1
|
Lazaro-Pacheco D, Ebisch I, Cooper-White J, Holsgrove TP. Si x-Axis, Physiological Activity Profiles Create a More Challenging Cellular Environment in the Intervertebral Disc Compared to Single-Axis Loading. ACS Biomater Sci Eng 2025. [PMID: 40266892 DOI: 10.1021/acsbiomaterials.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Bioreactors provide a valuable way to explore interactions between the mechanical and biological environments of the intervertebral disc (IVD), but the replication of ecologically valid loading protocols is a huge challenge. The aim of this study was to address this through the combination of time use survey data and six-axis load data from in vivo measurements during functional movements and activities of daily living to create population-based activity profiles, which were employed using a unique six-axis bioreactor and a whole-organ bovine tail IVD model. The results of the study show that six-axis activity profiles create a more challenging environment compared to single-axis loading or unloaded controls, resulting in lower cell viability in both the nucleus pulposus and annulus fibrosus regions of the IVD. Additionally, the six-axis activity profile representing a more active lifestyle led to an even lower cell viability in the annulus fibrosus, which may be due to the increased strains in this region of the IVD during activities of daily living. These findings highlight the importance of considering a wide range of activities and lifestyles in the development and evaluation of regenerative therapies and preventative interventions for IVD, if they are to be successfully translated to the clinical setting.
Collapse
Affiliation(s)
- Daniela Lazaro-Pacheco
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, U.K
| | - Isabelle Ebisch
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, U.K
| | - Justin Cooper-White
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Timothy P Holsgrove
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, U.K
| |
Collapse
|
2
|
Yu Z, Wu K, Fan C, Wang J, Chu F, He W, Ji Z, Deng Y, Hua D, Zhang Y, Geng D, Wu X, Mao H. Viscoelastic Hydrogel Promotes Disc Mechanical Homeostasis Repair and Delays Intervertebral Disc Degeneration via the Yes-Associated Protein Pathway. Biomater Res 2025; 29:0150. [PMID: 40040957 PMCID: PMC11876543 DOI: 10.34133/bmr.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 03/06/2025] Open
Abstract
Intervertebral disc degeneration (IDD) process is accompanied by overactive inflammation and mechanical instability of the nucleus pulposus (NP). Current treatments do not fully restore the biomechanical environment of discs, limiting their therapeutic efficacy. Thus, novel strategies are required to combat IDD. Hydrogels have outstanding biocompatibility and mechanical properties, most importantly, absorbing and retaining water similar to human NP tissue, showing a unique superiority in the treatment of IDD. In this study, we employed a viscoelastic ionic hydrogel (VIG) composed of polyvinyl alcohol and magnesium ions to investigate the therapeutic effect for IDD. VIG demonstrated an optimal degradation rate and NP-biomimetic swelling behavior in vitro. In the rat model of IDD, VIG-injected discs demonstrated mechanical properties approximating those of native discs, including stiffness, relaxation, and dissipation capacity. Furthermore, finite element analysis demonstrated that VIG improved biomechanical function of degenerated discs. VIG effectively inhibited the progression of IDD in the rat model by increasing extracellular matrix synthesis and decreasing matrix metalloproteinase-13 (MMP-13) expression. Moreover, VIG promoted proliferation and differentiation of NP cells in response to extracellular mechanical changes through the integrin-YAP signaling pathway. These findings suggest that VIG has the potential to modulate the NP inflammatory microenvironment and restore mechanical stability in IDD. This work represents a straightforward and promising strategy for IDD treatment.
Collapse
Affiliation(s)
- Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Kang Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science,
Fudan University, Shanghai 200433, China
| | - Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Fengcheng Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Wei He
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery,
Zhangjiagang Hospital affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongkang Deng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Di Hua
- Department of Medical Oncology,
The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yao Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Taylor W, Erwin WM. Intervertebral Disc Degeneration and Regeneration: New Molecular Mechanisms and Therapeutics: Obstacles and Potential Breakthrough Technologies. Cells 2024; 13:2103. [PMID: 39768194 PMCID: PMC11674193 DOI: 10.3390/cells13242103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Pain and disability secondary to degenerative disc disease continue to burden the healthcare system, creating an urgent need for effective, disease-modifying therapies. Contemporary research has identified potential therapies that include protein-, cellular- and/or matrix-related approaches; however, none have yet achieved a meaningful clinical impact. The tissue-specific realities of the intervertebral disc create considerable therapeutic challenges due to the disc's location, compartmentalization, hypovascularization and delicate physiological environment. Furthermore, the imaging modalities currently used in practice are largely unable to accurately identify sources of pain ostensibly discogenic in origin. These obstacles are considerable; however, recent research has begun to shed light on possible breakthrough technologies. Such breakthroughs include revolutionary imaging to better identify tissue sources of pain. Furthermore, novel molecular therapies have been shown to be able to mediate the progression of degenerative disc disease in some large animal studies, and even provide some insight into suppressing the development of tissue sources of discogenic pain. These potential breakthrough technologies have yet to be translated for clinical use.
Collapse
Affiliation(s)
- William Taylor
- Department of Surgery, Division of Neurosurgery, University of California at San Diego, 9350 Campus Point Dr., La Jolla, CA 92037, USA;
| | - William Mark Erwin
- Department of Surgery, Divisions of Orthopaedic and Neurosurgery, University of Toronto, 661 University Ave., Suite 13-1387, Toronto, ON M5G 0B7, Canada
| |
Collapse
|
4
|
McDonnell EE, Wilson N, Barcellona MN, Ní Néill T, Bagnall J, Brama PAJ, Cunniffe GM, Darwish SL, Butler JS, Buckley CT. Preclinical to clinical translation for intervertebral disc repair: Effects of species-specific scale, metabolism, and matrix synthesis rates on cell-based regeneration. JOR Spine 2023; 6:e1279. [PMID: 37780829 PMCID: PMC10540833 DOI: 10.1002/jsp2.1279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background A significant hurdle for potential cell-based therapies is the subsequent survival and regenerative capacity of implanted cells. While many exciting developments have demonstrated promise preclinically, cell-based therapies for intervertebral disc (IVD) degeneration fail to translate equivalent clinical efficacy. Aims This work aims to ascertain the clinical relevance of both a small and large animal model by experimentally investigating and comparing these animal models to human from the perspective of anatomical scale and their cellular metabolic and regenerative potential. Materials and Methods First, this work experimentally investigated species-specific geometrical scale, native cell density, nutrient metabolism, and matrix synthesis rates for rat, goat, and human disc cells in a 3D microspheroid configuration. Second, these parameters were employed in silico to elucidate species-specific nutrient microenvironments and predict differences in temporal regeneration between animal models. Results This work presents in silico models which correlate favorably to preclinical literature in terms of the capabilities of animal regeneration and predict that compromised nutrition is not a significant challenge in small animal discs. On the contrary, it highlights a very fine clinical balance between an adequate cell dose for sufficient repair, through de novo matrix deposition, without exacerbating the human microenvironmental niche. Discussion Overall, this work aims to provide a path towards understanding the effect of cell injection number on the nutrient microenvironment and the "time to regeneration" between preclinical animal models and the large human IVD. While these findings help to explain failed translation of promising preclinical data and the limited results emerging from clinical trials at present, they also enable the research field and clinicians to manage expectations on cell-based regeneration. Conclusion Ultimately, this work provides a platform to inform the design of clinical trials, and as computing power and software capabilities increase in the future, it is conceivable that generation of patient-specific models could be used for patient assessment, as well as pre- and intraoperative planning.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Tara Ní Néill
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Jessica Bagnall
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Pieter A. J. Brama
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Gráinne M. Cunniffe
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Stacey L. Darwish
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
- National Orthopaedic HospitalDublinIreland
- St Vincent's University HospitalDublinIreland
| | - Joseph S. Butler
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- National Spinal Injuries UnitMater Misericordiae University HospitalDublinIreland
- School of MedicineUniversity College DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
5
|
Williams RJ, Laagland LT, Bach FC, Ward L, Chan W, Tam V, Medzikovic A, Basatvat S, Paillat L, Vedrenne N, Snuggs JW, Poramba-Liyanage DW, Hoyland JA, Chan D, Camus A, Richardson SM, Tryfonidou MA, Le Maitre CL. Recommendations for intervertebral disc notochordal cell investigation: From isolation to characterization. JOR Spine 2023; 6:e1272. [PMID: 37780826 PMCID: PMC10540834 DOI: 10.1002/jsp2.1272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Lineage-tracing experiments have established that the central region of the mature intervertebral disc, the nucleus pulposus (NP), develops from the embryonic structure called "the notochord". However, changes in the cells derived from the notochord which form the NP (i.e., notochordal cells [NCs]), in terms of their phenotype and functional identity from early developmental stages to skeletal maturation are less understood. These key issues require further investigation to better comprehend the role of NCs in homeostasis and degeneration as well as their potential for regeneration. Progress in utilizing NCs is currently hampered due to poor consistency and lack of consensus methodology for in vitro NC extraction, manipulation, and characterization. Methods Here, an international group has come together to provide key recommendations and methodologies for NC isolation within key species, numeration, in vitro manipulation and culture, and characterization. Results Recommeded protocols are provided for isolation and culture of NCs. Experimental testing provided recommended methodology for numeration of NCs. The issues of cryopreservation are demonstrated, and a pannel of immunohistochemical markers are provided to inform NC characterization. Conclusions Together we hope this article provides a road map for in vitro studies of NCs to support advances in research into NC physiology and their potential in regenerative therapies.
Collapse
Affiliation(s)
- Rebecca J Williams
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lisanne T Laagland
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Frances C Bach
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Lizzy Ward
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Wilson Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Vivian Tam
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Adel Medzikovic
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Shaghayegh Basatvat
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lily Paillat
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Nicolas Vedrenne
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Joseph W Snuggs
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Deepani W Poramba-Liyanage
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research Centre Central Manchester Foundation Trust, Manchester Academic Health Science Centre Manchester UK
| | - Danny Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Anne Camus
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Marianna A Tryfonidou
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| |
Collapse
|
6
|
Molinos M, Fiordalisi MF, Caldeira J, Almeida CR, Barbosa MA, Gonçalves RM. Alterations of bovine nucleus pulposus cells with aging. Aging Cell 2023; 22:e13873. [PMID: 37254638 PMCID: PMC10410011 DOI: 10.1111/acel.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging. For that, bovine coccygeal discs from young (12 months) and old (10-16 years old) animals were dissected and primary NP cells were isolated. Gene expression and proteomics of fresh NP cells were performed. NP cells were labelled with propidium iodide and analysed by flow cytometry for the expression of CD29, CD44, CD45, CD146, GD2, Tie2, CD34 and Stro-1. Morphological cell features were also dissected by imaging flow cytometry. Elder NP cells (up-regulated bIL-6 and bMMP1 gene expression) presented lower percentages of CD29+, CD44+, CD45+ and Tie2+ cells compared with young NP cells (upregulated bIL-8, bCOL2A1 and bACAN gene expression), while GD2, CD146, Stro-1 and CD34 expression were maintained with age. NP cellulome showed an upregulation of proteins related to endoplasmic reticulum (ER) and melanosome independently of age, whereas proteins upregulated in elder NP cells were also associated with glycosylation and disulfide bonds. Flow cytometry analysis of NP cells disclosed the existence of 4 subpopulations with distinct auto-fluorescence and size with different dynamics along aging. Regarding cell morphology, aging increases NP cell area, diameter and vesicles. These results contribute to a better understanding of NP cells aging and highlighting potential anti-aging targets that can help to mitigate age-related disc disease.
Collapse
Affiliation(s)
- Maria Molinos
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Morena F. Fiordalisi
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Joana Caldeira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
| | - Catarina R. Almeida
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- iBiMED – Institute of Biomedicine, Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Mário A. Barbosa
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Raquel M. Gonçalves
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- INEB – Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
7
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
8
|
Poletto DL, Crowley JD, Tanglay O, Walsh WR, Pelletier MH. Preclinical in vivo animal models of intervertebral disc degeneration. Part 1: A systematic review. JOR Spine 2023; 6:e1234. [PMID: 36994459 PMCID: PMC10041387 DOI: 10.1002/jsp2.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022] Open
Abstract
Intervertebral disc degeneration (IVDD), a widely recognized cause of lower back pain, is the leading cause of disability worldwide. A myriad of preclinical in vivo animal models of IVDD have been described in the literature. There is a need for critical evaluation of these models to better inform researchers and clinicians to optimize study design and ultimately, enhance experimental outcomes. The purpose of this study was to conduct an extensive systematic literature review to report the variability of animal species, IVDD induction method, and experimental timepoints and endpoints used in in vivo IVDD preclinical research. A systematic literature review of peer-reviewed manuscripts featured on PubMed and EMBASE databases was conducted in accordance with PRISMA guidelines. Studies were included if they reported an in vivo animal model of IVDD and included details of the species used, how disc degeneration was induced, and the experimental endpoints used for analysis. Two-hundred and fifty-nine (259) studies were reviewed. The most common species, IVDD induction method and experimental endpoint used was rodents(140/259, 54.05%), surgery (168/259, 64.86%) and histology (217/259, 83.78%), respectively. Experimental timepoint varied greatly between studies, ranging from 1 week (dog and rodent models), to >104 weeks in dog, horse, monkey, rabbit, and sheep models. The two most common timepoints used across all species were 4 weeks (49 manuscripts) and 12 weeks (44 manuscripts). A comprehensive discussion of the species, methods of IVDD induction and experimental endpoints is presented. There was great variability across all categories: animal species, method of IVDD induction, timepoints and experimental endpoints. While no animal model can replicate the human scenario, the most appropriate model should be selected in line with the study objectives to optimize experimental design, outcomes and improve comparisons between studies.
Collapse
Affiliation(s)
- Daniel L. Poletto
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - James D. Crowley
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - Onur Tanglay
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| | - Matthew H. Pelletier
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Faculty of MedicineUniversity of New South Wales (UNSW) Sydney, Prince of Wales HospitalSydneyAustralia
| |
Collapse
|
9
|
Salzer E, Mouser VHM, Bulsink JA, Tryfonidou MA, Ito K. Dynamic loading leads to increased metabolic activity and spatial redistribution of viable cell density in nucleus pulposus tissue. JOR Spine 2023; 6:e1240. [PMID: 36994465 PMCID: PMC10041377 DOI: 10.1002/jsp2.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Background Nucleus pulposus (NP) cell density is orchestrated by an interplay between nutrient supply and metabolite accumulation. Physiological loading is essential for tissue homeostasis. However, dynamic loading is also believed to increase metabolic activity and could thereby interfere with cell density regulation and regenerative strategies. The aim of this study was to determine whether dynamic loading could reduce the NP cell density by interacting with its energy metabolism. Methods Bovine NP explants were cultured in a novel NP bioreactor with and without dynamic loading in milieus mimicking the pathophysiological or physiological NP environment. The extracellular content was evaluated biochemically and by Alcian Blue staining. Metabolic activity was determined by measuring glucose and lactate in tissue and medium supernatants. A lactate-dehydrogenase staining was performed to determine the viable cell density (VCD) in the peripheral and core regions of the NP. Results The histological appearance and tissue composition of NP explants did not change in any of the groups. Glucose levels in the tissue reached critical values for cell survival (≤0.5 mM) in all groups. Lactate released into the medium was increased in the dynamically loaded compared to the unloaded groups. While the VCD was unchanged on Day 2 in all regions, it was significantly reduced in the dynamically loaded groups on Day 7 (p ≤ 0.01) in the NP core, which led to a gradient formation of VCD in the group with degenerated NP milieu and dynamic loading (p ≤ 0.05). Conclusion It was demonstrated that dynamic loading in a nutrient deprived environment similar to that during IVD degeneration can increase cell metabolism to the extent that it was associated with changes in cell viability leading to a new equilibrium in the NP core. This should be considered for cell injections and therapies that lead to cell proliferation for treatment of IVD degeneration.
Collapse
Affiliation(s)
- Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Vivian H. M. Mouser
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jurgen A. Bulsink
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
10
|
Yang XX, Yip CH, Zhao S, Ho YP, Chan BP. A bio-inspired nano-material recapitulating the composition, ultra-structure, and function of the glycosaminoglycan-rich extracellular matrix of nucleus pulposus. Biomaterials 2023; 293:121991. [PMID: 36586145 DOI: 10.1016/j.biomaterials.2022.121991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
The nucleus pulposus (NP) of intervertebral disc represents a soft gel consisting of glycosaminoglycans (GAGs)-rich extracellular matrix (ECM). Significant loss of GAGs and normal functions are the most prevalent changes in degenerated disc. Attempts targeted to incorporate GAGs into collagen fibrous matrices have been made but the efficiency is very low, and the resulting structures showed no similarity with native NP. Inspired by the characteristic composition and structures of the ECM of native NP, here, we hypothesize that by chemically modifying the collagen (Col) and hyaluronic acid (HA) and co-precipitating with GAGs, a bio-inspired nano-material recapitulating the composition, ultra-structure and function of the GAG-rich ECM will be fabricated. Compositionally, the bio-inspired nano-material namely Aminated Collagen-Aminated Hyaluronic Acid-GAG (aCol-aHA-GAG) shows a record high GAG/hydroxyproline ratio up to 39.1:1 in a controllable manner, out-performing that of the native NP. Ultra-structurally, the nano-material recapitulates the characteristic 'nano-beads' (25 nm) and 'bottle-brushes' (133 nm) features as those found in native NP. Functionally, the nano-material supports the viability and maintains the morphological and phenotypic markers of bovine NP cells, and shows comparable mechanical properties of native NP. This work contributes to the development of a compositionally, structurally, and functionally biomimetic nano-material for NP tissue engineering.
Collapse
Affiliation(s)
- Xing-Xing Yang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Chi-Hung Yip
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| |
Collapse
|
11
|
Barcellona MN, McDonnell EE, Samuel S, Buckley CT. Rat tail models for the assessment of injectable nucleus pulposus regeneration strategies. JOR Spine 2022; 5:e1216. [PMID: 36203865 PMCID: PMC9520766 DOI: 10.1002/jsp2.1216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/12/2022] Open
Abstract
Back pain is a global epidemiological and socioeconomic problem often associated with intervertebral disc degeneration; a condition believed to initiate in the nucleus pulposus (NP). There is considerable interest in developing early therapeutic interventions to target the NP and halt degeneration. Rat caudal models of disc degeneration have demonstrated significant utility in the study of disease progression and its impact on tissue structure, composition, and mechanical performance. One significant advantage of the caudal model is the ease of access and high throughput nature. However, considerable variability exists across the literature in terms of experimental setup and parameters. The objective of this article is to aid researchers in the design and development of caudal puncture models by providing details and insight into the most reported experimental parameters. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed to screen the existing literature and 80 manuscripts met the inclusion criteria. Disc geometry, surgical approaches, effect of needle gauge size to induce degeneration, therapeutic volume, outcome measures, and associated limitations are considered and discussed, and a range of recommendations based on different research questions are presented.
Collapse
Affiliation(s)
- Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Shani Samuel
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublin 2Ireland
| |
Collapse
|
12
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Goldberg JL, Garton A, Singh S, Kirnaz S, Sommer F, Carnevale JA, Atalay B, Medary B, McGrath LB, Härtl R. Challenges in the Development of Biological Approaches for the Treatment of Degenerative Disc Disease. World Neurosurg 2021; 157:274-281. [PMID: 34929785 DOI: 10.1016/j.wneu.2021.09.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
There are numerous innovative and promising approaches aimed at slowing, reversing, or healing degenerative disc disease. However, multiple treatment-specific impediments slow progress toward realizing the benefits of these therapies. First, the exact pathophysiology underlying degenerative disc disease remains complicated and challenging to study. In addition, the study of the spine and intervertebral disc in animal models is difficult to translate to humans, hindering the utility of preclinical research. Biological treatments are subject to the complex biomechanical environment in which native discs degenerate. The regulatory approval environment for these therapeutics will likely involve a high degree of scrutiny. Finally, patient selection and assessment of outcomes are a particular challenge in this clinical setting.
Collapse
Affiliation(s)
- Jacob L Goldberg
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Andrew Garton
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Sunidhi Singh
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Sertac Kirnaz
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Fabian Sommer
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Joseph A Carnevale
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Basar Atalay
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Branden Medary
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Lynn B McGrath
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Roger Härtl
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA.
| |
Collapse
|
14
|
McDonnell EE, Buckley CT. Investigating the physiological relevance of ex vivo disc organ culture nutrient microenvironments using in silico modeling and experimental validation. JOR Spine 2021; 4:e1141. [PMID: 34337330 PMCID: PMC8313156 DOI: 10.1002/jsp2.1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ex vivo disc organ culture systems have become a valuable tool for the development and pre-clinical testing of potential intervertebral disc (IVD) regeneration strategies. Bovine caudal discs have been widely selected due to their large availability and comparability to human IVDs in terms of size and biochemical composition. However, despite their extensive use, it remains to be elucidated whether their nutrient microenvironment is comparable to human degeneration. AIMS This work aims to create the first experimentally validated in silico model which can be used to predict and characterize the metabolite concentrations within ex vivo culture systems. MATERIALS & METHODS Finite element models of cultured discs governed by previously established coupled reaction-diffusion equations were created using COMSOL Multiphysics. Experimental validation was performed by measuring oxygen, glucose and pH levels within discs cultured for 7 days, in a static compression bioreactor. RESULTS The in silico model was successfully validated through good agreement between the predicted and experimentally measured concentrations. For an ex vivo organ cultured in high glucose medium (4.5 g/L or 25 mM) and normoxia, a larger bovine caudal disc (Cd1-2 to Cd3-4) had a central concentration of ~2.6 %O2, ~8 mM of glucose and a pH value of 6.7, while the smallest caudal discs investigated (Cd6-7 and Cd7-8), had a central concentration of ~6.5 %O2, ~12 mM of glucose and a pH value of 6.9. DISCUSSION This work advances the knowledge of ex vivo disc culture microenvironments and highlights a critical need for optimization and standardization of culturing conditions. CONCLUSION Ultimately, for assessment of cell-based therapies and successful clinical translation based on nutritional demands, it is imperative that the critical metabolite values within organ cultures (minimum glucose, oxygen and pH values) are physiologically relevant and comparable to the stages of human degeneration.
Collapse
Affiliation(s)
- Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College DublinThe University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College DublinThe University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
15
|
Saggese T, Thambyah A, Wade K, McGlashan SR. Differential Response of Bovine Mature Nucleus Pulposus and Notochordal Cells to Hydrostatic Pressure and Glucose Restriction. Cartilage 2020; 11:221-233. [PMID: 29808709 PMCID: PMC7097982 DOI: 10.1177/1947603518775795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The nucleus pulposus of the human intervertebral disc contains 2 cell types: notochordal (NC) and mature nucleus pulposus (MNP) cells. NC cell loss is associated with disc degeneration and this process may be initiated by mechanical stress and/or nutrient deprivation. This study aimed to investigate the functional responses of NC and MNP cells to hydrostatic pressures and glucose restriction. DESIGN Bovine MNP and NC cells were cultured in 3-dimensional alginate beads under low (0.4-0.8 MPa) and high (1.6-2.4 MPa) dynamic pressure for 24 hours. Cells were cultured in either physiological (5.5 mM) glucose media or glucose-restriction (0.55 mM) media. Finally, the combined effect of glucose restriction and high pressure was examined. RESULTS Cell viability and notochordal phenotypic markers were not significantly altered in response to pressure or glucose restriction. MNP cells responded to low pressure with an increase in glycosaminoglycan (GAG) production while high pressure significantly decreased ACAN gene expression compared with atmospheric controls. NC cells showed no response in matrix gene expression or GAG production with either loading regime. Glucose restriction decreased NC cell TIMP-1 expression but had no effect on MNP cells. The combination of glucose restriction and high pressure only affected MNP cell gene expression, with decreased ACAN, Col2α1, and ADAMTS-5 expression. CONCLUSION This study shows that NC cells are more resistant to acute mechanical stresses than MNP cells and provides a strong rationale for future studies to further our understanding the role of NC cells within the disc, and the effects of long-term exposure to physical stresses.
Collapse
Affiliation(s)
- Taryn Saggese
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ashvin Thambyah
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Kelly Wade
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Susan Read McGlashan
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Xing Y, Zhang P, Zhang Y, Holzer L, Xiao L, He Y, Majumdar R, Huo J, Yu X, Ramasubramanian MK, Jin L, Wang Y, Li X, Oberholzer J. A multi-throughput mechanical loading system for mouse intervertebral disc. J Mech Behav Biomed Mater 2020; 105:103636. [PMID: 32279855 DOI: 10.1016/j.jmbbm.2020.103636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/01/2022]
Abstract
Mechanical loading plays an important role in maintaining disc health and function, and in particular, excessive mechanical loading has been identified as one of major reasons of disc degeneration. Intervertebral disc organ culture serves as a valuable tool to study disc biology/pathology. In this study, we report the development and validation of a new mouse disc organ culture system by dynamically applying compression loading in a customized micro-culture device tailored for mouse lumbar discs. Precise axial compression force was delivered by a computer-controlled system consisting of a robust micromechanical linear actuator, a force sensitive resistor, and a precision micro-stepping machinery. Customized PDMS-based loading chambers allowed simultaneous loading of six discs per regimen, which streamlined the workflow to reach sufficient statistic power. The detrimental loading regimen of mouse lumbar discs (0.5 MPa of axial compression at 1Hz for 7 days) was demonstrated through live-dead assay, histology, and fluorescence probe based collagen staining. In addition, various mechanical compression profiles were simulated using different materials and geometry designs, potentiating for more sophisticated loading protocols. In summary, we developed a new mechanical loading system for dynamic axial compression of mouse discs, which created a unique avenue to study disc pathogenesis with enriched mouse species-related resources, and complemented the existing spectrum of bioreactor systems predominately for discs of human and large animals.
Collapse
Affiliation(s)
- Yuan Xing
- Department of Surgery, University of Virginia, 345 Crispell Drive, Charlottesville, VA, 22908, United States
| | - Pu Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA, 22904, United States
| | - Yangpu Zhang
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, United States; Current Address: Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, China
| | - Liam Holzer
- Department of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, United States
| | - Li Xiao
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, United States
| | - Yi He
- Department of Surgery, University of Virginia, 345 Crispell Drive, Charlottesville, VA, 22908, United States
| | - Rahul Majumdar
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, United States
| | - Jianzhong Huo
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, United States; Current Address: Department of Orthopaedic Surgery, Shanxi DaYi Hospital, 99 Long Road, Taiyuan, Shanxi, 030032, China
| | - Xiaoyu Yu
- Department of Surgery, University of Virginia, 345 Crispell Drive, Charlottesville, VA, 22908, United States
| | - Melur K Ramasubramanian
- Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA, 22904, United States
| | - Li Jin
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, United States
| | - Yong Wang
- Department of Surgery, University of Virginia, 345 Crispell Drive, Charlottesville, VA, 22908, United States
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, United States.
| | - Jose Oberholzer
- Department of Surgery, University of Virginia, 345 Crispell Drive, Charlottesville, VA, 22908, United States.
| |
Collapse
|
17
|
Frauchiger DA, Tekari A, May RD, Džafo E, Chan SCW, Stoyanov J, Bertolo A, Zhang X, Guerrero J, Sakai D, Schol J, Grad S, Tryfonidou M, Benneker LM, Gantenbein B. Fluorescence-Activated Cell Sorting Is More Potent to Fish Intervertebral Disk Progenitor Cells Than Magnetic and Beads-Based Methods. Tissue Eng Part C Methods 2019; 25:571-580. [PMID: 31154900 DOI: 10.1089/ten.tec.2018.0375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low back pain related to intervertebral disk (IVD) degeneration has a major socioeconomic impact on our aging society. Therefore, stem cell therapy to activate self-repair of the IVD remains an exciting treatment strategy. In this respect, tissue-specific progenitors may play a crucial role in IVD regeneration, as these cells are perfectly adapted to this niche. Such a rare progenitor cell population residing in the nucleus pulposus (NP) (NP progenitor cells [NPPCs]) was found positive for the angiopoietin-1 receptor (Tie2+), and was demonstrated to possess self-renewal capacity and in vitro multipotency. Here, we compared three sorting protocols; that is, fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and a mesh-based label-free cell sorting system (pluriSelect), with respect to cell yield, potential to form colonies (colony-forming units), and in vitro functional differentiation assays for tripotency. The aim of this study was to demonstrate the efficiency of three widespread cell sorting methods for picking rare cells (<5%) and how these isolated cells then behave in downstream functional differentiation in adipogenesis, osteogenesis, and chondrogenesis. The cell yields among the isolation methods differed widely, with FACS presenting the highest yield (5.0% ± 4.0%), followed by MACS (1.6% ± 2.9%) and pluriSelect (1.1% ± 1.0%). The number of colonies formed was not significantly different between Tie2+ and Tie2- NPPCs. Only FACS was able to separate into two functionally different populations that showed trilineage multipotency, while MACS and pluriSelect failed to maintain a clear separation between Tie2+ and Tie2- populations in differentiation assays. To conclude, the isolation of NPPCs was possible with all three sorting methods, while FACS was the preferred technique for separation of functional Tie2+ cells. Impact Statement Tissue-specific progenitor cells such as nucleus pulposus progenitor cells of the IVD could become an ultimate cell source for tissue engineering strategies as these cells are presumably best adapted to the tissue's microenvironment. Fluorescence-activated cell sorting seemed to outcompete magnetic-activated cell sorting and pluriSelect concerning selecting a rare cell population from IVD tissue as could be demonstrated by improved cell yield and functional differentiation assays.
Collapse
Affiliation(s)
- Daniela A Frauchiger
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rahel D May
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Samantha C W Chan
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | | | | | - Xingshuo Zhang
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Julien Guerrero
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daisuke Sakai
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan
| | | | - Marianna Tryfonidou
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lorin M Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benjamin Gantenbein
- Tissue Engineering, Orthopeadic Research & Mechanobiology, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Zhao R, Liu W, Xia T, Yang L. Disordered Mechanical Stress and Tissue Engineering Therapies in Intervertebral Disc Degeneration. Polymers (Basel) 2019; 11:polym11071151. [PMID: 31284436 PMCID: PMC6680713 DOI: 10.3390/polym11071151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), commonly induced by intervertebral disc degeneration, is a lumbar disease with worldwide prevalence. However, the mechanism of degeneration remains unclear. The intervertebral disc is a nonvascular organ consisting of three components: Nucleus pulposus, annulus fibrosus, and endplate cartilages. The disc is structured to support our body motion and endure persistent external mechanical pressure. Thus, there is a close connection between force and intervertebral discs in LBP. It is well established that with aging, disordered mechanical stress profoundly influences the fate of nucleus pulposus and the alignment of collagen fibers in the annulus fibrosus. These support a new understanding that disordered mechanical stress plays an important role in the degeneration of the intervertebral discs. Tissue-engineered regenerative and reparative therapies are being developed for relieving disc degeneration and symptoms of lower back pain. In this paper, we will review the current literature available on the role of disordered mechanical stress in intervertebral disc degeneration, and evaluate the existing tissue engineering treatment strategies of the current therapies.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Nutrient supply and nucleus pulposus cell function: effects of the transport properties of the cartilage endplate and potential implications for intradiscal biologic therapy. Osteoarthritis Cartilage 2019; 27:956-964. [PMID: 30721733 PMCID: PMC6536352 DOI: 10.1016/j.joca.2019.01.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intradiscal biologic therapy is a promising strategy for managing intervertebral disc degeneration. However, these therapies require a rich nutrient supply, which may be limited by the transport properties of the cartilage endplate (CEP). This study investigated how fluctuations in CEP transport properties impact nutrient diffusion and disc cell survival and function. DESIGN Human CEP tissues harvested from six fresh cadaveric lumbar spines (38-66 years old) were placed at the open sides of diffusion chambers. Bovine nucleus pulposus (NP) cells cultured inside the chambers were nourished exclusively by nutrients diffusing through the CEP tissues. After 72 h in culture, depth-dependent NP cell viability and gene expression were measured, and related to CEP transport properties and biochemical composition determined using fluorescence recovery after photobleaching and Fourier transform infrared (FTIR) spectroscopy. RESULTS Solute diffusivity varied nearly 4-fold amongst the CEPs studied, and chambers with the least permeable CEPs appeared to have lower aggrecan, collagen-2, and matrix metalloproteinase-2 gene expression, as well as a significantly shorter viable distance from the CEP/nutrient interface. Increasing chamber cell density shortened the viable distance; however, this effect was lost for low-diffusivity CEPs, which suggests that these CEPs may not provide enough nutrient diffusion to satisfy cell demands. Solute diffusivity in the CEP was associated with biochemical composition: low-diffusivity CEPs had greater amounts of collagen and aggrecan, more mineral, and lower cross-link maturity. CONCLUSIONS CEP transport properties dramatically affect NP cell survival/function. Degeneration-related CEP matrix changes could hinder the success of biologic therapies that require increased nutrient supply.
Collapse
|
20
|
Resutek L, Hsieh AH. The vacuolated morphology of chordoma cells is dependent on cytokeratin intermediate filaments. J Cell Physiol 2018; 234:3458-3468. [DOI: 10.1002/jcp.26809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/30/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lauren Resutek
- Fischell Department of Bioengineering University of Maryland College Park MD
| | - Adam H. Hsieh
- Fischell Department of Bioengineering University of Maryland College Park MD
| |
Collapse
|
21
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Ageing affects chondroitin sulfates and their synthetic enzymes in the intervertebral disc. Signal Transduct Target Ther 2017; 2:17049. [PMID: 29263929 PMCID: PMC5661628 DOI: 10.1038/sigtrans.2017.49] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/19/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023] Open
Abstract
The depletion of chondroitin sulfates (CSs) within the intervertebral disc (IVD) during degenerative disc disease (DDD) results in a decrease in tissue hydration, a loss of fluid movement, cell apoptosis, a loss of nerve growth inhibition and ultimately, the loss of disc function. To date, little is known with regards to the structure and content of chondroitin sulfates (CSs) during IVD ageing. The behavior of glycosaminoglycans (GAGs), specifically CSs, as well as xylosyltransferase I (XT-I) and glucuronyltransferase I (GT-I), two key enzymes involved in CS synthesis as a primer of glycosaminoglycan (GAG) chain elongation and GAG synthesis in the nucleus pulposus (NP), respectively, were evaluated in a bovine ageing IVD model. Here, we showed significant changes in the composition of GAGs during the disc ageing process (6-month-old, 2-year-old and 8-year-old IVDs representing the immature to mature skeleton). The CS quantity and composition of annulus fibrosus (AF) and NP were determined. The expression of both XT-I and GT-I was detected using immunohistochemistry. A significant decrease in GAGs was observed during the ageing process. CSs are affected at both the structural and quantitative levels with important changes in sulfation observed upon maturity, which correlated with a decrease in the expression of both XT-I and GT-I. A progressive switch of the sulfation profile was noted in both NP and AF tissues from 6 months to 8 years. These changes give an appreciation of the potential impact of CSs on the disc biology and the development of therapeutic approaches for disc regeneration and repair.
Collapse
|
23
|
Li P, Gan Y, Wang H, Xu Y, Song L, Wang L, Ouyang B, Zhou Q. A Substance Exchanger-Based Bioreactor Culture of Pig Discs for Studying the Immature Nucleus Pulposus. Artif Organs 2017; 41:E308-E319. [PMID: 28188657 DOI: 10.1111/aor.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Various research models have been developed to study the biology of disc cells. Recently, the adult disc nucleus pulposus (NP) has been well studied. However, the immature NP is underinvestigated due to a lack of a suitable model. This study aimed to establish an organ culture of immature porcine disc by optimizing culture conditions and using a self-developed substance exchanger-based bioreactor. Immature porcine discs were first cultured in the bioreactor for 7 days at various levels of glucose (low, medium, high), osmolarity (hypo-, iso-, hyper-) and serum (5, 10, 20%) to determine the respective optimal level. The porcine discs were then cultured under the optimized conditions in the novel bioreactor, and were compared with fresh discs at day 14. For high-glucose, iso-osmolarity, or 10% serum, cell viability, the gene expression profile (for anabolic genes and catabolic genes), and glycosaminoglycan (GAG) and hydroxyproline (HYP) contents were more favorable than for other levels of glucose, osmolarity, and serum. When the immature discs were cultured under the optimized conditions using the novel bioreactor for 14 days, the viability of the immature NP was maintained based on histology, cell viability, GAG and HYP contents, and matrix molecule expression. In conclusion, the viability of the immature NP in organ culture could be maintained under the optimized culture conditions (high-glucose, iso-osmolarity, and 10% serum) in the substance exchanger-based bioreactor.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Haoming Wang
- Department of Orthopedic Surgery, Chongqing Three Gorges Central Hospital
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Bin Ouyang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University
| |
Collapse
|
24
|
Moriguchi Y, Alimi M, Khair T, Manolarakis G, Berlin C, Bonassar LJ, Härtl R. Biological Treatment Approaches for Degenerative Disk Disease: A Literature Review of In Vivo Animal and Clinical Data. Global Spine J 2016; 6:497-518. [PMID: 27433434 PMCID: PMC4947401 DOI: 10.1055/s-0036-1571955] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY DESIGN Literature review. OBJECTIVE Degenerative disk disease (DDD) has a negative impact on quality of life and is a major cause of morbidity worldwide. There has been a growing interest in the biological repair of DDD by both researchers and clinicians alike. To generate an overview of the recent progress in reparative strategies for the treatment of DDD highlighting their promises and limitations, a comprehensive review of the current literature was performed elucidating data from in vivo animal and clinical studies. METHODS Articles and abstracts available in electronic databases of PubMed, Web of Science, and Google Scholar as of December 2014 were reviewed. Additionally, data from unpublished, ongoing clinical trials was retrieved from clinicaltrials.gov and available abstracts from research forums. Data was extracted from the most recent in vivo animal or clinical studies involving any of the following: (1) treatment with biomolecules, cells, or tissue-engineered constructs and (2) annulus fibrosus repair. RESULTS Seventy-five articles met the inclusion criteria for review. Among these, 17 studies involved humans; 37, small quadrupeds; and 21, large quadrupeds. Findings from all treatments employed demonstrated improvement either in regenerative capacity or in pain attenuation, with the exception of one clinical study. CONCLUSION Published clinical studies on cell therapy have reported encouraging results in the treatment of DDD and resultant back pain. We expect new data to emerge in the near future as treatments for DDD continue to evolve in parallel to our greater understanding of disk health and pathology.
Collapse
Affiliation(s)
- Yu Moriguchi
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Marjan Alimi
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Thamina Khair
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - George Manolarakis
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Connor Berlin
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Lawrence J. Bonassar
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States
| | - Roger Härtl
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| |
Collapse
|
25
|
Tekari A, Chan SCW, Sakai D, Grad S, Gantenbein B. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res Ther 2016; 7:75. [PMID: 27216150 PMCID: PMC4878031 DOI: 10.1186/s13287-016-0337-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. METHODS Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). RESULTS After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p < 0.0001), fat droplet formation (p < 0.0001), and glycosaminoglycan content (p = 0.0095 vs. Tie2- NPC), respectively. Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies; however, the colonies formed from Tie2+ cells were spheroid in shape, whereas those from Tie2- cells were spread and fibroblastic. In addition, Tie2+ cells formed more colonies in 3D culture (p = 0.011) than Tie2- cells. During expansion, a fast decline in the fraction of Tie2+ cells was observed (p < 0.0001), which was partially reversed by low oxygen concentration (p = 0.0068) and supplementation of the culture with fibroblast growth factor 2 (FGF2) (p < 0.0001). CONCLUSIONS Our results showed that the bovine nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.
Collapse
Affiliation(s)
- Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland.
| | - Samantha C W Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland.,Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland
| | - Daisuke Sakai
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| |
Collapse
|
26
|
Martins DE, Medeiros VP, Demerov GF, Accardo CM, Paredes-Gamero EJ, Wajchenberg M, Reginato RD, Nader HB, Puertas EB, Faloppa F. Ionic and biochemical characterization of bovine intervertebral disk. Connect Tissue Res 2016; 57:212-9. [PMID: 26942772 DOI: 10.3109/03008207.2016.1140751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Intervertebral disks have been associated with low back pain, and many therapies have been proposed for its treatment. The cellular and molecular knowledge of intervertebral disks composition and precise methods to quantify disk components are important for any type of proposed therapy. Thus, the aim of this study was to correlate glycosaminoglycans presence with the quantitation of cells, ions and collagen fiber distributions in different intervertebral disk sections. METHODS In total, 14 intervertebral disks were used from cattle. All of the disks were dehydrated, separated in seven sections and digested in sodium-free papain buffer. Glycosaminoglycan measurements were performed in the samples according to agarose electrophoresis method; total cells were measured using the PicoGreen® technique, ions were quantified, and collagen fiber birefringence was analyzed with polarized light. RESULTS Cations Na+ and K+ are more concentrate in the nucleus (Na(+) = 1688.50 ± 110 mmol/L; K(+) = 111.9 ± 28 mmol/L) of intervertebral disks than the annulus (Na(+) = 652.80 ± 75 mmol/L; K(+) = 55.6 ± 8 mmol/L). A negative correlation between cells number and sodium/potassium was observed (p < 0.001) Additionally, thin collagen fibers were largest in the nucleus, similar to hyaluronate distribution. CONCLUSIONS The results suggest that annulus fibrosus cells are also sensitive to changes in ionic concentrations such as nucleus pulposus cells. Additionally, hyaluronate is related to thin collagen fibers type II.
Collapse
Affiliation(s)
- Delio Eulalio Martins
- a Department of Orthopaedics and Traumatology, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| | | | - Gabriela Feitosa Demerov
- c Department of Biochemistry, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Camila Melo Accardo
- c Department of Biochemistry, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Edgar Julian Paredes-Gamero
- c Department of Biochemistry, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil.,d Centro Interdisciplinar de Investigacao Bioquimica , Universidade de Mogi das Cruzes , Mogi das Cruzes , Brazil
| | - Marcelo Wajchenberg
- a Department of Orthopaedics and Traumatology, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Rejane Daniele Reginato
- e Department of Morphology and Genetics, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Helena Bonciani Nader
- c Department of Biochemistry, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Eduardo Barros Puertas
- a Department of Orthopaedics and Traumatology, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| | - Flávio Faloppa
- a Department of Orthopaedics and Traumatology, Escola Paulista de Medicina , Universidade Federal de São Paulo , São Paulo , Brazil
| |
Collapse
|
27
|
Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity. Sci Rep 2016; 6:23062. [PMID: 26965377 PMCID: PMC4786852 DOI: 10.1038/srep23062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/29/2016] [Indexed: 01/07/2023] Open
Abstract
In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity.
Collapse
|
28
|
Gantenbein B, Illien-Jünger S, Chan SCW, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2016; 10:339-52. [PMID: 25764196 DOI: 10.2174/1574888x10666150312102948] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Institute for Surgical Technology & Biomechanics, Medical Faculty, University, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Molinos M, Almeida CR, Gonçalves RM, Barbosa MA. Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Eng Part A 2015; 21:2216-27. [DOI: 10.1089/ten.tea.2014.0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Molinos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Current trends in biologics delivery to restore intervertebral disc anabolism. Adv Drug Deliv Rev 2015; 84:146-58. [PMID: 25174310 DOI: 10.1016/j.addr.2014.08.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/31/2014] [Accepted: 08/20/2014] [Indexed: 12/30/2022]
Abstract
Low back pain is generally attributed to intervertebral disc (IVD) degeneration. This is a multifactorial disease induced by genetic and environmental factors and that progresses with aging. Disc degeneration is characterized by a limited ability of IVD cells to produce functional matrix while producing abnormal amounts of matrix-degrading enzymes. The prolonged imbalance between anabolism and catabolism in degenerative discs alters their composition and hydration. In turn, this results in increased angiogenesis and the loss of the disc's ability to maintain its aneural condition. Inflammation in the IVD, in particular the presence of pro-inflammatory cytokines, was found to favor innervation and also sensitization of the nociceptive pathways, thereby exacerbating degenerative symptoms. In this review, we discuss anti-inflammatory approaches to encounter disc catabolism, potential treatments to lower discogenic pain and pro-anabolic approaches in the form of protein delivery, gene therapy and cell delivery, to trigger regeneration in the IVD.
Collapse
|
31
|
Gantenbein B, Calandriello E, Wuertz-Kozak K, Benneker LM, Keel MJB, Chan SCW. Activation of intervertebral disc cells by co-culture with notochordal cells, conditioned medium and hypoxia. BMC Musculoskelet Disord 2014; 15:422. [PMID: 25496082 PMCID: PMC4295479 DOI: 10.1186/1471-2474-15-422] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/01/2014] [Indexed: 12/14/2022] Open
Abstract
Background Notochordal cells (NC) remain in the focus of research for regenerative therapy for the degenerated intervertebral disc (IVD) due to their progenitor status. Recent findings suggested their regenerative action on more mature disc cells, presumably by the secretion of specific factors, which has been described as notochordal cell conditioned medium (NCCM). The aim of this study was to determine NC culture conditions (2D/3D, fetal calf serum, oxygen level) that lead to significant IVD cell activation in an indirect co-culture system under normoxia and hypoxia (2% oxygen). Methods Porcine NC was kept in 2D monolayer and in 3D alginate bead culture to identify a suitable culture system for these cells. To test stimulating effects of NC, co-cultures of NC and bovine derived coccygeal IVD cells were conducted in a 1:1 ratio with no direct cell contact between NC and bovine nucleus pulposus cell (NPC) or annulus fibrosus cells (AFC) in 3D alginate beads under normoxia and hypoxia (2%) for 7 and 14 days. As a positive control, NPC and AFC were stimulated with NC-derived conditioned medium (NCCM). Cell activity, glycosaminoglycan (GAG) content, DNA content and relative gene expression was measured. Mass spectrometry analysis of the NCCM was conducted. Results We provide evidence by flow cytometry that monolayer culture is not favorable for NC culture with respect to maintaining NC phenotype. In 3D alginate culture, NC activated NPC either in indirect co-culture or by addition of NCCM as indicated by the gene expression ratio of aggrecan/collagen type 2. This effect was strongest with 10% fetal calf serum and under hypoxia. Conversely, AFC seemed unresponsive to co-culture with pNC or to the NCCM. Further, the results showed that hypoxia led to decelerated metabolic activity, but did not lead to a significant change in the GAG/DNA ratio. Mass spectrometry identified connective tissue growth factor (CTGF, syn. CCN2) in the NCCM. Conclusions Our results confirm the requirement to culture NC in 3D to best maintain their phenotype, preferentially in hypoxia and with the supplementation of FCS in the culture media. Despite these advancements, the ideal culture condition remains to be identified. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-422) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue & Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
32
|
Saggese T, Redey P, McGlashan SR. Same-species phenotypic comparison of notochordal and mature nucleus pulposus cells. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1976-85. [PMID: 25476137 DOI: 10.1007/s00586-014-3697-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE The ratio of notochordal (NC) cells to mature nucleus pulposus (MNP) cells in the nucleus pulposus varies with species, age and health. Studies suggest that loss of NC cells is a key component of intervertebral disc degeneration. However, few studies have examined the phenotypes of these two cell populations. Therefore, this study aimed to isolate NC and MNP cells from the same intervertebral disc and study phenotypic differences in extracellular matrix production and cell morphology in 3D culture over 7 days. METHODS Sequential mechanical dissociation and enzymatic digestion were used to isolate NC cell clusters and single MNP cells from bovine caudal discs. Cells were cultured in alginate beads and subsequently analysed for viability, cytokeratin-8 expression, GAG production and extracellular matrix gene expression. RESULTS Mechanical dissociation allowed NC cells to be extracted as intact cell clusters. NC cells represented 8% of the NP cell population and expressed both cytokeratin-8 and vimentin. MNP cells expressed vimentin, only. Both cells types were viable for 7 days. In addition to morphological differences, NC cells produced up to 30 times more total proteoglycan than MNP cells. NC cells had significantly higher aggrecan and brachyury expression. CONCLUSIONS NC and MNP cells can be isolated from the same bovine disc and maintain their distinct phenotypes in 3D culture.
Collapse
Affiliation(s)
- Taryn Saggese
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1021, New Zealand
| | | | | |
Collapse
|
33
|
Fontana G, Srivastava A, Thomas D, Lalor P, Dockery P, Pandit A. Three-Dimensional Microgel Platform for the Production of Cell Factories Tailored for the Nucleus Pulposus. Bioconjug Chem 2014; 26:1297-306. [DOI: 10.1021/bc5004247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gianluca Fontana
- Network of Excellence for Functional
Biomaterials and ‡Anatomy, National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Network of Excellence for Functional
Biomaterials and ‡Anatomy, National University of Ireland, Galway, Ireland
| | - Dilip Thomas
- Network of Excellence for Functional
Biomaterials and ‡Anatomy, National University of Ireland, Galway, Ireland
| | - Pierce Lalor
- Network of Excellence for Functional
Biomaterials and ‡Anatomy, National University of Ireland, Galway, Ireland
| | - Peter Dockery
- Network of Excellence for Functional
Biomaterials and ‡Anatomy, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional
Biomaterials and ‡Anatomy, National University of Ireland, Galway, Ireland
| |
Collapse
|
34
|
Hung KC, Tseng CS, Hsu SH. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater 2014; 3:1578-87. [PMID: 24729580 DOI: 10.1002/adhm.201400018] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/26/2014] [Indexed: 01/26/2023]
Abstract
Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications.
Collapse
Affiliation(s)
- Kun-Che Hung
- Institute of Polymer Science and Engineering; National Taiwan University; No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan R.O.C
| | - Ching-Shiow Tseng
- Department of Mechanical Engineering; National Central University; Taoyuan 32001 Taiwan R.O.C
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering; National Taiwan University; No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan R.O.C
- Research Center for Developmental Biology and Regenerative Medicine; National Taiwan University; Taipei 10617 Taiwan R.O.C
| |
Collapse
|
35
|
An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1803-14. [DOI: 10.1007/s00586-014-3305-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/21/2014] [Accepted: 04/06/2014] [Indexed: 12/29/2022]
|
36
|
Nonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System. Stem Cells Int 2013; 2013:326828. [PMID: 24454406 PMCID: PMC3885261 DOI: 10.1155/2013/326828] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/24/2013] [Indexed: 01/24/2023] Open
Abstract
Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.
Collapse
|
37
|
Ludwinski FE, Gnanalingham K, Richardson SM, Hoyland JA. Understanding the native nucleus pulposus cell phenotype has important implications for intervertebral disc regeneration strategies. Regen Med 2013; 8:75-87. [PMID: 23259807 DOI: 10.2217/rme.12.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Low back pain is a leading cause of morbidity in developed societies and is strongly linked to degeneration of the intervertebral disc. The central nucleus pulposus (NP) region is most severely affected during disc degeneration and, consequently, is a focus for novel cell-based regenerative strategies. However, in order to develop such techniques, it is essential to first understand the biology and phenotype of the NP cells intended for repair. Microarray studies have highlighted novel NP markers that will allow a more accurate identification of cells for implantation, and along with other studies, have also revealed the potential importance of a developmental or immature NP cell phenotype in disseminating the optimal cell type for use. Additionally, the degenerative intervertebral disc is a harsh native environment and the effects of this on cells intended for implantation have yet to be fully elucidated; this is crucial for clinical translation of tissue engineered cell-based therapies.
Collapse
Affiliation(s)
- Francesca E Ludwinski
- Regenerative Medicine, Institute of Inflammation & Repair, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
38
|
Stokes IAF, McBride CA, Aronsson DD, Roughley PJ. Metabolic Effects of Angulation, Compression, and Reduced Mobility on Annulus Fibrosis in a Model of Altered Mechanical Environment in Scoliosis. Spine Deform 2013; 1:161-170. [PMID: 27927288 PMCID: PMC3756694 DOI: 10.1016/j.jspd.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/05/2012] [Accepted: 02/04/2013] [Indexed: 11/20/2022]
Abstract
STUDY DESIGN Comparison of disc tissue from rat tails in 6 groups with different mechanical conditions imposed. OBJECTIVES To identify disc annulus changes associated with the supposed altered biomechanical environment in a spine with scoliosis deformity using an immature rat model that produces disc narrowing and wedging. BACKGROUND Intervertebral discs become wedged and narrowed in a scoliosis curve, probably partly because of an altered biomechanical environment. METHODS We subjected tail discs of 5-week-old immature Sprague-Dawley rats to an altered mechanical environment using an external apparatus applying permutations of loading and deformity for 5 weeks. Together with a sham and a control group, we studied 4 groups of rats: A) 15° angulation, B) angulation with 0.1 MPa compression, C) 0.1 MPa compression, and R) reduced mobility. We measured disc height changes and matrix composition (water, deoxyribonucleic acid, glycosaminoglycan, and hyaluronic acid content) after 5 weeks, and proline and sulphate incorporation and messenger ribonucleic acid expression at 5 days and 5 weeks. RESULTS After 5 weeks, disc space was significantly narrowed relative to internal controls in all 4 intervention groups. Water content and cellularity (deoxyribonucleic acid content) were not different at interventional levels relative to internal controls and not different between the concave and convex sides of the angulated discs. There was increased glycosaminoglycan content in compressed tissue (in Groups B and C), as expected, and compression resulted in a decrease in hyaluronic acid size. We observed slightly increased incorporation of tritiated proline into the concave side of angulated discs and compressed discs. Asymmetries of gene expression in Groups A and B and some group-wise differences did not identify consistent patterns associating the discs' responses to mechanical alterations. CONCLUSIONS Intervertebral discs in this model underwent substantial narrowing after 5 weeks, with minimal alteration in tissue composition and minimal evidence of metabolic changes.
Collapse
Affiliation(s)
- Ian A F Stokes
- Department of Orthopaedics and Rehabilitation, 434 Robert T. Stafford Hall University of Vermont, Burlington, VT 05405-0084, USA.
| | - Carole A McBride
- Department of Orthopaedics and Rehabilitation, 434 Robert T. Stafford Hall University of Vermont, Burlington, VT 05405-0084, USA
| | - David D Aronsson
- Department of Orthopaedics and Rehabilitation, 434 Robert T. Stafford Hall University of Vermont, Burlington, VT 05405-0084, USA
| | - Peter J Roughley
- Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada
| |
Collapse
|
39
|
Feng G, Zhang Z, Jin X, Hu J, Gupte MJ, Holzwarth JM, Ma PX. Regenerating nucleus pulposus of the intervertebral disc using biodegradable nanofibrous polymer scaffolds. Tissue Eng Part A 2012; 18:2231-8. [PMID: 22690837 DOI: 10.1089/ten.tea.2011.0747] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Low back pain is a leading health problem in the United States, which is most often resulted from nucleus pulposus (NP) degeneration. To date, the replacement of degenerated NP relies entirely on mechanical devices. However, a biological NP replacement implant is more desirable. Here, we report the regeneration of NP tissue using a biodegradable nanofibrous (NF) scaffold. Rabbit NP cells were seeded on the NF scaffolds to regenerate NP-like tissue both in vitro and in a subcutaneous implantation model. The NP cells on the NF scaffolds proliferated faster than those on control solid-walled (SW) scaffolds in vitro. Significantly more extracellular matrix (ECM) production (glycosaminoglycan and type II collagen) was found on the NF scaffolds than on the control SW scaffolds. The constructs were then implanted in the caudal spine of athymic rats for up to 12 weeks. The tissue-engineered NP could survive, produce functional ECM, remain in place, and maintain the disc height, which is similar to the native NP tissue.
Collapse
Affiliation(s)
- Ganjun Feng
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Woiciechowsky C, Abbushi A, Zenclussen ML, Casalis P, Krüger JP, Freymann U, Endres M, Kaps C. Regeneration of nucleus pulposus tissue in an ovine intervertebral disc degeneration model by cell-free resorbable polymer scaffolds. J Tissue Eng Regen Med 2012; 8:811-20. [PMID: 22865642 DOI: 10.1002/term.1582] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/25/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023]
Abstract
Degeneration of intervertebral discs (IVDs) occurs frequently and is often associated with lower back pain. Recent treatment options are limited and treat the symptoms rather than regenerate the degenerated disc. Cell-free, freeze-dried resorbable polyglycolic acid (PGA)-hyaluronan implants were used in an ovine IVD degeneration model. The nucleus pulposus of the IVD was partially removed, endoscopically. PGA-hyaluronan implants were immersed in autologous sheep serum and implanted into the disc defect. Animals with nucleotomy only served as controls. The T2-weighted/fat suppression sequence signal intensity index of the operated discs, as assessed by magnetic resonance imaging (MRI), showed that implantation of the PGA-hyaluronan implant improved (p = 0.0066) the MRI signal compared to controls at 6 months after surgery. Histological analysis by haematoxylin and eosin and safranin O staining showed the ingrowth of cells with typical chondrocytic morphology, even cell distribution, and extracellular matrix rich in proteoglycan. Histomorphometric analyses confirmed that the implantation of the PGA-hyaluronan scaffolds improved (p = 0.027) the formation of regenerated tissue after nucleotomy. Disc heights remained stable in discs with nucleotomy only as well as after implantation of the implant. In conclusion, implantation of cell-free polymer-based implants after nucleotomy induces nucleus pulposus tissue regeneration and improves disc water content in the ovine model.
Collapse
Affiliation(s)
- Christian Woiciechowsky
- Tissue Engineering Laboratory, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Germany; Spine Centre Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S. Diversity of intervertebral disc cells: phenotype and function. J Anat 2012; 221:480-96. [PMID: 22686699 DOI: 10.1111/j.1469-7580.2012.01521.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intervertebral disc (IVD) is a moderately moving joint that is located between the bony vertebrae and provides flexibility and load transmission throughout the spinal column. The disc is composed of different but interrelated tissues, including the central highly hydrated nucleus pulposus (NP), the surrounding elastic and fibrous annulus fibrosus (AF), and the cartilaginous endplate (CEP), which provides the connection to the vertebral bodies. Each of these tissues has a different function and consists of a specific matrix structure that is maintained by a cell population with distinct phenotype. Although the healthy IVD is able to balance the slow matrix turnover of synthesis and degradation, this balance is often disturbed, leading to degenerative disorders. Successful therapeutic management of IVD degeneration requires a profound understanding of the cellular and molecular characteristics of the functional IVD. Hence, the phenotype of IVD cells has been of significant interest from multiple perspectives, including development, growth, remodelling, degeneration and repair. One major challenge that complicates our understanding of the disc cells is that both the cellular phenotype and the extracellular matrix strongly depend on disc maturity and health and as a consequence are continuously evolving. This review delineates the diversity of the cell types found in the intervertebral disc, with emphasis on human, but with reference to other species. The cells of the NP appear rounded and express a proteoglycan-rich matrix, whereas the more elongated AF cells are embedded in a collagen fibre matrix and the CEPs represent a layer of cartilage. Even though all disc cells have often been referred to as 'intervertebral disc chondrocytes', distinct phenotypical differences in comparison with articular chondrocytes exist and have been reported recently. The availability of more specific markers has also improved our understanding of progenitor cell differentiation towards an IVD cell phenotype. Ultimately, new cell- and tissue-engineering approaches to regenerative therapies will only be successful if the specific characteristics of the individual tissues and their context in the function of the whole organ, are taken into consideration.
Collapse
|
42
|
Lewis G. Nucleus pulposus replacement and regeneration/repair technologies: present status and future prospects. J Biomed Mater Res B Appl Biomater 2012; 100:1702-20. [PMID: 22566484 DOI: 10.1002/jbm.b.32712] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/19/2012] [Accepted: 03/18/2012] [Indexed: 12/28/2022]
Abstract
Degenerative disc disease is implicated in the pathogenesis of many painful conditions of the back, chief among which is low back pain. Acute and/or chronic low back pain (A/CLBP) afflicts a large number of people, thus making it a major healthcare issue with concomitant cost ramifications. When conservative treatments for A/CLBP, such as bed rest, anti-inflammatory medications, and physical therapy, prove to be ineffectual, surgical options are recommended. The most popular of these is discectomy followed by fusion. Although there are many reports of good to excellent outcomes with this method, there are concerns, such as long-term adverse biomechanical consequences to adjacent functional spinal unit(s). A surgical option that has been attracting much attention recently is replacement or regeneration/repair of the nucleus pulposus, an approach that holds the prospect of not compromising either mobility or function and causing no adjacent-level injury. There is a sizeable body of literature highlighting this option, comprising in vitro biomechanical studies, finite element analyses, animal-model studies, and limited clinical evaluations. This work is a review of this body of literature and is organized into four parts, with the focus being on replacement technologies, regeneration/repair technologies, and detailed expositions on 14 areas for future study. This review ends with a summary of the salient points made.
Collapse
Affiliation(s)
- Gladius Lewis
- Department of Mechanical Engineering, The University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
43
|
Yurube T, Takada T, Suzuki T, Kakutani K, Maeno K, Doita M, Kurosaka M, Nishida K. Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration. Arthritis Res Ther 2012; 14:R51. [PMID: 22394620 PMCID: PMC3446417 DOI: 10.1186/ar3764] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/16/2012] [Accepted: 03/06/2012] [Indexed: 01/22/2023] Open
Abstract
Introduction The longitudinal degradation mechanism of extracellular matrix (ECM) in the interbertebral disc remains unclear. Our objective was to elucidate catabolic and anabolic gene expression profiles and their balances in intervertebral disc degeneration using a static compression model. Methods Forty-eight 12-week-old male Sprague-Dawley rat tails were instrumented with an Ilizarov-type device with springs and loaded statically at 1.3 MPa for up to 56 days. Experimental loaded and distal-unloaded control discs were harvested and analyzed by real-time reverse transcription-polymerase chain reaction (PCR) messenger RNA quantification for catabolic genes [matrix metalloproteinase (MMP)-1a, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5], anti-catabolic genes [tissue inhibitor of metalloproteinases (TIMP)-1, TIMP-2, and TIMP-3], ECM genes [aggrecan-1, collagen type 1-α1, and collagen type 2-α1], and pro-inflammatory cytokine genes [tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, and IL-6]. Immunohistochemistry for MMP-3, ADAMTS-4, ADAMTS-5, TIMP-1, TIMP-2, and TIMP-3 was performed to assess their protein expression level and distribution. The presence of MMP- and aggrecanase-cleaved aggrecan neoepitopes was similarly investigated to evaluate aggrecanolytic activity. Results Quantitative PCR demonstrated up-regulation of all MMPs and ADAMTS-4 but not ADAMTS-5. TIMP-1 and TIMP-2 were almost unchanged while TIMP-3 was down-regulated. Down-regulation of aggrecan-1 and collagen type 2-α1 and up-regulation of collagen type 1-α1 were observed. Despite TNF-α elevation, ILs developed little to no up-regulation. Immunohistochemistry showed, in the nucleus pulposus, the percentage of immunopositive cells of MMP-cleaved aggrecan neoepitope increased from 7 through 56 days with increased MMP-3 and decreased TIMP-1 and TIMP-2 immunopositivity. The percentage of immunopositive cells of aggrecanase-cleaved aggrecan neoepitope increased at 7 and 28 days only with decreased TIMP-3 immunopositivity. In the annulus fibrosus, MMP-cleaved aggrecan neoepitope presented much the same expression pattern. Aggrecanase-cleaved aggrecan neoepitope increased at 7 and 28 days only with increased ADAMTS-4 and ADAMTS-5 immunopositivity. Conclusions This rat tail sustained static compression model mimics ECM metabolic imbalances of MMPs, aggrecanases, and TIMPs in human degenerative discs. A dominant imbalance of MMP-3/TIMP-1 and TIMP-2 relative to ADAMTS-4 and ADAMTS-5/TIMP-3 signifies an advanced stage of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hartman RA, Bell KM, Debski RE, Kang JD, Sowa GA. Novel ex-vivo mechanobiological intervertebral disc culture system. J Biomech 2011; 45:382-5. [PMID: 22099147 DOI: 10.1016/j.jbiomech.2011.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
Abstract
Intervertebral disc degeneration, a leading cause of low back pain, poses a significant socioeconomic burden with a broad array of costly treatment options. Mechanical loading is important in disease progression and treatment. Connecting mechanics and biology is critical for determining how loading parameters affect cellular response and matrix homeostasis. A novel ex-vivo experimental platform was developed to facilitate in-situ loading of rabbit functional spinal units (FSUs) with relevant biological outcome measures. The system was designed for motion outside of an incubator and validated for rigid fixation and physiologic environmental conditions. Specimen motion relative to novel fixtures was assessed using a digitizer; fixture stiffness exceeded specimen stiffness by an order of magnitude. Intradiscal pressure (IDP), measured using a fiber-optic pressure transducer, confirmed rigidity and compressive force selection. Surrounding media was controlled at 37 °C, 5% O(2)/CO(2) using a closed flow loop with an hypoxic incubator and was validated with probes in the specimen chamber. FSUs were subjected to cyclic compression (20 cycles) and four-hour creep at 1.0 MPa. Disc tissue was analyzed for cell viability using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which showed high viability (>90%) regardless of loading. Conditioned media was assayed for type-II collagen degradation fragments (CTX-II) and an aggrecan epitope (CS-846) associated with new aggrecan synthesis. CTX-II concentrations were not associated with loading, but CS-846 concentrations appeared to be increased with loading. Preservation of the full FSU allows physiologic load transmission and future multi-axis motion and identification of load-responsive proteins, thereby forming a new niche in intervertebral disc organ culture.
Collapse
Affiliation(s)
- Robert A Hartman
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
45
|
The evolutionary importance of cell ratio between notochordal and nucleus pulposus cells: an experimental 3-D co-culture study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 21 Suppl 6:S819-25. [PMID: 21953383 DOI: 10.1007/s00586-011-2026-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Notochordal cells and nucleus pulposus cells are co-existing in the intervertebral disc at various ratios among different mammalians. This fact rises the question about the interactions and the evolutionary relevance of this phenomenon. It has been described that these relatively large notochordal cells are mainly dominant in early lifetime of all vertebrates and then differences occur with ageing. Human, cattle, sheep, and goat lose the cells with age, whereas rodents and lagomorphs maintain these throughout their lifetime. MATERIALS AND METHODS Here, we addressed the importance of cell ratio using alginate bead 3-D co-culture of bovine nucleus pulposus cells (bNPC) and porcine notochordal cells (pNCs) for 14 days using culture inserts. RESULT We found a significant stimulation of bNPC in the presence of pNC in terms of cell activity and glycosaminoglycan production, but not for proliferation (DNA content). Relative gene expression was significantly stimulated for collagen type 2 and aggrecan. CONCLUSION The stimulating effect of NC was confirmed and the ideal ratio of NPC: NC was found to be ~50:50. This has direct implications for tissue-engineering approaches, which aim to repopulate discs with NP-like precursor cells.
Collapse
|
46
|
Gantenbein-Ritter B, Benneker LM, Alini M, Grad S. Differential response of human bone marrow stromal cells to either TGF-β(1) or rhGDF-5. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 20:962-71. [PMID: 21086000 PMCID: PMC3099171 DOI: 10.1007/s00586-010-1619-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 10/11/2010] [Accepted: 10/31/2010] [Indexed: 12/13/2022]
Abstract
Cell therapy along with growth factor injection is currently widely investigated to restore the intervertebral disc. However, there is increasing evidence that transplanted unconditioned bone marrow-derived stromal cells (BMSCs) cannot thrive in the intervertebral disc "niche". Moreover, uncertainty exists with respect to the cell phenotype that would be suitable to inject. The intervertebral disc cell phenotype only recently has been started to be characterised using transcriptomics profiling. Recent findings suggest that cytokeratin 19 (KRT-19) could be used as a potential candidate marker for the intervertebral disc, or more specifically the nucleus pulposus cell (NPC) phenotype. We present in vitro cell culture data using alginate bead culture of primary human BMSCs exposed to the standard chondrogenic stimulus, transforming growth factor beta-1 (TGF-β), the growth and differentiation factor 5 and/or bovine NPCs to induce a potential "discogenic" pathway. Chondrogenic induction via TGF-β pathway provoked down-regulation of KRT-19 gene expression in four out of five donors after 18 days of culture, whereas KRT-19 expression remained unchanged in the "discogenic" groups. In addition, the ratio of aggrecan/collagen II gene expression showed a remarkable difference (of at least 3 magnitudes) between the chondrogenic stimulus (low ratio) and the discogenic stimulus (high ratio). Therefore, KRT-19 and aggrecan/collagen II ratio may be potential markers to distinguish chondrogenic from "discogenic" differentiation.
Collapse
Affiliation(s)
- Benjamin Gantenbein-Ritter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
- ARTORG Center, Spine Research Center, University of Bern, Bern, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
47
|
Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc. Cell Mol Bioeng 2011; 4:302-310. [PMID: 21625336 DOI: 10.1007/s12195-011-0164-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells.
Collapse
|
48
|
Miyamoto T, Muneta T, Tabuchi T, Matsumoto K, Saito H, Tsuji K, Sekiya I. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther 2010; 12:R206. [PMID: 21054867 PMCID: PMC3046513 DOI: 10.1186/ar3182] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Synovial mesenchymal stem cells (MSCs) have high proliferative and chondrogenic potentials, and MSCs transplanted into the articular cartilage defect produce abundant extracellular matrix. Because of similarities between the articular cartilage and the intervertebral disc cartilage, synovial MSCs are a potential cell source for disc regeneration. Here, we examined the effect of intradiscal transplantation of synovial MSCs after aspiration of nucleus pulposus in rabbits. METHODS The nucleus pulposus tissues of rabbit's intervertebral discs were aspirated to induce disc degeneration, and allogenic synovial MSCs were transplanted. At 2, 4, 6, 8, 16, 24 weeks postoperatively, we evaluated with imaging analyses such as X-ray and magnetic resonance imaging (MRI), and histological analysis. To investigate interaction between synovial MSCs and nucleus pulposus cells, human synovial MSCs and rat nucleus pulposus cells were co-cultured, and species specific microarray were performed. RESULTS The existence of transplanted cells labeled with DiI or derived from green fluorescent protein (GFP)-expressing transgenic rabbits was confirmed up until 24 weeks. X-ray analyses demonstrated that intervertebral disc height in the MSC group remained higher than that in the degeneration group. T2 weighted MR imaging showed higher signal intensity of nucleus pulposus in the MSC group. Immunohistological analyses revealed higher expression of type II collagen around nucleus pulposus cells in the MSC group compared with even that of the normal group. In co-culture of rat nucleus pulposus cells and human synovial MSCs, species specific microarray revealed that gene profiles of nucleus pulposus were altered markedly with suppression of genes relating matrix degradative enzymes and inflammatory cytokines. CONCLUSIONS Synovial MSCs injected into the nucleus pulposus space promoted synthesis of the remaining nucleus pulposus cells to type II collagen and inhibition of expressions of degradative enzymes and inflammatory cytokines, resulting in maintaining the structure of the intervertebral disc being maintained.
Collapse
Affiliation(s)
- Takashi Miyamoto
- Section of Orthopaedic Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Chan SCW, Gantenbein-Ritter B, Leung VYL, Chan D, Cheung KMC, Ito K. Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells: a feasibility study using organ culture. Spine J 2010; 10:486-96. [PMID: 20171933 DOI: 10.1016/j.spinee.2009.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 11/07/2009] [Accepted: 12/25/2009] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT A recent clinical study demonstrated that cryopreserved allogeneic intervertebral disc transplantation relieved pain and preserved motion, thus opening up a new treatment option for degenerative disc disease. However, these transplanted discs continued to degenerate, possibly due to a lack of viable cells. Bone marrow-derived stromal cell (BMSC) implantation has been shown to delay disc degeneration. PURPOSE This study examined the viability over time of endogenous and injected BMSCs in cryopreserved disc under simulated-physiological loading conditions. STUDY DESIGN/ SETTING: An in vitro study of BMSCs injected into cryopreserved bovine caudal discs. METHODS Bovine caudal discs were harvested and cryopreserved at -196 degrees C. After thawing, PKH-26-labeled BMSCs embedded in peptide hydrogel carrier were injected into the nucleus pulposus. Two BMSC injection quantities, that is, 1x10(5) and 2.5x10(5) were examined. Discs with injected cells were maintained in a bioreactor for 7 days under simulated-physiological loading. Cell viability (staining), gene expression (reverse transcription-polymerase chain reaction) profile, and proteoglycan content (histologically) were evaluated. RESULTS Forty percent of endogenous cell viability was maintained after freeze thawing. Over the 7-day culture, this did not change further. However, there was upregulation of Col1a2 and Mmp-13 and downregulation of Col2a1gene expression. Sixty percent of BMSCs survived the initial injection procedure, and only 20% remained alive after 7 days of culture. Bone marrow-derived stromal cell implantation did not alter the viability of the endogenous cells, but discs injected with 1x105 BMSCs showed significantly higher ACAN expression than sham discs. CONCLUSIONS Although only 40% of cells survived cryopreservation, these endogeneous cells continued to survive over 7 days if maintained under simulated-physiological loading conditions. Although only a small portion of injected BMSCs survived, they did have some effect on the matrix protein gene expression profile. Their influence on native cells requires long-term evaluation.
Collapse
|
50
|
Guehring T, Nerlich A, Kroeber M, Richter W, Omlor GW. Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2009; 19:113-21. [PMID: 19936803 DOI: 10.1007/s00586-009-1217-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/04/2009] [Accepted: 11/05/2009] [Indexed: 02/07/2023]
Abstract
The immature disc nucleus pulposus (NP) consists of notochordal cells (NCs). With maturation NCs disappear in humans, to be replaced by chondrocyte-like mature NP cells (MNPCs); this change in cell phenotype coincidences with early signs of disc degeneration. The reasons for NC disappearance are important to understand disc degeneration, but remain unknown, yet. This study investigated, whether loading induced a change from a notochordal nucleus phenotype to a chondrocyte-like one. An in vivo disc compression model with fixateur externe was used in 36 mature rabbits. Discs were compressed for different time periods (1, 28, 56 days), and compared with uncompressed control discs (56 days without treatment), and discs with sham compression (28 days). Nucleus cell phenotype was determined by histology and immunohistochemistry. NCs, but not MNPCs highly expressed bone-morphogenetic-protein 2 and cytokeratin 8, thus NC and MNPC numbers could be determined. A histologic score was used to detect structural endplate changes after compression (28 days). Control and sham compressed discs contained around 70% NCs and 30% MNPCs, to be decreased to <10% NCs after 28-56 days of loading. NC density fell sharply by >50% after 28-56 days of compression (P < 0.05 vs. controls). Signs of decreased endplate cellularity and increased endplate sclerosis and fibrosis were found after loading. These experiments show that NCs were less resistant to mechanical stress than MNPCs suggesting that increased intradiscal pressures after loading, and limited nutrition through structurally altered endplates could instigate the disappearance of NCs.
Collapse
Affiliation(s)
- Thorsten Guehring
- Department of Trauma and Orthopaedic Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig Guttmann Str 13, 67071 Ludwigshafen, Germany.
| | | | | | | | | |
Collapse
|