1
|
Bermudez-Lekerika P, Crump KB, Wuertz-Kozak K, Le Maitre CL, Gantenbein B. Sulfated Hydrogels as Primary Intervertebral Disc Cell Culture Systems. Gels 2024; 10:330. [PMID: 38786247 PMCID: PMC11121347 DOI: 10.3390/gels10050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues, providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D culture material due to its similarity to the charged matrix of the intervertebral disc. Precursor solutions of standard alginate, or alginate with 0.1% or 0.2% degrees of sulfation, were mixed with primary human nucleus pulposus cells, cast, and cultured for 14 days. A 0.2% degree of sulfation resulted in significantly decreased cell density and viability after 7 days of culture. Furthermore, a sulfation-dependent decrease in DNA content and metabolic activity was evident after 14 days. Interestingly, no significant differences in cell density and viability were observed between surface and core regions for sulfated alginate, unlike in standard alginate, where the cell number was significantly higher in the core than in the surface region. Due to low cell numbers, phenotypic evaluation was not achieved in sulfated alginate biomaterial. Overall, standard alginate supported human NP cell growth and viability superior to sulfated alginate; however, future research on phenotypic properties is required to decipher the biological properties of sulfated alginate in intervertebral disc cells.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland; (P.B.-L.); (K.B.C.)
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Katherine B. Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland; (P.B.-L.); (K.B.C.)
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
- Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital, Spine Research Institute, Paracelsus Private Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland; (P.B.-L.); (K.B.C.)
- Inselspital, Department of Orthopedic Surgery & Traumatology, Medical Faculty, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Vaswani BK, Mundada BP, Bhola N, Paul P, Reche A, Ahuja KP. Stem-Cell Therapy: Filling Gaps in Oro-Maxillofacial Region. Cureus 2023; 15:e47171. [PMID: 38022051 PMCID: PMC10652057 DOI: 10.7759/cureus.47171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
How do stem cells function? Why should we, as dentists, care about stem cells? How might dental procedures be substituted by stem cells? Are stem cells capable of regenerating a tooth or temporomandibular joint (TMJ)? Although the ability to regenerate a destroyed tissue has been known for a while, research into regenerative medicine and dentistry has made significant strides in molecular biology. A paradigm shift in the therapeutic toolbox for dental and oral diseases is likely to result from a growing understanding of biological concepts in the regeneration of oral/dental tissues along with stem cell research, leading to an intense search for "biological solutions to biological problems." Among other tissues, orofacial tissues effectively separate stem cells from human tissues. Because they can self-renew and produce different cell types, stem cells offer novel techniques for regenerating damaged tissues and curing illnesses. A number of significant milestone successes have shown their practical applicability, traditional biomaterial-based treatments in regenerative dentistry as therapeutic alternatives that offer regeneration of damaged oral tissues rather than merely "filling the gaps." In order to use these innovative accomplishments for patient well-being, the ultimate goal of this ground-breaking technology, well-designed clinical studies must be implemented as a crucial next step. The review's objective is to briefly synthesize the literature on stem cells in terms of their traits, subtypes, and uses for dental stem cells. It has been highlighted that stem cell therapy has the ability to treat craniofacial abnormalities and regenerate teeth in the oral and maxillofacial regions.
Collapse
Affiliation(s)
- Bhumika K Vaswani
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan P Mundada
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nitin Bhola
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kajal P Ahuja
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Suraiya AB, Hun ML, Truong VX, Forsythe JS, Chidgey AP. Gelatin-Based 3D Microgels for In Vitro T Lineage Cell Generation. ACS Biomater Sci Eng 2020; 6:2198-2208. [PMID: 33455336 DOI: 10.1021/acsbiomaterials.9b01610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T cells are predominantly produced by the thymus and play a significant role in maintaining our adaptive immune system. Physiological involution of the thymus occurs gradually with age, compromising naive T cell output, which can have severe clinical complications. Also, T cells are utilized as therapeutic agents in cancer immunotherapies. Therefore, there is an increasing need for strategies aimed at generating naive T cells. The majority of in vitro T cell generation studies are performed in two-dimensional (2D) cultures, which ignore the physiological thymic microenvironment and are not scalable; therefore, we applied a new three-dimensional (3D) approach. Here, we use a gelatin-based 3D microgel system for T lineage induction by co-culturing OP9-DL4 cells and mouse fetal-liver-derived hematopoietic stem cells (HSCs). Flow cytometric analysis revealed that microgel co-cultures supported T lineage induction similar to 2D cultures while providing a 3D environment. We also encapsulated mouse embryonic thymic epithelial cells (TECs) within the microgels to provide a defined 3D culture platform. The microgel system supported TEC maintenance and retained their phenotype. Together, these data show that our microgel system has the capacity for TEC maintenance and induction of in vitro T lineage differentiation with potential for scalability.
Collapse
Affiliation(s)
- Anisha B Suraiya
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia.,Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| |
Collapse
|
4
|
Junka R, Quevada K, Yu X. Acellular polycaprolactone scaffolds laden with fibroblast/endothelial cell-derived extracellular matrix for bone regeneration. J Biomed Mater Res A 2019; 108:351-364. [PMID: 31618528 DOI: 10.1002/jbm.a.36821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Inconsistencies in graft osteoconduction and osteoinduction present a clinical challenge in regeneration of large bone defects. Deposition of decellularized extracellular matrix (dECM) on tissue engineered scaffolds offers an alternative approach that can enhance these properties by mimicking bone's molecular complexity and direct infiltrating cells to repair damaged bone. However, dECMs derived from homogenous cell populations do not adequately simulate the heterogeneous and vascularized microenvironment of the bone. In this study, successive culture and decellularization of fibroblasts and endothelial cells (ECs) grown on polycaprolactone microfibers was used to develop a bioactive scaffold with heterogeneous dECM mimicking endothelial basement membrane. These scaffolds had greater amount of protein and minimally increased nucleic acid content than scaffolds with homogenous culture dECM. Coomassie Blue and antibody staining revealed extensive tube formation by ECs on fibroblast dECM. Fibroblast/endothelial dECM significantly enhanced osteoblast attachment, alkaline phosphatase activity, and osteocalcin- and osteopontin-positive extracellular mineral deposits. We demonstrated that the osteoconduction of dECMs can be tailored with the appropriate combination of cells to accelerate osteoblast mineral secretion. The overall concept can be expanded to generate increasingly more complex tissue constructs for regeneration of bone defects and other vascularized tissues.
Collapse
Affiliation(s)
- Radoslaw Junka
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Kristian Quevada
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Xiaojun Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| |
Collapse
|
5
|
Schneider I, Baumgartner W, Gröninger O, Stark WJ, Märsmann S, Calcagni M, Cinelli P, Wolint P, Buschmann J. 3D microtissue-derived human stem cells seeded on electrospun nanocomposites under shear stress: Modulation of gene expression. J Mech Behav Biomed Mater 2019; 102:103481. [PMID: 31678737 DOI: 10.1016/j.jmbbm.2019.103481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/17/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Different microenvironments trigger distinct differentiation of stem cells. Even without chemical supplementation, mechanical stimulation by shear stress may help to induce the desired differentiation. The cell format, such as three-dimensional (3D) microtissues (MTs), MT-derived cells or single cells (SCs), may have a pivotal impact as well. Here, we studied modulation of gene expression in human adipose-derived stem cells (ASCs) exposed to shear stress and/or after MT formation. MATERIALS AND METHODS Electrospun meshes of poly-lactic-co-glycolic acid and amorphous calcium phosphate nanoparticles (PLGA/aCaP) at a weight ratio of 60:40 were seeded with human ASCs as MTs or as SCs and cultured in Dulbecco's modified Eagle's medium without chemical supplementation. After 2 weeks of static culture, the scaffolds were cultured statically for another 2 weeks or placed in a Bose® bioreactor with a flow rate per area of 0.16 mL cm-2 min-1. Stiffness of the scaffolds was assessed as a function of time. After 4 weeks, minimum stem cell criteria markers and selected markers of osteogenesis, endothelial cell differentiation, adipogenesis and chondrogenesis were analysed by quantitative real-time polymerase chain reaction. Additionally, cell distribution within the scaffolds and the allocation of the yes-associated protein (YAP) in the cells were assessed by immunohistochemistry. RESULTS MTs decayed completely within 2 weeks after seeding on PLGA/aCaP. The osteogenic marker gene alkaline phosphatase and the endothelial cell marker gene CD31 were upregulated in MT-derived ASCs compared with SCs. Shear stress realised by fluid flow perfusion upregulated peroxisome proliferator-activated receptor gamma 2 expression in MT-derived ASCs and in SCs. The nuclear-to-cytoplasmic ratio of YAP expression was doubled under perfusion compared with that under static culture for MT-derived ASCs and SCs. CONCLUSIONS Osteogenic and angiogenic commitments were more pronounced in MT-derived ASCs seeded on bone biomimetic electrospun nanocomposite PLGA/aCaP than in SCs seeded without induction medium. Furthermore, the static culture was superior to the perfusion regimen used here, as shear stress resulted in adipogenic commitment for MT-derived ASCs and SCs, although the YAP nuclear-to-cytoplasmic ratio indicated higher cell tensions under perfusion, usually associated with preferred osteogenic differentiation.
Collapse
Affiliation(s)
- Isabelle Schneider
- Division of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Walter Baumgartner
- Division of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Sonja Märsmann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland; Division of Trauma Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Paolo Cinelli
- Division of Trauma Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Petra Wolint
- Division of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
| | - Johanna Buschmann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
| |
Collapse
|
6
|
Oberoi G, Janjić K, Müller AS, Schädl B, Andrukhov O, Moritz A, Agis H. Contraction Dynamics of Rod Microtissues of Gingiva-Derived and Periodontal Ligament-Derived Cells. Front Physiol 2018; 9:1683. [PMID: 30622473 PMCID: PMC6308197 DOI: 10.3389/fphys.2018.01683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering strategies using microtissues as "building blocks" have high potential in regenerative medicine. Cognition of contraction dynamics involved in the in vitro self-assembly of these microtissues can be conceived as the bedrock of an effective periodontal tissue regenerative therapy. Our study was directed at evaluating the shrinkage in the rod-shaped structure of a directed self-assembly of human gingiva-derived cells (GC) and periodontal ligament-derived cells (PDLC) and developing insights into the potential mechanisms responsible for the shrinkage. GC and PDLC were seeded in non-adherent agarose molds to form rod microtissues. Cells used for the experiments were characterized using fluorescence-activated cell sorting (FACS). To assess the viability, resazurin-based cytotoxicity assays, trypan blue dye exclusion assay, MTT and live/dead staining, and histological evaluation of rods based on hematoxylin and eosin staining were performed. Rod contraction was evaluated and measured at 0, 2, 6, and 24 h and compared to L-929 cells. The role of transforming growth factor (TGF)-β signaling, phosphoinositide 3-kinase (PI3K)/AKT, and mitogen activated protein kinase (MAPK) signaling was analyzed. Our results show that the rod microtissues were vital after 24 h. A reduction in the length of rods was seen in the 24 h period. While the recombinant TGF-β slightly reduced contraction, inhibition of TGF-β signaling did not interfere with the contraction of the rods. Interestingly, inhibition of phosphoinositide 3-kinase by LY294002 significantly delayed contraction in GC and PDLC rods. Overall, GC and PDLC have the ability to form rod microtissues which contract over time. Thus, approaches for application of these structures as "building blocks" for periodontal tissue regeneration should consider that rods have the capacity to contract substantially. Further investigation will be needed to unravel the mechanisms behind the dynamics of contraction.
Collapse
Affiliation(s)
- Gunpreet Oberoi
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Anna Sonja Müller
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Oleh Andrukhov
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
7
|
Schorn L, Sproll C, Ommerborn M, Naujoks C, Kübler NR, Depprich R. Vertical bone regeneration using rhBMP-2 and VEGF. Head Face Med 2017; 13:11. [PMID: 28592312 PMCID: PMC5463342 DOI: 10.1186/s13005-017-0146-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/29/2017] [Indexed: 11/25/2022] Open
Abstract
Background Sufficient vertical and lateral bone supply and a competent osteogenic healing process are prerequisities for the successful osseointegration of dental implants in the alveolar bone. Several techniques including autologous bone grafts and guided bone regeneration are applied to improve quality and quantity of bone at the implantation site. Depending on the amount of lacking bone one- or two-stage procedures are required. Vertical bone augmentation has proven to be a challenge particularly in terms of bone volume stability. This study focuses on the three dimensional vertical bone generation in a one stage procedure in vivo. Therefore, a collagenous disc-shaped scaffold (ICBM = Insoluble Collagenous Bone Matrix) containing rhBMP-2 (Bone Morphogenetic Protein-2) and/or VEGF (Vascular Endothelial Growth Factor) was applied around the coronal part of a dental implant during insertion. RhBMP-2 and VEGF released directly at the implantation site were assumed to induce the generation of new vertical bone around the implant. Methods One hundred eight titanium implants were inserted into the mandible and the tibia of 12 mini pigs. Four experimental groups were formed: Control group, ICBM, ICBM + BMP-2, and ICBM + BMP-2 + VEGF. After 1, 4 and 12 weeks the animals were sacrificed and bone generation was investigated histologically and histomorphometrically. Results After 12 weeks the combination of ICBM + rhBMP2 + VEGF showed significantly more bone volume density (BVD%), a higher vertical bone gain (VBG) and more vertical bone gain around the implant (PVBG) in comparison to the control group. Conclusion By using collagenous disc-shaped matrices in combination with rhBMP-2 and VEGF vertical bone can be generated in a one stage procedure without donor site morbidity. The results of the presenting study suggest that the combination of rhBMP-2 and VEGF applied locally by using a collagenous carrier improves vertical bone generation in vivo. Further research is needed to establish whether this technique is applicable in clinical routines.
Collapse
Affiliation(s)
- Lara Schorn
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Christoph Sproll
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Michelle Ommerborn
- Department of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Duesseldorf, 40225, Germany
| | - Christian Naujoks
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Norbert R Kübler
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Rita Depprich
- Department of Oral-, Maxillo- and Plastic Facial Surgery, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
8
|
Li F, Truong VX, Thissen H, Frith JE, Forsythe JS. Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8589-8601. [PMID: 28225583 DOI: 10.1021/acsami.7b00728] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem cell injections for the treatment of articular cartilage damage are a promising approach to achieve tissue regeneration. However, this method is encumbered by high cell apoptosis rates, low retention in the cartilage lesion, and inefficient chondrogenesis. Here, we have used a facile, very low cost-based microfluidic technique to create visible light-cured microgels composed of gelatin norbornene (GelNB) and a poly(ethylene glycol) (PEG) cross-linker. In addition, we have demonstrated that the process enables the rapid in situ microencapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs) under biocompatible microfluidic-processing conditions for long-term maintenance. The hBMSCs exhibited an unusually high degree of chondrogenesis in the GelNB microgels with chondro-inductive media, specifically toward the hyaline cartilage structure, with significant upregulation in type II collagen expression compared to the bulk hydrogel and "gold standard" pellet culture. Overall, we have demonstrated that these protein-based microgels can be engineered as promising therapeutic candidates for articular cartilage regeneration, with additional potential to be used in a variety of other applications in regenerative medicine.
Collapse
Affiliation(s)
- Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
9
|
Gurumurthy B, Bierdeman PC, Janorkar AV. Spheroid model for functional osteogenic evaluation of human adipose derived stem cells. J Biomed Mater Res A 2017; 105:1230-1236. [PMID: 27943608 DOI: 10.1002/jbm.a.35974] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022]
Abstract
3D culture systems have the ability to mimic the natural microenvironment by allowing better cell-cell interactions. We have prepared an in vitro 3D osteogenic cell culture model using human adipose derived stem cells (hASCs) cultured atop recombinant elastin-like polypeptide (ELP) conjugated to a charged polyelectrolyte, polyethyleneimine (PEI). We demonstrate that hASCs cultured atop the ELP-PEI coated tissue culture polystyrene (TCPS) formed 3D spheroids and exhibited superior differentiation toward osteogenic lineage compared to the traditional two dimensional (2D) monolayer formed atop uncoated TCPS. Live/dead viability assay confirmed >90% live cells at the end of the 3-week culture period. Over the same culture period, higher protein content was observed in 2D monolayer than 3D spheroids, as the 2D environment allowed continued proliferation, while 3D spheroids underwent contact-inhibited growth arrest. The normalized alkaline phosphatase (ALP) activity, which is an indicator for early osteogenic differentiation was higher for 3D spheroids. The normalized osteocalcin (OCN) production, which is an indicator for osteogenic maturation was also higher for 3D spheroids while 2D monolayer had no noticeable OCN production. On day 22, increased Alizarin red uptake by 3D spheroids showed greater mineralization activity than 2D monolayer. Taken together, these results indicate a superior osteogenic differentiation of hASCs in 3D spheroid culture atop ELP-PEI coated TCPS surfaces than the 2D monolayer formed on uncoated TCPS surfaces. Such enhanced osteogenesis in 3D spheroid stem cell culture may serve as an alternative to 2D culture by providing a better microenvironment for the enhanced cellular functions and interactions in bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1230-1236, 2017.
Collapse
Affiliation(s)
- Bhuvaneswari Gurumurthy
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, 39216
| | - Patrick C Bierdeman
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, 39216
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, 39216
| |
Collapse
|
10
|
Scaffold-Free Fabrication of Osteoinductive Cellular Constructs Using Mouse Gingiva-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:6240794. [PMID: 27110251 PMCID: PMC4826709 DOI: 10.1155/2016/6240794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell constructs are expected to provide osteoinductive materials to develop cell-based therapies for bone regeneration. The proliferation and spontaneous aggregation capability of induced pluripotent stem cells (iPSCs) thus prompted us to fabricate a scaffold-free iPSC construct as a transplantation vehicle. Embryoid bodies of mouse gingival fibroblast-derived iPSCs (GF-iPSCs) were seeded in a cell chamber with a round-bottom well made of a thermoresponsive hydrogel. Collected ball-like cell constructs were cultured in osteogenic induction medium for 30 days with gentle shaking, resulting in significant upregulation of osteogenic marker genes. The constructs consisted of an inner region of unstructured cell mass and an outer osseous tissue region that was surrounded by osteoblast progenitor-like cells. The outer osseous tissue was robustly calcified with elemental calcium and phosphorous as well as hydroxyapatite. Subcutaneous transplantation of the GF-iPSC constructs into immunodeficient mice contributed to extensive ectopic bone formation surrounded by teratoma tissue. These results suggest that mouse GF-iPSCs could facilitate the fabrication of osteoinductive scaffold-free 3D cell constructs, in which the calcified regions and surrounding osteoblasts may function as scaffolds and drivers of osteoinduction, respectively. With incorporation of technologies to inhibit teratoma formation, this system could provide a promising strategy for bone regenerative therapies.
Collapse
|
11
|
Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2014; 4:117. [PMID: 24073831 PMCID: PMC3854789 DOI: 10.1186/scrt328] [Citation(s) in RCA: 431] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization.
Collapse
|
12
|
Sart S, Tsai AC, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:365-80. [PMID: 24168395 DOI: 10.1089/ten.teb.2013.0537] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, MSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates reminiscent of skeletal condensation in vivo. Recent studies have shown that MSC 3D aggregation improved a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. Hence, the formation of 3D MSC aggregates has been explored as a novel strategy to improve cell delivery, functional activation, and in vivo retention to enhance therapeutic outcomes. This article summarizes recent reports of MSC aggregate self-assembly, characterization of biological properties, and their applications in preclinical models. The cellular and molecular mechanisms underlying MSC aggregate formation and functional activation are discussed, and the areas that warrant further investigation are highlighted. These analyses are combined to provide perspectives for identifying the controlling mechanisms and refining the methods of aggregate fabrication and expansion for clinical applications.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | | | | | | |
Collapse
|
13
|
Ullah M, Eucker J, Sittinger M, Ringe J. Mesenchymal stem cells and their chondrogenic differentiated and dedifferentiated progeny express chemokine receptor CCR9 and chemotactically migrate toward CCL25 or serum. Stem Cell Res Ther 2013; 4:99. [PMID: 23958031 PMCID: PMC3854782 DOI: 10.1186/scrt310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/10/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Guided migration of chondrogenically differentiated cells has not been well studied, even though it may be critical for growth, repair, and regenerative processes. The chemokine CCL25 is believed to play a critical role in the directional migration of leukocytes and stem cells. To investigate the motility effect of serum- or CCL25-mediated chemotaxis on chondrogenically differentiated cells, mesenchymal stem cells (MSCs) were induced to chondrogenic lineage cells. METHODS MSC-derived chondrogenically differentiated cells were characterized for morphology, histology, immunohistochemistry, quantitative polymerase chain reaction (qPCR), surface profile, and serum- or CCL25-mediated cell migration. Additionally, the chemokine receptor, CCR9, was examined in different states of MSCs. RESULTS The chondrogenic differentiated state of MSCs was positive for collagen type II and Alcian blue staining, and showed significantly upregulated expression of COL2A1and SOX9, and downregulated expression of CD44, CD73, CD90, CD105 and CD166, in contrast to the undifferentiated and dedifferentiated states of MSCs. For the chondrogenic differentiated, undifferentiated, and dedifferentiated states of MSCs, the serum-mediated chemotaxis was in a percentage ratio of 33%:84%:85%, and CCL25-mediated chemotaxis was in percentage ratio of 12%:14%:13%, respectively. On the protein level, CCR9, receptor of CCL25, was expressed in the form of extracellular and intracellular domains. On the gene level, qPCR confirmed the expression of CCR9 in different states of MSCs. CONCLUSIONS CCL25 is an effective cue to guide migration in a directional way. In CCL25-mediated chemotaxis, the cell-migration rate was almost the same for different states of MSCs. In serum-mediated chemotaxis, the cell-migration rate of chondrogenically differentiated cells was significantly lower than that in undifferentiated or dedifferentiated cells. Current knowledge of the surface CD profile and cell migration could be beneficial for regenerative cellular therapies.
Collapse
Affiliation(s)
- Mujib Ullah
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Eucker
- Department of Hematology and Oncology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
14
|
West NX, Lussi A, Seong J, Hellwig E. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig 2013; 17:9-17. [PMID: 22695872 PMCID: PMC3585766 DOI: 10.1007/s00784-012-0763-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 05/23/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Cell-based therapies for bone augmentation after tooth loss and for the treatment of periodontal defects improve healing defects. Usually, osteogenic cells or stem cells are cultivated in 2D primary cultures, before they are combined with scaffold materials, even though this means a loss of the endogenous 3D microenvironment for the cells. Moreover, the use of single-cell suspensions for the inoculation of scaffolds or for the direct application into an area of interest has the disadvantages of low initial cell numbers and susceptibility to unwanted cellular distribution, respectively. MATERIALS AND METHODS We addressed the question whether an alternative to monolayer cultures, namely 3D microtissues, has the potential to improve osteogenic tissue engineering and its clinical outcome. RESULTS By contrast, to monolayer cultures, osteogenic differentiation of 3D microtissues is enhanced by mimicking in vivo conditions. It seems that the osteogenic differentiation in microtissues is enhanced by strong integrin-extracellular matrix interaction and by stronger autocrine BMP2 signaling. Moreover, microtissues are less prone to wash out by body fluids and allow the precise administration of large cell numbers. CONCLUSION Microtissue cultures have closer characteristics with cells in vivo and their enhanced osteogenic differentiation makes scaffold-free microtissues a promising concept in osteogenic tissue engineering. CLINICAL RELEVANCE Microtissues are particularly suitable for tissue engineering because they improve seeding efficiency of biomaterials by increasing the cell load of a scaffold. This results in accelerated osteogenic tissue formation and could contribute to earlier implant stability in mandibular bone augmentation.
Collapse
Affiliation(s)
- N. X. West
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - A. Lussi
- />Department of Operative Dentistry, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - J. Seong
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - E. Hellwig
- />Department of Operative Dentistry and Periodontology, Dental School and Hospital Dentistry, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
15
|
Sunil P, Manikandhan R, Muthu M, Abraham S. Stem cell therapy in oral and maxillofacial region: An overview. J Oral Maxillofac Pathol 2012; 16:58-63. [PMID: 22434942 PMCID: PMC3303525 DOI: 10.4103/0973-029x.92975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells with unique capacity for self-renewal and potency are called stem cells. With appropriate biochemical signals stem cells can be transformed into desirable cells. The idea behind this article is to shortly review the obtained literature on stem cell with respect to their properties, types and advantages of dental stem cells. Emphasis has been given to the possibilities of stem cell therapy in the oral and maxillofacial region including regeneration of tooth and craniofacial defects.
Collapse
Affiliation(s)
- Pm Sunil
- Department of Oral and Maxillofacial Pathology, Rajah Mutiah Dental College, Annamalai University, Annamalai Nagar, Chidambaram, India
| | | | | | | |
Collapse
|
16
|
West NX, Lussi A, Seong J, Hellwig E. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig 2012; 17 Suppl 1:S9-19. [PMID: 22695872 PMCID: PMC3585766 DOI: 10.1007/s00784-012-0887-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 11/21/2012] [Indexed: 12/13/2022]
Abstract
Objectives The paper’s aim is to review dentin hypersensitivity (DHS), discussing pain mechanisms and aetiology. Materials and methods Literature was reviewed using search engines with MESH terms, DH pain mechanisms and aetiology (including abrasion, erosion and periodontal disease). Results The many hypotheses proposed for DHS attest to our lack of knowledge in understanding neurophysiologic mechanisms, the most widely accepted being the hydrodynamic theory. Dentin tubules must be patent from the oral environment to the pulp. Dentin exposure, usually at the cervical margin, is due to a variety of processes involving gingival recession or loss of enamel, predisposing factors being periodontal disease and treatment, limited alveolar bone, thin biotype, erosion and abrasion. Conclusions The current pain mechanism of DHS is thought to be the hydrodynamic theory. The initiation and progression of DHS are influenced by characteristics of the teeth and periodontium as well as the oral environment and external influences. Risk factors are numerous often acting synergistically and always influenced by individual susceptibility. Clinical relevance Whilst the pain mechanism of DHS is not well understood, clinicians need to be mindful of the aetiology and risk factors in order to manage patients’ pain and expectations and prevent further dentin exposure with subsequent sensitivity.
Collapse
Affiliation(s)
- N. X. West
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - A. Lussi
- />Department of Operative Dentistry, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - J. Seong
- />Clinical Trials Unit, Department of Oral and Dental Sciences, Bristol Dental Hospital, Lower Maudlin Street, Bristol, BS1 2LY UK
| | - E. Hellwig
- />Department of Operative Dentistry and Periodontology, Dental School and Hospital Dentistry, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
Bakhshandeh B, Hafizi M, Ghaemi N, Soleimani M. Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol Lett 2012; 34:1579-87. [PMID: 22547036 DOI: 10.1007/s10529-012-0934-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/17/2012] [Indexed: 02/01/2023]
Abstract
Despite interesting in silico evidence, the specific role of mir-221 in osteogenesis has not been studied. We evaluated the osteogenic induction of transient-transfected anti-mir-221 in human unrestricted somatic stem cells and human mesenchymal stem cells both transcriptionally and translationally. In transfected unrestricted somatic stem cells, transcriptions of some osteogenic markers were twice that of the control and translations of osteopontin and osteocalcin were increased from 9 to 39 % and from 0 to 21 %, respectively. Up-regulation of transcribed osteogenic markers in transfected mesenchymal stem cells were 50 times greater than controls while no significant change in translations were observed. Prior to these analyses, the authenticity of stem cells, their osteogenic differentiation and transfection efficiency were verified. Transient modulation of mir-221 therefore suggests a mechanism for rapid induction of osteogenesis as a useful strategy for cell-based therapy.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | | | | |
Collapse
|
18
|
Generation and differentiation of microtissues from multipotent precursor cells for use in tissue engineering. Nat Protoc 2011; 6:1726-35. [PMID: 22011655 DOI: 10.1038/nprot.2011.394] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This protocol describes an effective method for the production of spherical microtissues (microspheres), which can be used for a variety of tissue-engineering purposes. The obtained microtissues are well suited for the study of osteogenesis in vitro when multipotent stem cells are used. The dimensions of the microspheres can easily be adjusted according to the cell numbers applied in an individual experiment. Thus, microspheres allow for the precise administration of defined cell numbers at well-defined sites. Here we describe a detailed workflow for the production of microspheres using unrestricted somatic stem cells from human umbilical cord blood and adapted protocols for the use of these microspheres in histological analysis. RNA extraction methods for mineralized microtissues are specifically modified for optimum yields. The duration of running the complete protocol without preparatory cell culture but including 2 weeks of microsphere incubation, histological staining and RNA isolation is about 3 weeks.
Collapse
|
19
|
Impact of DAG stimulation on mineral synthesis, mineral structure and osteogenic differentiation of human cord blood stem cells. Stem Cell Res 2011; 8:193-205. [PMID: 22265739 DOI: 10.1016/j.scr.2011.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/19/2011] [Accepted: 09/27/2011] [Indexed: 11/22/2022] Open
Abstract
It remains unexplored in what way osteogenic stimulation with dexamethasone, ascorbic acid and β-glycerol phosphate (DAG) influences the process of mineralization, the composition and structure of the assembled mineral. Therefore, we analyzed and characterized biomineralization in DAG-stimulated and unstimulated 3D human unrestricted somatic stem cell (USSC) cultures. Microspheres were analyzed by histological staining, scanning electron microscopy (SEM), semi-quantitative energy-dispersive X-ray spectroscopy (EDX), quantitative wavelength-dispersive X-ray spectroscopy (WDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and Raman spectroscopy. Mineral material was detected by SEM and histological staining in both groups, and showed structural differences. DAG influenced the differentiation of USSCs and the formation, structure and composition of the assembled mineral. SEM showed that cells of the +DAG spheres exhibited morphological signs of osteoblast-like cells. EDX and WDX confirmed a Ca-P mineral in both groups. Overall, the mineral material found showed structural similarities to the mineral substance of bony material.
Collapse
|
20
|
Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res 2011; 347:701-11. [PMID: 21833761 DOI: 10.1007/s00441-011-1215-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/15/2011] [Indexed: 01/01/2023]
Abstract
While traditional cell culture methods have relied on growing cells as monolayers, three-dimensional (3D) culture systems can provide a convenient in vitro model for the study of complex cell-cell and cell-matrix interactions in the absence of exogenous substrates and may benefit the development of regenerative medicine strategies. In this study, mesenchymal stem cell (MSC) spheroids, or "mesenspheres", of different sizes, were formed using a forced aggregation technique and maintained in suspension culture for extended periods of time thereafter. Cell proliferation and differentiation potential within mesenspheres and dissociated cells retrieved from spheroids were compared to conventional adherent monolayer cultures. Mesenspheres maintained in growth medium exhibited no evidence of cell necrosis or differentiation, while mesenspheres in differentiation media exhibited differentiation similar to conventional 2D culture methods based on histological markers of osteogenic and adipogenic commitment. Furthermore, when plated onto tissue culture plates, cells that had been cultured within mesenspheres in growth medium recovered morphology typical of cells cultured continuously in adherent monolayers and retained their capacity for multi-lineage differentiation potential. In fact, more robust matrix mineralization and lipid vacuole content were evident in recovered MSCs when compared to monolayers, suggesting enhanced differentiation by cells cultured as 3D spheroids. Thus, this study demonstrates the development of a 3D culture system for mesenchymal stem cells that may circumvent limitations associated with conventional monolayer cultures and enhance the differentiation potential of multipotent cells.
Collapse
|
21
|
Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacol Sin 2011; 32:626-36. [PMID: 21516135 DOI: 10.1038/aps.2011.8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM Bioartificial bone tissue engineering is an increasingly popular technique to solve bone defect challenges. This study aimed to investigate the interactions between matrix composition and appropriate cell type, focusing on hydroxyapatite (HA), to achieve a more effective combination for bone regeneration. METHODS Human unrestricted somatic stem cells (USSCs) were isolated from placental cord blood. The cellular and molecular events during the osteo-induction of USSCs were evaluated for 21 d under the following conditions: (1) in basal culture, (2) supplemented with hydroxyapatite nanoparticle (nHA) suspension, and (3) seeded on electrospun aligned nanofibrous poly-ɛ-caprolactone/poly-L-lactic acid/nHA (PCL/PLLA/nHA) scaffolds. The scaffolds were characterized using scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and tensile test. RESULTS Maintenance of USSCs for 21 d in basal or osteogenic culture resulted in significant increase in osteoblast differentiation. With nHA suspension, even soluble osteo-inductive additives were ineffective, probably due to induced apoptosis of the cells. In contrast to the hindrance of proliferation by nHA suspension, the scaffolds improved cell growth. The scaffolds mimic the nanostructure of natural bone matrix with the combination of PLLA/PCL (organic phase) and HA (inorganic phase) offering a favorable surface topography, which was demonstrated to possess suitable properties for supporting USSCs. Quantitative measurement of osteogenic markers, enzymatic activity and mineralization indicated that the scaffolds did not disturb, but enhanced the osteogenic potential of USSCs. Moreover, the alignment of the fibers led to cell orientation during cell growth. CONCLUSION The results demonstrated the synergism of PCL/PLLA/nHA nanofibrous scaffolds and USSCs in the augmentation of osteogenic differentiation. Thus, nHA grafted into PCL/PLLA scaffolds can be a suitable choice for bone tissue regeneration.
Collapse
|
22
|
Langenbach F, Naujoks C, Laser A, Kelz M, Kersten-Thiele P, Berr K, Depprich R, Kübler N, Kögler G, Handschel J. Improvement of the cell-loading efficiency of biomaterials by inoculation with stem cell-based microspheres, in osteogenesis. J Biomater Appl 2010; 26:549-64. [PMID: 20819916 DOI: 10.1177/0885328210377675] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In critical-size bone defects, autologous or allogenic cells are required in addition to compatible biomaterials for the successful defect healing. State of the art inoculation methods of biomaterials are based on the application of cell suspensions to the biomaterial. However, only less amounts of cells can be applied and sufficient adhesion to the material is required. Therefore, it was investigated whether the advantages of stem cell-based microspheres and insoluble collagenous bone matrix (ICBM) scaffolds can be combined which can lead to an advancement in cell seeding on biomaterials. Microspheres were produced from unrestricted somatic stem cells from human umbilical cord blood and were mounted on ICBM scaffolds. Following the incubation with osteogenic or control medium, the constructs were analyzed histologically after 3, 7, 14, and 28 days. Alizarin Red S and von Kossa staining revealed microsphere mineralization after 3 days in osteogenic and after 14 days in control medium. Meanwhile, a time-dependent increase in tissue, growing out of the microspheres, was detected. Our results provide evidence that microsphere-ICBM constructs are promising candidates for approaches of bone regeneration. They allow the transfer of substantially high numbers of cells in partially mineralized constructs.
Collapse
Affiliation(s)
- Fabian Langenbach
- Department for Cranio- and Maxillofacial Surgery Heinrich-Heine-University Düsseldorf, Moorenstraase 5 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|