1
|
Yin W, Jiang Y, Ma G, Mbituyimana B, Xu J, Shi Z, Yang G, Chen H. A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy. Bioact Mater 2025; 49:39-62. [PMID: 40124600 PMCID: PMC11928985 DOI: 10.1016/j.bioactmat.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 03/25/2025] Open
Abstract
Ischemic stroke (IS), a cerebrovascular disease, is the leading cause of physical disability and death worldwide. Tissue plasminogen activator (tPA) and thrombectomy are limited by a narrow therapeutic time window. Although strategies such as drug therapies and cellular therapies have been used in preclinical trials, some important issues in clinical translation have not been addressed: low stem cell survival and drug delivery limited by the blood-brain barrier (BBB). Among the therapeutic options currently sought, carrier-based hydrogels hold great promise for the repair and regeneration of neural tissue in the treatment of ischemic stroke. The advantage lies in the ability to deliver drugs and cells to designated parts of the brain in an injectable manner to enhance therapeutic efficacy. Here, this article provides an overview of the use of carrier-based hydrogels in ischemic stroke therapy and focuses on the use of hydrogel scaffolds containing bioactive molecules and stem cells. In addition to this, we provide a more in-depth summary of the composition, physicochemical properties and physiological functions of the materials themselves. Finally, we also outline the prospects and challenges for clinical translation of hydrogel therapy for IS.
Collapse
Affiliation(s)
- Wenqi Yin
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchi Jiang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Choi H, Choy YS. Effect of Ethylene Oxide Exposure on Sleep Health: Using NHANES Data from 2015 to 2020. Healthcare (Basel) 2024; 12:2499. [PMID: 39765926 PMCID: PMC11728014 DOI: 10.3390/healthcare12242499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025] Open
Abstract
Background/Objectives: This study aims to investigate the effects of ethylene oxide (EO) exposure on sleep health, focusing on sleep duration and quality. Methods: The study analyzed data from the NHANES (National Health and Nutrition Examination Survey) 2015-2020 cycles, including 4268 participants aged 20 and older. EO exposure was measured using hemoglobin adducts of EO (HbEO), which serve as a reliable biomarker. Sleep health was assessed through self-reported questionnaires on sleep duration and quality. Participants were categorized based on sleep duration (<6 h, 6-9 h, >9 h) and symptoms of sleep disturbances. Statistical analyses employed survey-weighted logistic regression models to evaluate the associations between HbEO levels and sleep outcomes, adjusting for sociodemographic, health-related, and behavioral factors. Moreover, to examine whether the impact of ethylene oxide exposure on sleep quality and sleep duration varies by sociodemographic characteristics, stratified analyses were conducted based on gender, age, marital status, and employment type. Results: According to the results, higher EO exposure was associated with shorter sleep durations and increased likelihood of sleep disturbances. Moreover, according to sub-group analysis by sex, men with higher exposure to EO, were likely to have short sleep duration, and women with higher exposure to EO had higher risk of daytime sleepiness and sleep problems. Conclusions: The findings suggest that EO exposure may negatively impact sleep health, emphasizing the need for stricter EO exposure regulations and public health interventions to reduce associated risks.
Collapse
Affiliation(s)
- Hansol Choi
- Department of Preventive Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Yoon-Soo Choy
- Department of Smart Healthcare Information, Healthcare Management, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si 13135, Republic of Korea
| |
Collapse
|
3
|
Shi Z, Zhang J, Wang Y, Hao S, Tian L, Ke C, Yang X, Lu Q, Zhao Q, Li H, Liang C. Antibacterial effect and mechanisms of action of forsythoside B, alone and in combination with antibiotics, against Acinetobacter baumannii and Pseudomonas aeruginosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156038. [PMID: 39299093 DOI: 10.1016/j.phymed.2024.156038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Antibiotic resistance complicates infection treatments. Natural products, such as phenylethanoid glycosides, including forsythoside B (FB), are gaining attention in clinical use as alternative treatments, either alone or in combination with antibiotics. PURPOSE To investigate the antibacterial effects and mechanisms of FB alone and in combination with antibiotics against Acinetobacter baumannii and Pseudomonas aeruginosa. METHODS To elucidate the underlying antibacterial mechanism of FB, we assessed intracellular ATP concentration, pH levels, membrane potential, and cell membrane integrity. We also observed bacterial morphology and conducted biofilms eradication assay. FB toxicity was evaluated using the cell counting kit-8 assay. The in vivo pharmacodynamics of FB was explored using a P. aeruginosa systemic infection mouse model. The study also examined the potential synergistic effects of FB with commonly used antibiotics by the checkerboard dilution method and time-kill assay. RESULTS The findings indicate that the mechanism of antibacterial activity of FB is through the disruption of bacterial cell membranes, thereby increasing cell membrane permeability, particularly in gram-negative bacteria. Synergistic effects of FB combined with meropenem were demonstrated against resistant strains. FB demonstrated low toxicity in both in vitro and in vivo models, supporting its safety and efficacy for use alone or as an antibiotic adjuvant. CONCLUSIONS FB expands the antibacterial spectrum and enhances the effectiveness of existing antibiotics against resistant bacterial strains, making it a promising adjuvant for treating gram-negative bacterial infections. This study highlights the potential of FB in combating antibiotic resistance and suggests further research into its mechanisms and drug development applications. It provides a framework for studying the interaction between natural products and microorganisms, revealing new biological mechanisms.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China
| | - Jie Zhang
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Yanzi Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Sichang Hao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Changhua Ke
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Xiuding Yang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Qi Lu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an 710021, PR China.
| |
Collapse
|
4
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Ghanta RK, Pugazenthi A, Zhao Y, Sylvester C, Wall MJ, Mazur RA, Russell LN, Lampe KJ. Influence of Supraphysiologic Biomaterial Stiffness on Ventricular Mechanics and Myocardial Infarct Reinforcement. Acta Biomater 2022; 149:30-39. [PMID: 35820592 DOI: 10.1016/j.actbio.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
Injectable intramyocardial biomaterials have promise to limit adverse ventricular remodeling through mechanical and biologic mechanisms. While some success has been observed by injecting materials to regenerate new tissue, optimal biomaterial stiffness to thicken and stiffen infarcted myocardium to limit adverse remodeling has not been determined. In this work, we present an in-vivo study of the impact of biomaterial stiffness over a wide range of stiffness moduli on ventricular mechanics. We utilized injectable methacrylated polyethylene glycol (PEG) hydrogels fabricated at 3 different mechanical moduli: 5 kPa (low), 25 kPa (medium/myocardium), and 250 kPa (high/supraphysiologic). We demonstrate that the supraphysiological high stiffness favorably alters post-infarct ventricular mechanics and prevents negative tissue remodeling. Lower stiffness materials do not alter mechanics and thus to be effective, must instead target biological reparative mechanisms. These results may influence rationale design criteria for biomaterials developed for infarct reinforcement therapy. STATEMENT OF SIGNIFICANCE: Acellular biomaterials for cardiac application can provide benefit via mechanical and biological mechanisms post myocardial infarction. We study the role of biomaterial mechanical characteristics on ventricular mechanics in myocardial infarcts. Previous studies have not measured the influence of injected biomaterials on ventricular mechanics, and consequently rational design criteria is unknown. By utilizing an in-vivo assessment of ventricular mechanics, we demonstrate that low stiffness biomaterial do not alter pathologic ventricular mechanics. Thus, to be effective, low stiffness biomaterials must target biological reparative mechanisms. Physiologic and supra-physiologic biomaterials favorably alter post-infarct mechanics and prevents adverse ventricular remodeling.
Collapse
Affiliation(s)
- Ravi K Ghanta
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX United States.
| | - Aarthi Pugazenthi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States
| | - Yunge Zhao
- Department of Surgery, University of Maryland, Baltimore, MD United States
| | - Christopher Sylvester
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX United States
| | - Mathew J Wall
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX United States
| | - Rachel A Mazur
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA United States
| | - Lauren N Russell
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA United States
| |
Collapse
|
6
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
7
|
Ngo MT, Harley BAC. Progress in mimicking brain microenvironments to understand and treat neurological disorders. APL Bioeng 2021; 5:020902. [PMID: 33869984 PMCID: PMC8034983 DOI: 10.1063/5.0043338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders including traumatic brain injury, stroke, primary and metastatic brain tumors, and neurodegenerative diseases affect millions of people worldwide. Disease progression is accompanied by changes in the brain microenvironment, but how these shifts in biochemical, biophysical, and cellular properties contribute to repair outcomes or continued degeneration is largely unknown. Tissue engineering approaches can be used to develop in vitro models to understand how the brain microenvironment contributes to pathophysiological processes linked to neurological disorders and may also offer constructs that promote healing and regeneration in vivo. In this Perspective, we summarize features of the brain microenvironment in normal and pathophysiological states and highlight strategies to mimic this environment to model disease, investigate neural stem cell biology, and promote regenerative healing. We discuss current limitations and resulting opportunities to develop tissue engineering tools that more faithfully recapitulate the aspects of the brain microenvironment for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Mai T. Ngo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Brendan A. C. Harley
- Author to whom correspondence should be addressed:. Tel.: (217) 244-7112. Fax: (217) 333-5052
| |
Collapse
|
8
|
Hsu FY, Chen JJ, Sung WC, Hwang PA. Preparation of a Fucoidan-Grafted Hyaluronan Composite Hydrogel for the Induction of Osteoblast Differentiation in Osteoblast-Like Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1168. [PMID: 33801348 PMCID: PMC7958341 DOI: 10.3390/ma14051168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
A suitable bone substitute is necessary in bone regenerative medicine. Hyaluronan (HA) has excellent biocompatibility and biodegradability and is widely used in tissue engineering. Additionally, research on fucoidan (Fu), a fucose- and sulfate-rich polysaccharide from brown seaweed, for the promotion of bone osteogenic differentiation has increased exponentially. In this study, HA and Fu were functionalized by grafting methacrylic groups onto the backbone of the chain. Methacrylate-hyaluronan (MHA) and methacrylate-fucoidan (MFu) were characterized by FTIR and 1H NMR spectroscopy to confirm functionalization. The degrees of methacrylation (DMs) of MHA and MFu were 9.2% and 98.6%, respectively. Furthermore, we evaluated the mechanical properties of the hydrogels formed from mixtures of photo-crosslinkable MHA (1%) with varying concentrations of MFu (0%, 0.5%, and 1%). There were no changes in the hardness values of the hydrogels, but the elastic modulus decreased upon the addition of MFu, and these mechanical properties were not significantly different with or without preosteoblastic MG63 cell culture for up to 28 days. Furthermore, the cell morphologies and viabilities were not significantly different after culture with the MHA, MHA-MFu0.5, or MHA-MFu1.0 hydrogels, but the specific activity and mineralization of alkaline phosphatase (ALP) were significantly higher in the MHA-MFu1.0 hydrogel group compared to the other hydrogels. Hence, MHA-MFu composite hydrogels are potential bone graft materials that can provide a flexible structure and favorable niche for inducing bone osteogenic differentiation.
Collapse
Affiliation(s)
- Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan; (F.-Y.H.); (J.-J.C.)
| | - Jheng-Jie Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan; (F.-Y.H.); (J.-J.C.)
| | - Wen-Chieh Sung
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan;
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan; (F.-Y.H.); (J.-J.C.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
9
|
Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ. Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 2021; 144:104973. [PMID: 33497713 DOI: 10.1016/j.neuint.2021.104973] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) causes intractable disease and leads to inevitable physical, financial, and psychological burdens on patients and their families. SCI is commonly divided into primary and secondary injury. Primary injury occurs upon direct impact to the spinal cord, which leads to cell necrosis, axon disruption, and vascular loss. This triggers pathophysiological secondary injury, which has several phases: acute, subacute, intermediate, and chronic. These phases are dependent on post-injury time and pathophysiology and have various causes, such as the infiltration of inflammatory cells and release of cytokines that can act as a barrier to neural regeneration. Another unique feature of SCI is the glial scar produced from the reactive proliferation of astrocytes, which acts as a barrier to axonal regeneration. Interdisciplinary research is investigating the use of biomaterials and tissue-engineered fabrication to overcome SCI. In this review, we discuss representative biomaterials, including natural and synthetic polymers and nanomaterials. In addition, we describe several strategies to repair spinal cord injuries, such as fabrication and the delivery of therapeutic biocomponents. These biomaterials and strategies may offer beneficial information to enhance the repair of spinal cord lesions.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea; Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - So-Jung Gwak
- Department of Chemical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea.
| |
Collapse
|
10
|
Bae M, Yi HG, Jang J, Cho DW. Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System. MICROMACHINES 2020; 11:E855. [PMID: 32947879 PMCID: PMC7570039 DOI: 10.3390/mi11090855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current models remains a hurdle to determining the complexity of an irreversible dysfunction in a neurodegenerative disease. Therefore, preclinical research requires advanced experimental models, i.e., those more physiologically relevant to the native nervous system, to bridge the gap between preclinical stages and patients. The neural microphysiological system (neural MPS) has emerged as an approach to summarizing the anatomical, biochemical, and pathological physiology of the nervous system for investigation of neurodegenerative diseases. This review introduces the components (such as cells and materials) and fabrication methods for designing a neural MPS. Moreover, the review discusses future perspectives for improving the physiological relevance to native neural systems.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agricultural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
11
|
Alteration of cell motility dynamics through collagen fiber density in photopolymerized polyethylene glycol hydrogels. Int J Biol Macromol 2020; 157:414-423. [DOI: 10.1016/j.ijbiomac.2020.04.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
|
12
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
13
|
Licht C, Rose JC, Anarkoli AO, Blondel D, Roccio M, Haraszti T, Gehlen DB, Hubbell JA, Lutolf MP, De Laporte L. Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension. Biomacromolecules 2019; 20:4075-4087. [PMID: 31614080 DOI: 10.1021/acs.biomac.9b00891] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.
Collapse
Affiliation(s)
- Christopher Licht
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | - Jonas C Rose
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | | | - Delphine Blondel
- Institute for Bioengineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Marta Roccio
- Institute for Bioengineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland.,Department of Biomedical Research , University of Bern , 3010 Bern , Switzerland
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | - David B Gehlen
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| | - Matthias P Lutolf
- Institute for Bioengineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015 , Switzerland
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials , 52074 Aachen , Germany.,ITMC - Institute of Technical and Macromolecular Chemistry , RWTH University Aachen , 52074 Aachen , Germany
| |
Collapse
|
14
|
Ma C, Kuzma ML, Bai X, Yang J. Biomaterial-Based Metabolic Regulation in Regenerative Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900819. [PMID: 31592416 PMCID: PMC6774061 DOI: 10.1002/advs.201900819] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/26/2019] [Indexed: 05/22/2023]
Abstract
Recent advances in cell metabolism studies have deepened the appreciation of the role of metabolic regulation in influencing cell behavior during differentiation, angiogenesis, and immune response in the regenerative engineering scenarios. However, the understanding of whether the intracellular metabolic pathways could be influenced by material-derived cues remains limited, although it is now well appreciated that material cues modulate cell functions. Here, an overview of how the regulation of different aspect of cell metabolism, including energy homeostasis, oxygen homeostasis, and redox homeostasis could contribute to modulation of cell function is provided. Furthermore, recent evidence demonstrating how material cues, including the release of inherent metabolic factors (e.g., ions, regulatory metabolites, and oxygen), tuning of the biochemical cues (e.g., inherent antioxidant properties, cell adhesivity, and chemical composition of nanomaterials), and changing in biophysical cues (topography and surface stiffness), may impact cell metabolism toward modulated cell behavior are discussed. Based on the resurgence of interest in cell metabolism and metabolic regulation, further development of biomaterials enabling metabolic regulation toward dictating cell function is poised to have substantial implications for regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Michelle L. Kuzma
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiaochun Bai
- Academy of OrthopedicsGuangdong ProvinceProvincial Key Laboratory of Bone and Joint Degenerative DiseasesThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510280China
- Department of Cell BiologyKey Laboratory of Mental Health of the Ministry of EducationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jian Yang
- Department of Biomedical EngineeringMaterials Research InstituteThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
15
|
Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. NATURE REVIEWS. MATERIALS 2019; 4:606-622. [PMID: 33552558 PMCID: PMC7864216 DOI: 10.1038/s41578-019-0129-9] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 04/14/2023]
Abstract
Organoids are 3D cell culture systems that mimic some of the structural and functional characteristics of an organ. Organoid cultures provide the opportunity to study organ-level biology in models that mimic human physiology more closely than 2D cell culture systems or non-primate animal models. Many organoid cultures rely on decellularized extracellular matrices as scaffolds, which are often poorly chemically defined and allow only limited tunability and reproducibility. By contrast, the biochemical and biophysical properties of engineered matrices can be tuned and optimized to support the development and maturation of organoid cultures. In this Review, we highlight how key cell-matrix interactions guiding stem-cell decisions can inform the design of biomaterials for the reproducible generation and control of organoid cultures. We survey natural, synthetic and protein-engineered hydrogels for their applicability to different organoid systems and discuss biochemical and mechanical material properties relevant for organoid formation. Finally, dynamic and cell-responsive material systems are investigated for their future use in organoid research.
Collapse
Affiliation(s)
- Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Alexis J. Seymour
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Thomas L. Li
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sergiu P. Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Calvin J. Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
de la Vega L, Lee C, Sharma R, Amereh M, Willerth SM. 3D bioprinting models of neural tissues: The current state of the field and future directions. Brain Res Bull 2019; 150:240-249. [DOI: 10.1016/j.brainresbull.2019.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
|
17
|
Unal DB, Caliari SR, Lampe KJ. Engineering biomaterial microenvironments to promote myelination in the central nervous system. Brain Res Bull 2019; 152:159-174. [PMID: 31306690 DOI: 10.1016/j.brainresbull.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
Promoting remyelination and/or minimizing demyelination are key therapeutic strategies under investigation for diseases and injuries like multiple sclerosis (MS), spinal cord injury, stroke, and virus-induced encephalopathy. Myelination is essential for efficacious neuronal signaling. This myelination process is originated by oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). Resident OPCs are capable of both proliferation and differentiation, and also migration to demyelinated injury sites. OPCs can then engage with these unmyelinated or demyelinated axons and differentiate into myelin-forming oligodendrocytes (OLs). However this process is frequently incomplete and often does not occur at all. Biomaterial strategies can now be used to guide OPC and OL development with the goal of regenerating healthy myelin sheaths in formerly damaged CNS tissue. Growth and neurotrophic factors delivered from such materials can promote proliferation of OPCs or differentiation into OLs. While cell transplantation techniques have been used to replace damaged cells in wound sites, they have also resulted in poor transplant cell viability, uncontrollable differentiation, and poor integration into the host. Biomaterial scaffolds made from extracellular matrix (ECM) mimics that are naturally or synthetically derived can improve transplanted cell survival, support both transplanted and endogenous cell populations, and direct their fate. In particular, stiffness and degradability of these scaffolds are two parameters that can influence the fate of OPCs and OLs. The future outlook for biomaterials research includes 3D in vitro models of myelination / remyelination / demyelination to better mimic and study these processes. These models should provide simple relationships of myelination to microenvironmental biophysical and biochemical properties to inform improved therapeutic approaches.
Collapse
Affiliation(s)
- Deniz B Unal
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
18
|
Li W, Lin J, Wang T, Huang P. Photo-triggered Drug Delivery Systems for Neuron-related Applications. Curr Med Chem 2019; 26:1406-1422. [PMID: 29932026 DOI: 10.2174/0929867325666180622121801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
The development of materials, chemistry and genetics has created a great number of systems for delivering antibiotics, neuropeptides or other drugs to neurons in neuroscience research, and has also provided important and powerful tools in neuron-related applications. Although these drug delivery systems can facilitate the advancement of neuroscience studies, they still have limited applications due to various drawbacks, such as difficulty in controlling delivery molecules or drugs to the target region, and trouble of releasing them in predictable manners. The combination of optics and drug delivery systems has great potentials to address these issues and deliver molecules or drugs to the nervous system with extraordinary spatiotemporal selectivity triggered by light. In this review, we will introduce the development of photo-triggered drug delivery systems in neuroscience research and their neuron-related applications including regulating neural activities, treating neural diseases and inducing nerve regenerations.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J 2018; 16:488-502. [PMID: 30455858 PMCID: PMC6232648 DOI: 10.1016/j.csbj.2018.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, chemical, and biological properties. Hydrogel polymers, which have been extensively implemented in recent brain injury repair studies, include hyaluronic acid, collagen type I, alginate, chitosan, methylcellulose, Matrigel, fibrin, gellan gum, self-assembling peptides and proteins, poly(ethylene glycol), methacrylates, and methacrylamides. When viewed as tools for neuroregeneration, hydrogels can be divided into: (1) hydrogels suitable for brain injury therapy, (2) hydrogels that do not meet basic therapeutic requirements and (3) promising hydrogels which meet the criteria for further investigations. Our analysis shows that fibrin, collagen I and self-assembling peptide-based hydrogels display very attractive properties for neuroregeneration.
Collapse
Affiliation(s)
- Vladimir A. Kornev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Ekaterina A. Grebenik
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Anna B. Solovieva
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
| | - Ruslan I. Dmitriev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics” Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russian Federation
| |
Collapse
|
20
|
Zhou W, Stukel J, AlNiemi A, Willits RK. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts. ACTA ACUST UNITED AC 2018; 13:055007. [PMID: 29869613 DOI: 10.1088/1748-605x/aaca57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For improved cell integration, tissue engineering scaffolds must be designed to degrade over time. Typically, the chemistry of scaffolds is modified to alter the degradation profile by using different hydrolytic or enzymatic sites within a material. It is more challenging, however, to fabricate self-assembling, injectable scaffolds that provide tunable degradation. Our laboratory has developed microgel-based scaffolds, where individual micron-sized hydrogels are crosslinked to make larger bulk scaffolds. The size of the individual microgels permits injection, and the microgels then self-assemble into a bulk structure and crosslink. We hypothesized that the microgel-based scaffolds can be used to tune degradability by mixing degradable and non-degradable microgels at various ratios within a self-assembling scaffold. Therefore, two types of microgels were fabricated, those composed of polyethylene glycol (PEG) and those composed of a PEG-lactic acid. Importantly, the microgels were similar in size and swelling and had a low polydispersity index due to their method of fabrication. Microgels were then mixed in four ratios to fabricate scaffolds and study how changes in scaffold composition altered the 3D proliferation and morphology of human dermal fibroblasts. Microgel-based scaffolds formed with 100% degradable microgels lost >60% of their mass over the 14 days of the study. Human dermal fibroblasts were mixed within the 3D scaffolds at the time of assembly and all scaffolds had cells with high viability and typical morphology. The scaffolds that had 25%-50% degradable microgels showed statistically increased proliferation of fibroblasts after 1 and 2 weeks over non-degradable scaffolds and those scaffolds with 75% or 100% degradable microgels. Overall, this work demonstrates the development and use of a tunable, self-assembled, microgel-based scaffold to investigate the effects of degradability on cellular response.
Collapse
Affiliation(s)
- Wenda Zhou
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325-0302, United States of America
| | | | | | | |
Collapse
|
21
|
Abstract
Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
22
|
Pinezich MR, Russell LN, Murphy NP, Lampe KJ. Encapsulated oligodendrocyte precursor cell fate is dependent on PDGF-AA release kinetics in a 3D microparticle-hydrogel drug delivery system. J Biomed Mater Res A 2018; 106:2402-2411. [PMID: 29660252 DOI: 10.1002/jbm.a.36432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/08/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022]
Abstract
Biomaterial drug delivery systems (DDS) can be used to regulate growth factor release and combat the limited intrinsic regeneration capabilities of central nervous system (CNS) tissue following injury and disease. Of particular interest are systems that aid in oligodendrocyte regeneration, as oligodendrocytes generate myelin which surrounds neuronal axons and helps transmit signals throughout the CNS. Oligodendrocyte precursor cells (OPCs) are found in small numbers in the adult CNS, but are unable to effectively differentiate following CNS injury. Delivery of signaling molecules can initiate a favorable OPC response, such as proliferation or differentiation. Here, we investigate the delivery of one such molecule, platelet derived growth factor-AA (PDGF-AA), from poly(lactic-co-glycolic) acid microparticles to OPCs in a 3D polyethylene glycol-based hydrogel. The goal of this DDS was to better understand the relationship between PDGF-AA release kinetics and OPC fate. The system approximates native brain tissue stiffness, while incorporating PDGF-AA under seven different delivery scenarios. Within this DDS, supply of PDGF-AA followed by PDGF-AA withdrawal caused OPCs to upregulate gene expression of myelin basic protein (MBP) by factors of 1.6-9.2, whereas continuous supply of PDGF-AA caused OPCs to remain proliferative. At the protein expression level, we observed an upregulation in O1, a marker for mature oligodendrocytes. Together, these results show that burst release followed by withdrawal of PDGF-AA from a hydrogel DDS stimulates survival, proliferation, and differentiation of OPCs in vitro. Our results could inform the development of improved neural regeneration strategies that incorporate delivery of PDGF-AA to the injured CNS. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2402-2411, 2018.
Collapse
Affiliation(s)
- Meghan R Pinezich
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, VA, 22904
| | - Lauren N Russell
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, VA, 22904
| | - Nicholas P Murphy
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, VA, 22904
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, VA, 22904
| |
Collapse
|
23
|
Ma C, Gerhard E, Lu D, Yang J. Citrate chemistry and biology for biomaterials design. Biomaterials 2018; 178:383-400. [PMID: 29759730 DOI: 10.1016/j.biomaterials.2018.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Di Lu
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Centre Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA.
| |
Collapse
|
24
|
Aregueta-Robles UA, Martens PJ, Poole-Warren LA, Green RA. Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Penny J. Martens
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Laura A. Poole-Warren
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Rylie A. Green
- Graduate School of Biomedical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Bioengineering; Imperial College London; London SW7 2AZ United Kingdom
| |
Collapse
|
25
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
26
|
Russell LN, Lampe KJ. Oligodendrocyte Precursor Cell Viability, Proliferation, and Morphology is Dependent on Mesh Size and Storage Modulus in 3D Poly(ethylene glycol)-Based Hydrogels. ACS Biomater Sci Eng 2017; 3:3459-3468. [PMID: 33445383 DOI: 10.1021/acsbiomaterials.7b00374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligodendrocytes in the central nervous system (CNS) are responsible for generating myelin, an electrically insulating layer around neuronal axons. When myelin is damaged, neurons are incapable of sustaining normal communications, which can manifest in patients as pain and loss of mobility and vision. A plethora of research has used biomaterials to promote neuronal regeneration, but despite the wide implications of a disrupted myelin sheath, very little is known about how biomaterial environments impact proliferation of oligodendrocyte precursor cells (OPCs) or their differentiation into myelinating oligodendrocytes. This work investigates how the storage modulus and mesh size of a polyethylene glycol (PEG)-based hydrogel, varied via two different mechanisms, directly affect the proliferation of two OPC lines encapsulated and cultured in 3D. Viability and proliferation of both OPC lines was dependent on hydrogel swelling and stiffness, where the concentration of ATP increased more in the more compliant gels. OPCs multiplied in the 3D hydrogels, creating significantly larger spheroids in the less cross-linked conditions. Stiffer, more highly cross-linked materials lead to greater expression of PDGFRα, an OPC receptor, indicating that fewer cells were committed to the oligodendrocyte lineage or had dedifferentiated in compliant materials. Laminin incorporation in the 3D matrix was found to have little effect on viability or proliferation. These findings provide valuable information on how mesh size and stiffness affect OPCs where more compliant materials favor proliferation of OPCs with less commitment to a mature oligodendrocyte lineage. Such information will be useful in the development of translational biomaterials to stimulate oligodendrocyte maturation for neural regeneration.
Collapse
Affiliation(s)
- Lauren N Russell
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, Virginia 22904, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, 102 Engineers' Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
27
|
Murphy NP, Lampe KJ. Fabricating PLGA microparticles with high loads of the small molecule antioxidant N-acetylcysteine that rescue oligodendrocyte progenitor cells from oxidative stress. Biotechnol Bioeng 2017; 115:246-256. [PMID: 28872660 DOI: 10.1002/bit.26443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/12/2017] [Accepted: 08/28/2017] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS), encompassing all oxygen radical or non-radical oxidizing agents, play key roles in disease progression. Controlled delivery of antioxidants is therapeutically relevant in such oxidant-stressed environments. Encapsulating small hydrophilic molecules into hydrophobic polymer microparticles via traditional emulsion methods has long been a challenge due to rapid mass transport of small molecules out of particle pores. We have developed a simple alteration to the existing water-in-oil-in-water (W/O/W) drug encapsulation method that dramatically improves loading efficiency: doping external water phases with drug to mitigate drug diffusion out of the particle during fabrication. PLGA microparticles with diameters ranging from 0.6 to 0.9 micrometers were fabricated, encapsulating high loads of 0.6-0.9 µm diameter PLGA microparticles were fabricated, encapsulating high loads of the antioxidant N-acetylcysteine (NAC), and released active, ROS-scavenging NAC for up to 5 weeks. Encapsulation efficiencies, normalized to the theoretical load of traditional encapsulation without doping, ranged from 96% to 400%, indicating that NAC-loaded external water phases not only prevented drug loss due to diffusion, but also doped the particles with additional drug. Antioxidant-doped particles positively affected the metabolism of oligodendrocyte progenitor cells (OPCs) under H2 O2 -mediated oxidative stress when administered both before (protection) or after (rescue) injury. Antioxidant doped particles improved outcomes of OPCs experiencing multiple doses of H2 O2 by increasing the intracellular glutathione content and preserving cellular viability relative to the injury control. Furthermore, antioxidant-doped particles preserve cell number, number of process extensions, cytoskeletal morphology, and nuclear size of H2 O2 -stressed OPCs relative to the injury control. These NAC-doped particles have the potential to provide temporally-controlled antioxidant therapy in neurodegenerative disorders such as multiple sclerosis (MS) that are characterized by continuous oxidative stress.
Collapse
Affiliation(s)
- Nicholas P Murphy
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
28
|
Chu C, Deng J, Hou Y, Xiang L, Wu Y, Qu Y, Man Y. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:31-36. [PMID: 28482532 DOI: 10.1016/j.msec.2017.02.157] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/11/2016] [Accepted: 02/24/2017] [Indexed: 02/05/2023]
Abstract
Collagen membranes possess ideal biological properties and can be served as a barrier for supporting infiltration and proliferation of osteoblasts in guided bone regeneration (GBR). However, pure collagen lacks desirable mechanical properties and also leads to inflammation, resulting in progressive bone resorption. In our previous study, EGCG cross-linked collagen membranes exhibit better mechanical properties and anti-inflammatory effect. However, higher concentration of EGCG may not improve cell viability. Herein, we present an enhanced EGCG cross-linked collagen membranes with surface modification of PEG to improve cell viability and cell adhesion, considering the better biocompatibility of PEG. Scanning electron microscope images showed that PEG-EGCG-collagen membrane exhibited smoother surface fiber aggregates. Fourier transform infrared spectroscopy demonstrated that the structure characteristics were maintained after addition of EGCG and PEG. Cell viability was significantly increased after modification of PEG, as determined by the Cell Counting Kit-8 (CCK-8) and live/dead assay. Better shapes of cytoskeleton were observed in immunostaining images. Additionally, enzyme-linked immunosorbent assay showed PEG-EGCG-collagen membrane significantly decreased the level of inflammatory factors secreted by MG63 cells. Collectively, with respect to all the aspects including intact structure, cell viability promotion and mediation of pro-inflammatory cytokine secretion, our results indicate that PEG-EGCG-collagen membrane might be used in GBR applications.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Hou
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yili Qu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
29
|
|
30
|
Russell LN, Lampe KJ. Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production. Cells Tissues Organs 2016; 202:85-101. [PMID: 27701172 DOI: 10.1159/000446645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo.
Collapse
|
31
|
Xuan S, Lee CU, Chen C, Doyle AB, Zhang Y, Guo L, John VT, Hayes D, Zhang D. Thermoreversible and Injectable ABC Polypeptoid Hydrogels: Controlling the Hydrogel Properties through Molecular Design. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2016; 28:727-737. [PMID: 27458325 PMCID: PMC4957709 DOI: 10.1021/acs.chemmater.5b03528] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A series of ABC triblock copolypeptoids [i.e., poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD)] with well-defined structure and varying composition have been synthesized by sequential primary amine-initiated ring-opening polymerization of the corresponding N-substituted N-carboxyanhydride monomers (Al-NCA, Me-NCA, and De-NCA). The ABC block copolypeptoids undergo sol-to-gel transitions with increasing temperature in water and biological media at low concentrations (2.5-10 wt %). The sol-gel transition is rapid and fully reversible with a narrow transition window, evidenced by the rheological measurements. The gelation temperature (Tgel) and mechanical stiffness of the hydrogels are highly tunable: Tgel in the 26.2-60.0 °C range, the storage modulus (G') and Young's modulus (E) in the 0.2-780 Pa and 0.5-2346 Pa range, respectively, at the physiological temperature (37 °C) can be readily accessed by controlling the block copolypeptoid composition and the polymer solution concentration. The hydrogel is injectable through a 24 gauge syringe needle and maintains their shape upon in contact with surfaces or water baths that are kept above the sol-gel transition temperature. The hydrogels exhibit minimal cytotoxicity toward human adipose derived stem cells (hASCs), evidenced from both alamarBlue and PicoGreen assays. Furthermore, quantitative PCR analysis revealed significant up-regulation of the Col2a1 gene and down-regulation of ANGPT1 gene, suggesting that the hydrogel exhibit biological activity in inducing chondrogenesis of hASCs. It was also demonstrated that the hydrogel can be used to quantitatively encapsulate water-soluble enzymes (e.g., horseradish peroxidase) by manipulating the sol-gel transition. The enzymatic activity of HRP remain unperturbed after encapsulation at 37 °C for up to 7 d, suggesting that the hydrogel does not adversely affect the enzyme structure and thereby the enzymatic activity. These results suggest that the polypeptoid hydrogel a promising synthetic platform for tissue engineering or protein storage applications.
Collapse
Affiliation(s)
- Sunting Xuan
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chang-Uk Lee
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Cong Chen
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andrew B. Doyle
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yueheng Zhang
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Li Guo
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Vijay T. John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Daniel Hayes
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
32
|
Lukas K, Thomas U, Gessner A, Wehner D, Schmid T, Schmid C, Lehle K. Plasma functionalization of polycarbonaturethane to improve endothelialization—Effect of shear stress as a critical factor for biocompatibility control. J Biomater Appl 2016; 30:1417-28. [DOI: 10.1177/0885328215626072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts.
Collapse
Affiliation(s)
- Karin Lukas
- IMHR, Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - André Gessner
- IMHR, Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | | | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Karla Lehle
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Aregueta-Robles UA, Lim KS, Martens PJ, Lovell NH, Poole-Warren LA, Green R. Producing 3D neuronal networks in hydrogels for living bionic device interfaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:2600-2603. [PMID: 26736824 DOI: 10.1109/embc.2015.7318924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrogels hold significant promise for supporting cell based therapies in the field of bioelectrodes. It has been proposed that tissue engineering principles can be used to improve the integration of neural interfacing electrodes. Degradable hydrogels based on poly (vinyl alcohol) functionalised with tyramine (PVA-Tyr) have been shown to support covalent incorporation of non-modified tyrosine rich proteins within synthetic hydrogels. PVA-Tyr crosslinked with such proteins, were explored as a scaffold for supporting development of neural tissue in a three dimensional (3D) environment. In this study a model neural cell line (PC12) and glial accessory cell line, Schwann cell (SC) were encapsulated in PVA-Tyr crosslinked with gelatin and sericin. Specifically, this study aimed to examine the growth and function of SC and PC12 co-cultures when translated from a two dimensional (2D) environment to a 3D environment. PC12 differentiation was successfully promoted in both 2D and 3D at 25 days post-culture. SC encapsulated as a single cell line and in co-culture were able to produce both laminin and collagen-IV which are required to support neuronal development. Neurite outgrowth in the 3D environment was confirmed by immunocytochemical staining. PVA-Tyr/sericin/gelatin hydrogel showed mechanical properties similar to nerve tissue elastic modulus. It is suggested that the mechanical properties of the PVA-Tyr hydrogels with native protein components are providing with a compliant substrate that can be used to support the survival and differentiation of neural networks.
Collapse
|
34
|
Murphy NP, Lampe KJ. Mimicking biological phenomena in hydrogel-based biomaterials to promote dynamic cellular responses. J Mater Chem B 2015; 3:7867-7880. [DOI: 10.1039/c5tb01045d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Novel methods to endow cell-responsiveness into hydrogels are explored and successful work is summarized.
Collapse
Affiliation(s)
- Nicholas P. Murphy
- Department of Chemical Engineering
- University of Virginia
- Charlottesville
- USA
| | - Kyle J. Lampe
- Department of Chemical Engineering
- University of Virginia
- Charlottesville
- USA
| |
Collapse
|
35
|
Peng S, Liu HX, Ko CY, Yang SR, Hung WL, Chu IM. A hydrolytically-tunable photocrosslinked PLA-PEG-PLA/PCL-PEG-PCL dual-component hydrogel that enhances matrix deposition of encapsulated chondrocytes. J Tissue Eng Regen Med 2014; 11:669-678. [DOI: 10.1002/term.1963] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/18/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Sydney Peng
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Huang-Xiang Liu
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Chao-Yin Ko
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Shu-Rui Yang
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - Wei-Lun Hung
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| | - I-Ming Chu
- Department of Chemical Engineering; National Tsing Hua University; Taiwan China
| |
Collapse
|
36
|
Hackelbusch S, Rossow T, Becker H, Seiffert S. Multiresponsive Polymer Hydrogels by Orthogonal Supramolecular Chain Cross-Linking. Macromolecules 2014. [DOI: 10.1021/ma5008573] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sebastian Hackelbusch
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Torsten Rossow
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Hendrik Becker
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Sebastian Seiffert
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
- F-ISFM
Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz
1, D-14109 Berlin, Germany
| |
Collapse
|
37
|
Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. NATURE MATERIALS 2014; 13:547-57. [PMID: 24845994 PMCID: PMC4163547 DOI: 10.1038/nmat3937] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/03/2014] [Indexed: 05/17/2023]
Abstract
The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- William L. Murphy
- Departments of Biomedical Engineering and Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin 53705, USA
- Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037, USA
| |
Collapse
|
38
|
|
39
|
Steinhilber D, Rossow T, Wedepohl S, Paulus F, Seiffert S, Haag R. Ein Mikrogelbaukasten für die bioorthogonale Verkapselung und pH-gesteuerte Freisetzung von lebenden Zellen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Steinhilber D, Rossow T, Wedepohl S, Paulus F, Seiffert S, Haag R. A microgel construction kit for bioorthogonal encapsulation and pH-controlled release of living cells. Angew Chem Int Ed Engl 2013; 52:13538-43. [PMID: 24288142 DOI: 10.1002/anie.201308005] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Indexed: 12/16/2022]
Abstract
pH-Cleavable cell-laden microgels with excellent long-term viabilities were fabricated by combining bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) and droplet-based microfluidics. Poly(ethylene glycol)dicyclooctyne and dendritic poly(glycerol azide) served as bioinert hydrogel precursors. Azide conjugation was performed using different substituted acid-labile benzacetal linkers that allowed precise control of the microgel degradation kinetics in the interesting pH range between 4.5 and 7.4. By this means, a pH-controlled release of the encapsulated cells was achieved upon demand with no effect on cell viability and spreading. As a result, the microgel particles can be used for temporary cell encapsulation, allowing the cells to be studied and manipulated during the encapsulation and then be isolated and harvested by decomposition of the microgel scaffolds.
Collapse
Affiliation(s)
- Dirk Steinhilber
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin (Germany)
| | | | | | | | | | | |
Collapse
|
41
|
Sokołowska P, Urbańska A, Biegańska K, Wagner W, Ciszewski W, Namiecińska M, Zawilska JB. Orexins protect neuronal cell cultures against hypoxic stress: an involvement of Akt signaling. J Mol Neurosci 2013; 52:48-55. [PMID: 24243084 PMCID: PMC3929148 DOI: 10.1007/s12031-013-0165-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/24/2013] [Indexed: 12/28/2022]
Abstract
Orexins A and B are peptides produced mainly by hypothalamic neurons that project to numerous brain structures. We have previously demonstrated that rat cortical neurons express both types of orexin receptors, and their activation by orexins initiates different intracellular signals. The present study aimed to determine the effect of orexins on the Akt kinase activation in the rat neuronal cultures and the significance of that response in neurons subjected to hypoxic stress. We report the first evidence that orexins A and B stimulated Akt in cortical neurons in a concentration- and time-dependent manner. Orexin B more potently than orexin A increased Akt phosphorylation, but the maximal effect of both peptides on the kinase activation was very similar. Next, cultured cortical neurons were challenged with cobalt chloride, an inducer of reactive oxygen species and hypoxia-mediated signaling pathways. Under conditions of chemical hypoxia, orexins potently increased neuronal viability and protected cortical neurons against oxidative stress. Our results also indicate that Akt kinase plays an important role in the pro-survival effects of orexins in neurons, which implies a possible mechanism of the orexin-induced neuroprotection.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Łódź, Poland
| | | | | | | | | | | | | |
Collapse
|
42
|
Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 2013; 42:7335-72. [PMID: 23609001 PMCID: PMC3762890 DOI: 10.1039/c3cs60040h] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications.
Collapse
Affiliation(s)
- Prathamesh M. Kharkar
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
| | - Kristi L. Kiick
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
- Biomedical Engineering , University of Delaware , Newark , DE 19716 , USA
- Delaware Biotechnology Institute , University of Delaware , Newark , DE 19716 , USA
| | - April M. Kloxin
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| |
Collapse
|
43
|
Thankam Finosh G, Jayabalan M. Reactive oxygen species—Control and management using amphiphilic biosynthetic hydrogels for cardiac applications. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.412150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Building biocompatible hydrogels for tissue engineering of the brain and spinal cord. J Funct Biomater 2012; 3:839-63. [PMID: 24955749 PMCID: PMC4030922 DOI: 10.3390/jfb3040839] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/24/2012] [Indexed: 01/07/2023] Open
Abstract
Tissue engineering strategies employing biomaterials have made great progress in the last few decades. However, the tissues of the brain and spinal cord pose unique challenges due to a separate immune system and their nature as soft tissue. Because of this, neural tissue engineering for the brain and spinal cord may require re-establishing biocompatibility and functionality of biomaterials that have previously been successful for tissue engineering in the body. The goal of this review is to briefly describe the distinctive properties of the central nervous system, specifically the neuroimmune response, and to describe the factors which contribute to building polymer hydrogels compatible with this tissue. These factors include polymer chemistry, polymerization and degradation, and the physical and mechanical properties of the hydrogel. By understanding the necessities in making hydrogels biocompatible with tissue of the brain and spinal cord, tissue engineers can then functionalize these materials for repairing and replacing tissue in the central nervous system.
Collapse
|
45
|
Lampe KJ, Heilshorn SC. Building stem cell niches from the molecule up through engineered peptide materials. Neurosci Lett 2012; 519:138-46. [PMID: 22322073 PMCID: PMC3691058 DOI: 10.1016/j.neulet.2012.01.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/18/2012] [Indexed: 01/12/2023]
Abstract
The native stem cell niche is a dynamic and complex microenvironment. Recapitulating this niche is a critical focus within the fields of stem cell biology, tissue engineering, and regenerative medicine and requires the development of well-defined, tunable materials. Recent biomaterial design strategies seek to create engineered matrices that interact with cells at the molecular scale and allow on-demand, cell-triggered matrix modifications. Peptide and protein engineering can accomplish these goals through the molecular-level design of bioinductive and bioresponsive materials. This brief review focuses on engineered peptide and protein materials suitable for use as in vitro neural stem cell niche mimics and in vivo central nervous system repair. A key hallmark of these materials is the immense design freedom to specify the exact amino acid sequence leading to multi-functional bulk materials with tunable properties. These advanced materials are engineered using rational design strategies to recapitulate key aspects of the native neural stem cell niche. The resulting materials often combine the advantages of biological matrices with the engineering control of synthetic polymers. Future design strategies are expected to endow these materials with multiple layers of bi-directional feedback between the cell and the matrix, which will lead to more advanced mimics of the highly dynamic neural stem cell niche.
Collapse
Affiliation(s)
- Kyle J Lampe
- Materials Science and Engineering, 476 Lomita Mall, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
46
|
Abstract
Spinal cord injury (SCI) presents a complex regenerative problem due to the multiple facets of growth inhibition that occur following trauma to the cord parenchyma and stroma. Clinically, SCI is further complicated by the heterogeneity in the size, shape and extent of human injuries. Many of these injuries do not breach the dura mater and have continuous viable axons through the injury site that can later lead to some degree of functional recovery. In these cases, surgical manipulation of the spinal cord by implanting a preformed scaffold or drug delivery device may lead to further damage. Given these circumstances, in situ-forming scaffolds are an attractive approach for SCI regeneration. These synthetic and natural polymers undergo a rapid transformation from liquid to gel upon injection into the cord tissue, conforming to the individual lesion site and directly integrating with the host tissue. Injectable materials can be formulated to have mechanical properties that closely match the native spinal cord extracellular matrix, and this may enhance axonal ingrowth. Such materials can also be loaded with cellular and molecular therapeutics to modulate the wound environment and enhance regeneration. This review will focus on the current status of in situ-forming materials for spinal cord repair. The advantages of, and requirements for, such polymers will be presented, and examples of the behavior of such systems in vitro and in vivo will be presented. There are helpful lessons to be learned from the investigations of injectable hydrogels for the treatment of SCI that apply to the use of these biomaterials for the treatment of lesions in other central nervous system tissues and in organs comprising other tissue types.
Collapse
Affiliation(s)
- D Macaya
- Tissue Engineering, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
47
|
Aurand ER, Lampe KJ, Bjugstad KB. Defining and designing polymers and hydrogels for neural tissue engineering. Neurosci Res 2011; 72:199-213. [PMID: 22192467 DOI: 10.1016/j.neures.2011.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/07/2011] [Accepted: 12/07/2011] [Indexed: 12/16/2022]
Abstract
The use of biomaterials, such as hydrogels, as neural cell delivery devices is becoming more common in areas of research such as stroke, traumatic brain injury, and spinal cord injury. When reviewing the available research there is some ambiguity in the type of materials used and results are often at odds. This review aims to provide the neuroscience community who may not be familiar with fundamental concepts of hydrogel construction, with basic information that would pertain to neural tissue applications, and to describe the use of hydrogels as cell and drug delivery devices. We will illustrate some of the many tunable properties of hydrogels and the importance of these properties in obtaining reliable and consistent results. It is our hope that this review promotes creative ideas for ways that hydrogels could be adapted and employed for the treatment of a broad range of neurological disorders.
Collapse
Affiliation(s)
- Emily R Aurand
- Neuroscience Program, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
48
|
Mooney R, Haeger S, Lawal R, Mason M, Shrestha N, Laperle A, Bjugstad K, Mahoney M. Control of neural cell composition in poly(ethylene glycol) hydrogel culture with soluble factors. Tissue Eng Part A 2011; 17:2805-15. [PMID: 21823990 DOI: 10.1089/ten.tea.2010.0654] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Poly(ethylene glycol) (PEG) hydrogels are being developed as cell delivery vehicles that have great potential to improve neuronal replacement therapies. Current research priorities include (1) characterizing neural cell growth within PEG hydrogels relative to standard culture systems and (2) generating neuronal-enriched populations within the PEG hydrogel environment. This study compares the percentage of neural precursor cells (NPCs), neurons, and glia present when dissociated neural cells are seeded within PEG hydrogels relative to standard monolayer culture. Results demonstrate that PEG hydrogels enriched the initial cell population for NPCs, which subsequently gave rise to neurons, then to glia. Relative to monolayer culture, PEG hydrogels maintained an increased percentage of NPCs and a decreased percentage of glia. This neurogenic advantage of PEG hydrogels is accentuated in the presence of basic fibroblast growth factor and epidermal growth factor, which more potently increase NPC and neuronal expression markers when applied to cells cultured within PEG hydrogels. Finally, this work demonstrates that glial differentiation can be selectively eliminated upon supplementation with a γ-secretase inhibitor. Together, this study furthers our understanding of how the PEG hydrogel environment influences neural cell composition and also describes select soluble factors that are useful in generating neuronal-enriched populations within the PEG hydrogel environment.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lazebnik M, Singh M, Glatt P, Friis LA, Berkland CJ, Detamore MS. Biomimetic method for combining the nucleus pulposus and annulus fibrosus for intervertebral disc tissue engineering. J Tissue Eng Regen Med 2011; 5:e179-87. [DOI: 10.1002/term.412] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/30/2010] [Indexed: 02/06/2023]
|
50
|
Lampe KJ, Kern DS, Mahoney MJ, Bjugstad KB. The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: Protein distribution and the glial response. J Biomed Mater Res A 2011; 96:595-607. [PMID: 21254391 DOI: 10.1002/jbm.a.33011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 10/09/2010] [Accepted: 11/01/2010] [Indexed: 12/18/2022]
Abstract
Tailored delivery of neurotrophic factors (NFs) is a critical challenge that continues to inhibit strategies for guidance of axonal growth in vivo. Of particular importance is the ability to recreate innervation of distant brain regions by transplant tissue, for instance rebuilding the nigrostriatal track, one focus in Parkinson's disease research. Many strategies have utilized polymer drug delivery to target NF release in space and time, but combinatorial approaches are needed to deliver multiple NFs at relevant therapeutic times and locations without toxic side effects. Here we engineered a paradigm of PLGA microparticles entrapped within a degradable PEG-based hydrogel device to locally release two different types of NFs with two different release profiles. Hydrogel/microparticle devices were developed and analyzed for their ability to release GDNF in the caudal area of the brain, near the substantia nigra, or BDNF in the rostral area, near the striatum. The devices delivered their respective NFs in a region localized to within 100 μm of the bridge, but not exclusively to the targeted rostral or caudal ends. BDNF was slowly released over a 56-day period, whereas a bolus of GDNF was released around 28 days. The timed delivery of NFs from implanted devices significantly reduced the microglial response relative to sham surgeries. Given the coordinated drug delivery ability and reduced localized inflammatory response, this multifaceted PEG hydrogel/PLGA microparticle strategy may be a useful tool for further development in combining tissue engineering and drug delivery, and recreating the nigrostriatal track.
Collapse
Affiliation(s)
- Kyle J Lampe
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|