides evidence of the ability of a biohybrid device to induce the growth of differentiated pancreas parenchyma in both normoglycemic and streptozotocin-induced diabetic mice as detected by histological analysis. Glucose metabolism and body weight of hyperglycemic mice bearing hASCs implants improved. SIGNIFICANCE The synthetic porous scaffold bearing hASC cells placed adjacent to the native animal pancreas exhibits the potential to be exploited in future cell-based type 1 diabetes therapies.
Collapse
Affiliation(s)
- Luciana Xavier Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Aparecida Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Alexander Birbrair
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Sci Rep 2016; 6:38754. [PMID: 27924941 PMCID: PMC5141432 DOI: 10.1038/srep38754] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
Reconstructing functional volumetric tissue in vivo following implantation remains a critical challenge facing cell-based approaches. Several pre-vascularization approaches have been developed to increase cell viability following implantation. Structural and functional restoration was achieved in a preclinical rodent tissue defect; however, the approach used in this model fails to repair larger (>mm) defects as observed in a clinical setting. We propose an effective cell delivery system utilizing appropriate vascularization at the site of cell implantation that results in volumetric and functional tissue reconstruction. Our method of multiple cell injections in a progressive manner yielded improved cell survival and formed volumetric muscle tissues in an ectopic muscle site. In addition, this strategy supported the reconstruction of functional skeletal muscle tissue in a rodent volumetric muscle loss injury model. Results from our study suggest that our method may be used to repair volumetric tissue defects by overcoming diffusion limitations and facilitating adequate vascularization.
Collapse
|
7
|
Bursac N, Juhas M, Rando TA. Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease. Annu Rev Biomed Eng 2016; 17:217-42. [PMID: 26643021 DOI: 10.1146/annurev-bioeng-071114-040640] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708;
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305.,Rehabilitation Research & Development Service, VA Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
8
|
Baldari S, Di Rocco G, Trivisonno A, Samengo D, Pani G, Toietta G. Promotion of Survival and Engraftment of Transplanted Adipose Tissue-Derived Stromal and Vascular Cells by Overexpression of Manganese Superoxide Dismutase. Int J Mol Sci 2016; 17:1082. [PMID: 27399681 PMCID: PMC4964458 DOI: 10.3390/ijms17071082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Short-term persistence of transplanted cells during early post-implant period limits clinical efficacy of cell therapy. Poor cell survival is mainly due to the harsh hypoxic microenvironment transplanted cells face at the site of implantation and to anoikis, driven by cell adhesion loss. We evaluated the hypothesis that viral-mediated expression of a gene conferring hypoxia resistance to cells before transplant could enhance survival of grafted cells in early stages after implant. We used adipose tissue as cell source because it consistently provides high yields of adipose-tissue-derived stromal and vascular cells (ASCs), suitable for regenerative purposes. Luciferase positive cells were transduced with lentiviral vectors expressing either green fluorescent protein as control or human manganese superoxide dismutase (SOD2). Cells were then exposed in vitro to hypoxic conditions, mimicking cell transplantation into an ischemic site. Cells overexpressing SOD2 displayed survival rates significantly greater compared to mock transduced cells. Similar results were also obtained in vivo after implantation into syngeneic mice and assessment of cell engraftment by in vivo bioluminescent imaging. Taken together, these findings suggest that ex vivo gene transfer of SOD2 into ASCs before implantation confers a cytoprotective effect leading to improved survival and engraftment rates, therefore enhancing cell therapy regenerative potential.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| | - Angelo Trivisonno
- Department of Surgical Science, Policlinico Umberto I, University of Rome "La Sapienza", Viale Regina Elena 324, Rome 00161, Italy.
| | - Daniela Samengo
- Institute of General Pathology, Laboratory of Cell Signaling, Università Cattolica School of Medicine, Largo F. Vito 1, Rome 00168, Italy.
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Università Cattolica School of Medicine, Largo F. Vito 1, Rome 00168, Italy.
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute, via E. Chianesi 53, Rome 00144, Italy.
| |
Collapse
|
9
|
Zhan W, Marre D, Mitchell GM, Morrison WA, Lim SY. Tissue Engineering by Intrinsic Vascularization in an In Vivo Tissue Engineering Chamber. J Vis Exp 2016. [PMID: 27286267 DOI: 10.3791/54099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In reconstructive surgery, there is a clinical need for an alternative to the current methods of autologous reconstruction which are complex, costly and trade one defect for another. Tissue engineering holds the promise to address this increasing demand. However, most tissue engineering strategies fail to generate stable and functional tissue substitutes because of poor vascularization. This paper focuses on an in vivo tissue engineering chamber model of intrinsic vascularization where a perfused artery and a vein either as an arteriovenous loop or a flow-through pedicle configuration is directed inside a protected hollow chamber. In this chamber-based system angiogenic sprouting occurs from the arteriovenous vessels and this system attracts ischemic and inflammatory driven endogenous cell migration which gradually fills the chamber space with fibro-vascular tissue. Exogenous cell/matrix implantation at the time of chamber construction enhances cell survival and determines specificity of the engineered tissues which develop. Our studies have shown that this chamber model can successfully generate different tissues such as fat, cardiac muscle, liver and others. However, modifications and refinements are required to ensure target tissue formation is consistent and reproducible. This article describes a standardized protocol for the fabrication of two different vascularized tissue engineering chamber models in vivo.
Collapse
Affiliation(s)
- Weiqing Zhan
- O'Brien Institute Department, St Vincent's Institute of Medical Research
| | - Diego Marre
- O'Brien Institute Department, St Vincent's Institute of Medical Research
| | - Geraldine M Mitchell
- O'Brien Institute Department, St Vincent's Institute of Medical Research; Department of Surgery, University of Melbourne; Faculty of Health Sciences, Australia Catholic University
| | - Wayne A Morrison
- O'Brien Institute Department, St Vincent's Institute of Medical Research; Department of Surgery, University of Melbourne; Faculty of Health Sciences, Australia Catholic University
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research; Department of Surgery, University of Melbourne;
| |
Collapse
|
10
|
Tilkorn DJ. Angiogenesis, cell differentiation and cell survival in tissue engineering and cancer research. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2015; 4:Doc08. [PMID: 26504737 PMCID: PMC4604924 DOI: 10.3205/iprs000067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent medical advances lead to a growing demand for tissue engineering and regenerative medicine in the future. Tissue engineering and regenerative medicine aim to create substitute tissue or restore lost or impaired tissue by combining biological science with engineering techniques, whereas cancer research faces the challenge to identify and hinder aberrant and uncontrolled cell growth. These two seemingly opposing fields of research share fundamental communalities. This review focuses on the shared underlying biological processes. Exploring these mechanisms of tissue growth and homeostasis from different angles will allow for creative novel approaches for both areas of research.
Collapse
Affiliation(s)
- Daniel Johannes Tilkorn
- Klinik für Plastische, Rekonstruktive und Ästhetische Chirurgie, Handchirurgie, Alfried Krupp Krankenhaus, Essen, Germany
| |
Collapse
|
11
|
Zhang Y, Sivakumaran P, Newcomb AE, Hernandez D, Harris N, Khanabdali R, Liu GS, Kelly DJ, Pébay A, Hewitt AW, Boyle A, Harvey R, Morrison WA, Elliott DA, Dusting GJ, Lim SY. Cardiac Repair With a Novel Population of Mesenchymal Stem Cells Resident in the Human Heart. Stem Cells 2015; 33:3100-13. [PMID: 26184084 DOI: 10.1002/stem.2101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/26/2015] [Accepted: 06/14/2015] [Indexed: 01/20/2023]
Abstract
Cardiac resident stem cells (CRSCs) hold much promise to treat heart disease but this remains a controversial field. Here, we describe a novel population of CRSCs, which are positive for W8B2 antigen and were obtained from adult human atrial appendages. W8B2(+) CRSCs exhibit a spindle-shaped morphology, are clonogenic and capable of self-renewal. W8B2(+) CRSCs show high expression of mesenchymal but not hematopoietic nor endothelial markers. W8B2(+) CRSCs expressed GATA4, HAND2, and TBX5, but not C-KIT, SCA-1, NKX2.5, PDGFRα, ISL1, or WT1. W8B2(+) CRSCs can differentiate into cardiovascular lineages and secrete a range of cytokines implicated in angiogenesis, chemotaxis, inflammation, extracellular matrix remodeling, cell growth, and survival. In vitro, conditioned medium collected from W8B2(+) CRSCs displayed prosurvival, proangiogenic, and promigratory effects on endothelial cells, superior to that of other adult stem cells tested, and additionally promoted survival and proliferation of neonatal rat cardiomyocytes. Intramyocardial transplantation of human W8B2(+) CRSCs into immunocompromised rats 1 week after myocardial infarction markedly improved cardiac function (∼40% improvement in ejection fraction) and reduced fibrotic scar tissue 4 weeks after infarction. Hearts treated with W8B2(+) CRSCs showed less adverse remodeling of the left ventricle, a greater number of proliferating cardiomyocytes (Ki67(+) cTnT(+) cells) in the remote region, higher myocardial vascular density, and greater infiltration of CD163(+) cells (a marker for M2 macrophages) into the border zone and scar regions. In summary, W8B2(+) CRSCs are distinct from currently known CRSCs found in human hearts, and as such may be an ideal cell source to repair myocardial damage after infarction.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Andrew E Newcomb
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, St. Vincent's Hospital, Melbourne, Victoria, Australia.,Vascular and Cardiac Surgery, The Cardiovascular Research Centre (CvRC), Australian Catholic University, Fitzroy, Victoria, Australia
| | - Damián Hernandez
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Nicole Harris
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Ramin Khanabdali
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Guei-Sheung Liu
- Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Darren J Kelly
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alice Pébay
- Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Alex W Hewitt
- Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Andrew Boyle
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Richard Harvey
- Developmental and Stem Cell Biology, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Wayne A Morrison
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,AORTEC, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - David A Elliott
- Cardiac Development, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gregory J Dusting
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Centre for Eye Research Australia & Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Shiang Y Lim
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
12
|
Rebelo MA, Alves TFR, de Lima R, Oliveira JM, Vila MMDC, Balcão VM, Severino P, Chaud MV. Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues. J Biomed Mater Res B Appl Biomater 2015; 104:1483-94. [PMID: 26148945 DOI: 10.1002/jbm.b.33482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/19/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Abstract
Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016.
Collapse
Affiliation(s)
- Márcia A Rebelo
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Thais F R Alves
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Renata de Lima
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - José M Oliveira
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Marta M D C Vila
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Victor M Balcão
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil.,i(bs)2-Intelligent Biosensing and Biomolecule Stabilization Research Group, University of Sorocaba, Sorocaba, SP, Brazil.,CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Aracaju, SE, Brazil
| | - Marco V Chaud
- LaBNUS-Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil.
| |
Collapse
|
13
|
Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 2015; 33:401-7. [PMID: 25937289 DOI: 10.1016/j.tibtech.2015.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
This review examines important robust methods for sustained, steady-state, in vitro culture. To achieve 'physiologically relevant' tissues in vitro additional complexity must be introduced to provide suitable transport, cell signaling, and matrix support for cells in 3D environments to achieve stable readouts of tissue function. Most tissue engineering systems draw conclusions on tissue functions such as responses to toxins, nutrition, or drugs based on short-term outcomes with in vitro cultures (2-14 days). However, short-term cultures limit insight with physiological relevance because the cells and tissues have not reached a steady-state.
Collapse
Affiliation(s)
- Rosalyn D Abbott
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
14
|
Sullivan DC, Repper JP, Frock AW, McFetridge PS, Petersen BE. Current Translational Challenges for Tissue Engineering: 3D Culture, Nanotechnology, and Decellularized Matrices. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. Int J Biochem Cell Biol 2014; 56:38-46. [PMID: 25449260 DOI: 10.1016/j.biocel.2014.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 01/14/2023]
Abstract
Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
16
|
Go DP, Palmer JA, Mitchell GM, Gras SL, O'Connor AJ. Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly. J Biomed Mater Res A 2014; 103:1849-63. [PMID: 25203163 DOI: 10.1002/jbm.a.35319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/16/2014] [Accepted: 08/15/2014] [Indexed: 01/15/2023]
Abstract
Tissue engineering is a complex and dynamic process that requires varied biomolecular cues to promote optimal tissue growth. Consequently, the development of delivery systems capable of sequestering more than one biomolecule with controllable release profiles is a key step in the advancement of this field. This study develops multilayered polyelectrolyte films incorporating alpha-melanocyte stimulating hormone (α-MSH), an anti-inflammatory molecule, and basic fibroblast growth factor (bFGF). The layers were successfully formed on macroporous poly lactic-co-glycolic acid microspheres produced using a combined inkjet and thermally induced phase separation technique. Release profiles could be varied by altering layer properties including the number of layers and concentrations of layering molecules. α-MSH and bFGF were released in a sustained manner and the bioactivity of α-MSH was shown to be preserved using an activated macrophage cell assay in vitro. The system performance was also tested in vivo subcutaneously in rats. The multilayered microspheres reduced the inflammatory response induced by a carrageenan stimulus 6 weeks after implantation compared to the non-layered microspheres without the anti-inflammatory and growth factors, demonstrating the potential of such multilayered constructs for the controlled delivery of bioactive molecules.
Collapse
Affiliation(s)
- Dewi P Go
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, 3010, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 3010, Victoria, Australia
| | | | | | | | | |
Collapse
|
17
|
Sun D, Yang Y, Wei Z, Xu Y, Zhang X, Hong B. Engineering of pre-vascularized urethral patch with muscle flaps and hypoxia-activated hUCMSCs improves its therapeutic outcome. J Cell Mol Med 2014; 18:434-43. [PMID: 24460735 PMCID: PMC3955150 DOI: 10.1111/jcmm.12157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering has brought new hopes for urethral reconstruction. However, the absence of pre-vascularization and the subsequent degradation of materials often lead to the failure of in vivo application. In this study, with the assistance of hypoxia-activated human umbilical cord mesenchymal stem cells (hUCMSCs), pedicled muscle flaps were used as materials and pre-incubated in ventral penile subcutaneous cavity of rabbit for 3 weeks to prepare a pre-vascularized urethral construct. We found that small vessels and muscle fibres were scattered in the construct after 3 weeks' pre-incubation. The construct presented a fibrous reticular structure, which was similar to that of the corpus spongiosum under microscope examination. The produced constructs were then used as a patch graft for reconstruction of the defective rabbit urethra (experimental group), natural muscular patch was used as control (control group). Twelve weeks after the reconstructive surgery, urethrography and urethroscope inspections showed wide calibres of the reconstructed urethra in the experimental group. Histopathological studies revealed that fibrous connective tissues and abundant muscle fibres constituted the main body of the patch-grafted urethra. In contrast, in the control group, only adipose tissue was found in the stenosis-reconstructed urethra, replacing the originally grafted muscular tissue. To our knowledge, this is the first report that successfully constructed a pre-vascularized urethral construct by using hypoxia-activated hUCMSC and pedicled muscle flaps. More importantly, the pre-vascularized construct showed a good performance in urethral reconstruction when applied in vivo. The study provided a novel strategy for tissue engineering of pre-vascularized urethral construct for the defective urethra, representing a further advancement in urethral reconstruction.
Collapse
Affiliation(s)
- Dongchong Sun
- Department of Urology, People's Liberation Army General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Georgiadis V, Knight RA, Jayasinghe SN, Stephanou A. Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr Biol (Camb) 2014; 6:111-26. [DOI: 10.1039/c3ib40097b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of therapies that lead to the regeneration or functional repair of compromised cardiac tissue is the most important challenge facing translational cardiovascular research today.
Collapse
Affiliation(s)
| | - Richard A. Knight
- Medical Molecular Biology Unit
- University College London
- London WC1E 6JF, UK
| | - Suwan N. Jayasinghe
- BioPhysics Group
- UCL Institute of Biomedical Engineering
- UCL Centre for Stem Cells and Regenerative Medicine and Department of Mechanical Engineering
- University College London
- London WC1E 7JE, UK
| | | |
Collapse
|
19
|
Tuin SA, Pourdeyhimi B, Loboa EG. Interconnected, microporous hollow fibers for tissue engineering: Commercially relevant, industry standard scale-up manufacturing. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.35002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stephen A. Tuin
- Joint Department of Biomedical Engineering; at the University of North Carolina at Chapel Hill and North Carolina State University; 4208B EBIII, CB 7115, 911 Oval Raleigh, NC 27695
| | - Behnam Pourdeyhimi
- Nonwovens Cooperative Research Center, The Nonwovens Institute, North Carolina State University; 1000 Main Campus Drive Raleigh North Carolina 27695
| | - Elizabeth G. Loboa
- Joint Department of Biomedical Engineering; at the University of North Carolina at Chapel Hill and North Carolina State University; 4208B EBIII, CB 7115, 911 Oval Raleigh, NC 27695
- Materials Science Engineering; North Carolina State University; EB1 911 Partners Way Raleigh North Carolina 27695
| |
Collapse
|
20
|
Worner M, Poore S, Tilkorn D, Lokmic Z, Penington AJ. A Low-Cost, Small Volume Circuit for Autologous Blood Normothermic Perfusion of Rabbit Organs. Artif Organs 2013; 38:352-61. [DOI: 10.1111/aor.12155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Murray Worner
- Vascular Biology Laboratory; The O'Brien Institute; Fitzroy
| | - Samuel Poore
- Vascular Biology Laboratory; The O'Brien Institute; Fitzroy
- Division of Plastic and Reconstructive Surgery; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Daniel Tilkorn
- Vascular Biology Laboratory; The O'Brien Institute; Fitzroy
| | - Zerina Lokmic
- Department of Plastic and Maxillofacial Surgery; University of Melbourne and the Murdoch Children's Research Institute; Parkville Victoria Australia
| | - Anthony J. Penington
- Department of Plastic and Maxillofacial Surgery; University of Melbourne and the Murdoch Children's Research Institute; Parkville Victoria Australia
| |
Collapse
|
21
|
|
22
|
Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagul Fibrinolysis 2013; 23:419-27. [PMID: 22576289 DOI: 10.1097/mbc.0b013e3283540c0f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, different fibrin sealants with varying concentrations of the fibrin components were evaluated in terms of matrix degradation and vascularization in the arteriovenous loop (AVL) model of the rat. An AVL was placed in a Teflon isolation chamber filled with 500 μl fibrin gel. The matrix was composed of commercially available fibrin gels, namely Beriplast (Behring GmbH, Marburg, Germany) (group A), Evicel (Omrix Biopharmaceuticals S.A., Somerville, New Jersey, USA) (group B), Tisseel VH S/D (Baxter, Vienna, Austria) with a thrombin concentration of 4 IU/ml and a fibrinogen concentration of 80 mg/ml [Tisseel S F80 (Baxter), group C] and with an fibrinogen concentration of 20 mg/ml [Tisseel S F20 (Baxter), group D]. After 2 and 4 weeks, five constructs per group and time point were investigated using micro-computed tomography, and histological and morphometrical analysis techniques. The aprotinin, factor XIII and thrombin concentration did not affect the degree of clot degradation. An inverse relationship was found between fibrin matrix degradation and sprouting of blood vessels. By reducing the fibrinogen concentration in group D, a significantly decreased construct weight and an increased generation of vascularized connective tissue were detected. There was an inverse relationship between matrix degradation and vascularization detectable. Fibrinogen as the major matrix component showed a significant impact on the matrix properties. Alteration of fibrin gel properties might optimize formation of blood vessels.
Collapse
|
23
|
Lim SY, Hsiao ST, Lokmic Z, Sivakumaran P, Dusting GJ, Dilley RJ. Ischemic preconditioning promotes intrinsic vascularization and enhances survival of implanted cells in an in vivo tissue engineering model. Tissue Eng Part A 2012; 18:2210-9. [PMID: 22651554 DOI: 10.1089/ten.tea.2011.0719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Ischemic preconditioning (IPC) is a potent and effective means of protecting cells against ischemic injury. The protection has been demonstrated to involve release of paracrine factors that promote cell survival and angiogenesis, factors important for successful tissue engineering. The aim of the present study was to determine whether IPC of a vascular bed in vivo is an effective strategy to prepare it for tissue engineering with implanted cells. To test this hypothesis, an in vivo vascularized tissue engineering approach was employed, whereby polyacrylic chambers were placed around the femoral vessels of adult Sprague-Dawley rats. IPC was induced by 3 cycles of 5 min femoral artery occlusion interspersed with 5-min periods of reperfusion. Rats subjected to IPC generated bigger tissue constructs at 7 and 28 days postimplantation of empty chambers (∼50% increase in weight and volume, p<0.05). Morphometric counting of Masson trichrome stained tissue sections revealed significantly greater tissue construct volumes in ischemic preconditioned vascular beds at 7 and 28 days, increasing both fibrin matrix and vascularized tissue. Furthermore, morphometry of lectin-labeled blood vessels indicated an increase in vascular volume in IPC tissue constructs (∼100% increase vs. control, p<0.05). To investigate the cytoprotective effect of IPC, we implanted DiI-labeled neonatal rat cardiomyocytes in the chambers for 3 days, and IPC significantly reduced apoptosis of implanted cells as determined by the TUNEL assay and cleaved caspase-3 immunostaining. Furthermore, IPC significantly increased the cardiac muscle volume and vascular volume at 28 days after implantation of cardiomyocytes. In conclusion, in vivo IPC promotes survival of implanted cardiomyocytes and is associated with enhanced angiogenesis. IPC may represent a new approach to optimize tissue engineering with implanted cells.
Collapse
Affiliation(s)
- Shiang Y Lim
- O'Brien Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Srisuwan T, Tilkorn DJ, Al-Benna S, Abberton K, Messer HH, Thompson EW. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells. Dent Traumatol 2012; 29:84-91. [PMID: 22520279 DOI: 10.1111/j.1600-9657.2012.01136.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. MATERIALS AND METHODS A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8 weeks post-transplantation. RESULTS Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. CONCLUSION Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach.
Collapse
Affiliation(s)
- Tanida Srisuwan
- O'Brien Institute of Microsurgery, The University of Melbourne, St Vincent’s Hospital Campus, Vic., Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Srisuwan T, Tilkorn D, Al-Benna S, Vashi A, Penington A, Messer H, Abberton K, Thompson E. Survival of rat functional dental pulp cells in vascularized tissue engineering chambers. Tissue Cell 2012; 44:111-21. [DOI: 10.1016/j.tice.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 01/09/2023]
|
26
|
Tilkorn DJ, Davies EM, Keramidaris E, Dingle AM, Gerrand YW, Taylor CJ, Han XL, Palmer JA, Penington AJ, Mitchell CA, Morrison WA, Dusting GJ, Mitchell GM. The in vitro preconditioning of myoblasts to enhance subsequent survival in an in vivo tissue engineering chamber model. Biomaterials 2012; 33:3868-79. [PMID: 22369961 DOI: 10.1016/j.biomaterials.2012.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/02/2012] [Indexed: 12/27/2022]
Abstract
The effects of in vitro preconditioning protocols on the ultimate survival of myoblasts implanted in an in vivo tissue engineering chamber were examined. In vitro testing: L6 myoblasts were preconditioned by heat (42 °C; 1.5 h); hypoxia (<8% O(2); 1.5 h); or nitric oxide donors: S-nitroso-N-acetylpenicillamine (SNAP, 200 μM, 1.5 h) or 1-[N-(2-aminoethyl)-N-(2-aminoethyl)amino]-diazen-1-ium-1,2-diolate (DETA-NONOate, 500 μM, 7 h). Following a rest phase preconditioned cells were exposed to 24 h hypoxia, and demonstrated minimal overall cell loss, whilst controls (not preconditioned, but exposed to 24 h hypoxia) demonstrated a 44% cell loss. Phosphoimmunoblot analysis of pro-survival signaling pathways revealed significant activation of serine threonine kinase Akt with DETA-NONOate (p < 0.01) and heat preconditioning (p < 0.05). DETA-NONOate also activated ERK 1/2 signaling (p < 0.05). In vivo implantation: 100,000 preconditioned (heat, hypoxia, or DETA-NONOate) myoblasts were implanted in SCID mouse tissue engineering chambers. 100,000 (not preconditioned) myoblasts were implanted in control chambers. At 3 weeks, morphometric assessment of surviving myoblasts indicated myoblast percent volume (p = 0.012) and myoblasts/mm(2) (p = 0.0005) overall significantly increased in preconditioned myoblast chambers compared to control, with DETA-NONOate-preconditioned myoblasts demonstrating the greatest increase in survival (p = 0.007 and p = 0.001 respectively). DETA-NONOate therefore has potential therapeutic benefits to significantly improve survival of transplanted cells.
Collapse
Affiliation(s)
- Daniel J Tilkorn
- Department of Plastic Surgery, Burn Center, Hand Center, BG-University-Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The application of three-dimensional collagen-scaffolds seeded with myoblasts to repair skeletal muscle defects. J Biomed Biotechnol 2011; 2011:812135. [PMID: 22203786 PMCID: PMC3238809 DOI: 10.1155/2011/812135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/11/2011] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional (3D) engineered tissue constructs are a novel and promising approach to tissue repair and regeneration. 3D tissue constructs have the ability to restore form and function to damaged soft tissue unlike previous methods, such as plastic surgery, which are able to restore only form, leaving the function of the soft tissue often compromised. In this study, we seeded murine myoblasts (C2C12) into a collagen composite scaffold and cultured the scaffold in a roller bottle cell culture system in order to create a 3D tissue graft in vitro. The 3D graft created in vitro was then utilized to investigate muscle tissue repair in vivo. The 3D muscle grafts were implanted into defect sites created in the skeletal muscles in mice. We detected that the scaffolds degraded slowly over time, and muscle healing was improved which was shown by an increased quantity of innervated and vascularized regenerated muscle fibers. Our results suggest that the collagen composite scaffold seeded with myoblasts can create a 3D muscle graft in vitro that can be employed for defect muscle tissue repair in vivo.
Collapse
|
28
|
Fedorovich NE, Kuipers E, Gawlitta D, Dhert WJ, Alblas J. Scaffold Porosity and Oxygenation of Printed Hydrogel Constructs Affect Functionality of Embedded Osteogenic Progenitors. Tissue Eng Part A 2011; 17:2473-86. [DOI: 10.1089/ten.tea.2011.0001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Natalja E. Fedorovich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elske Kuipers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Iyer RK, Chiu LLY, Reis LA, Radisic M. Engineered cardiac tissues. Curr Opin Biotechnol 2011; 22:706-14. [PMID: 21530228 DOI: 10.1016/j.copbio.2011.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/01/2011] [Indexed: 01/22/2023]
Abstract
Cardiac tissue engineering offers the promise of creating functional tissue replacements for use in the failing heart or for in vitro drug screening. The last decade has seen a great deal of progress in this field with new advances in interdisciplinary areas such as developmental biology, genetic engineering, biomaterials, polymer science, bioreactor engineering, and stem cell biology. We review here a selection of the most recent advances in cardiac tissue engineering, including the classical cell-scaffold approaches, advanced bioreactor designs, cell sheet engineering, whole organ decellularization, stem cell-based approaches, and topographical control of tissue organization and function. We also discuss current challenges in the field, such as maturation of stem cell-derived cardiac patches and vascularization.
Collapse
Affiliation(s)
- Rohin K Iyer
- Institute of Biomaterials and Biomedical Engineering, 164 College St., Rosebrugh Building, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | | | | | | |
Collapse
|
30
|
Bae JH, Yoo JJ. Cell-based therapy for urinary incontinence. Korean J Urol 2010; 51:1-7. [PMID: 20414402 PMCID: PMC2855472 DOI: 10.4111/kju.2010.51.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 01/14/2010] [Indexed: 12/11/2022] Open
Abstract
Urinary incontinence has become a societal problem that affects millions of people worldwide. Although numerous therapeutic modalities are available, none has been shown to be entirely satisfactory. Consequently, cell-based approaches using regenerative medicine technology have emerged as a potential solution that would provide a means of correcting anatomical deficiencies and restoring normal function. As such, numerous cell-based investigations have been performed to develop systems that are focused on addressing clinical needs. While most of these attempts remain in the experimental stages, several clinical trials are being designed or are in progress. This article provides an overview of the cell-based approaches that utilize various cell sources to develop effective treatment modalities for urinary incontinence.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Urology and Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|