1
|
Cook JL, Stannard JP, Stoker AM, Rucinski K, Crist BD, Cook CR, Crecelius C, Bozynski CC, Kuroki K, Royse LA, Stucky R, Hung CT, Smith MJ, Schweser KM, Nuelle CW, DeFroda S. A Bedside-to-Bench-to-Bedside Journey to Advance Osteochondral Allograft Transplantation towards Biologic Joint Restoration. J Knee Surg 2025; 38:256-271. [PMID: 39701167 DOI: 10.1055/a-2506-2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
More than 70 million adults in the United States are impacted by osteoarthritis (OA). Symptomatic articular cartilage loss that progresses to debilitating OA is being diagnosed more frequently and earlier in life, such that a growing number of active patients are faced with life-altering health care decisions at increasingly younger ages. Joint replacement surgeries, in the form of various artificial arthroplasties, are reliable operations, especially for older (≥65 years), more sedentary patients with end-stage OA, but have major limitations for younger, more active patients. For younger adults and those who wish to remain highly active, artificial arthroplasties are associated with significantly higher levels of pain, complications, morbidity, dysfunction, and likelihood of revision. Unfortunately, non-surgical management strategies and surgical treatment options other than joint replacement are often not indicated and have not proven to be consistently successful for this large and growing population of patients. As such, these patients are often relegated to postpone surgery, take medications including opioids, profoundly alter their lifestyle, and live with pain and disability until artificial arthroplasty is more likely to meet their functional demands without high risk for early revision. As such, our research team set out to develop, test, and validate biologic joint restoration strategies that could provide consistently successful options for young and active patients with joint disorders who were not considered ideal candidates for artificial arthroplasty. In pursuit of this goal, we implemented a targeted bedside-to-bench-to-bedside translational approach to hypothesis-driven studies designed to address this major unmet need in orthopaedics by identifying and overcoming key clinical limitations and obstacles faced by health care teams and patients in realizing optimal outcomes after biologic joint restoration. The objective of this article is to condense more than two decades of rigorous patient-centered research aimed at optimizing osteochondral and meniscus allograft transplantation toward more consistently successful management of complex joint problems in young and active patients.
Collapse
Affiliation(s)
- James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - James P Stannard
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Kylee Rucinski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Brett D Crist
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Cristi R Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Cory Crecelius
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Chantelle C Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri
| | - Lisa A Royse
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Renee Stucky
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Matthew J Smith
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Kyle M Schweser
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Clayton W Nuelle
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Steven DeFroda
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| |
Collapse
|
2
|
Marrero - Berrios I, Salter SE, Hirday R, Rabolli CP, Tan A, Hung CT, Schloss RS, Yarmush ML. In vitro inflammatory multi-cellular model of osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100432. [PMID: 38288345 PMCID: PMC10823137 DOI: 10.1016/j.ocarto.2023.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Objective Osteoarthritis (OA) is a chronic joint disease, with limited treatment options, characterized by inflammation and matrix degradation, and resulting in severe pain or disability. Progressive inflammatory interaction among key cell types, including chondrocytes and macrophages, leads to a cascade of intra- and inter-cellular events which culminate in OA induction. In order to investigate these interactions, we developed a multi-cellular in vitro OA model, to characterize OA progression, and identify and evaluate potential OA therapeutics in response to mediators representing graded levels of inflammatory severity. Methods We compared macrophages, chondrocytes and their co-culture responses to "low" Interleukin-1 (IL-1) or "high" IL-1/tumor necrosis factor (IL-1/TNF) levels of inflammation. We also investigated response changes following the administration of dexamethasone (DEX) or mesenchymal stromal cell (MSC) treatment via a combination of gene expression and secretory changes, reflecting not only inflammation, but also chondrocyte function. Results Inflamed chondrocytes presented an osteoarthritic-like phenotype characterized by high gene expression of pro-inflammatory cytokines and chemokines, up-regulation of ECM degrading proteases, and down-regulation of chondrogenic genes. Our results indicate that while MSC treatment attenuates macrophage inflammation directly, it does not reduce chondrocyte inflammatory responses, unless macrophages are present as well. DEX however, can directly attenuate chondrocyte inflammation. Conclusions Our results highlight the importance of considering multi-cellular interactions when studying complex systems such as the articular joint. In addition, our approach, using a panel of both inflammatory and chondrocyte functional genes, provides a more comprehensive approach to investigate disease biomarkers, and responses to treatment.
Collapse
Affiliation(s)
| | - S. Elina Salter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rishabh Hirday
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Charles P. Rabolli
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Andrea Tan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rene S. Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
3
|
Gu J, Wang B, Wang T, Zhang N, Liu H, Gui J, Lu Y. Effects of Cartilage Progenitor Cells, Bone Marrow Mesenchymal Stem Cells and Chondrocytes on Cartilage Repair as Seed Cells: An in vitro Study. Drug Des Devel Ther 2022; 16:1217-1230. [PMID: 35509492 PMCID: PMC9059879 DOI: 10.2147/dddt.s356936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jiaxiang Gu
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Bin Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Tianliang Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Naichen Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Hongjun Liu
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Jianchao Gui
- Department of Orthopedics, Nanjing Medical University Affiliated Nanjing First Hospital, Nanjing, People’s Republic of China
| | - Yiming Lu
- Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Foot and Hand Surgery, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
- Correspondence: Yiming Lu, Email
| |
Collapse
|
4
|
Denbeigh JM, Hevesi M, Paggi CA, Resch ZT, Bagheri L, Mara K, Arani A, Zhang C, Larson AN, Saris DB, Krych AJ, van Wijnen AJ. Modernizing Storage Conditions for Fresh Osteochondral Allografts by Optimizing Viability at Physiologic Temperatures and Conditions. Cartilage 2021; 13:280S-292S. [PMID: 31777278 PMCID: PMC8808875 DOI: 10.1177/1947603519888798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective. Osteochondral allograft (OCA) transplantation has demonstrated good long-term outcomes in treatment of cartilage defects. Viability, a key factor in clinical success, decreases with peri-implantation storage at 4°C during pathogen testing, matching logistics, and transportation. Modern, physiologic storage conditions may improve viability and enhance outcomes. Design. Osteochondral specimens from total knee arthroplasty patients (6 males, 5 females, age 56.4 ± 2.2 years) were stored in media and incubated at normoxia (21% O2) at 22°C or 37°C, and hypoxia (2% O2) at 37°C. Histology, live-dead staining, and quantitative polymerase chain reaction (qPCR) was performed 24 hours after harvest and following 7 days of incubation. Tissue architecture, cell viability, and gene expression were analyzed. Results. No significant viability or gene expression deterioration of cartilage was observed 1-week postincubation at 37°C, with or without hypoxia. Baseline viable cell density (VCD) was 94.0% ± 2.7% at day 1. At day 7, VCD was 95.1% (37°C) with normoxic storage and 92.2% (37°C) with hypoxic storage (P ≥ 0.27). Day 7 VCD (22°C) incubation was significantly lower than both the baseline and 37°C storage values (65.6%; P < 0.01). COL1A1, COL1A2, and ACAN qPCR expression was unchanged from baseline (P < 0.05) for all storage conditions at day 7, while CD163 expression, indicative of inflammatory macrophages and monocytes, was significantly lower in the 37°C groups (P < 0.01). Conclusion. Physiologic storage at 37°C demonstrates improved chondrocyte viability and metabolism, and maintained collagen expression compared with storage at 22°C. These novel findings guide development of a method to optimize short-term fresh OCA storage, which may lead to improved clinical results.
Collapse
Affiliation(s)
| | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Carlo A. Paggi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Zachary T. Resch
- Center for Regenerative Medicine, Mayo
Clinic, Rochester, MN, USA
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Kristin Mara
- Department of Biomedical Statistics and
Informatics, Mayo Clinic, Rochester, MN, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic,
Rochester, MN, USA
| | - Chenghao Zhang
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - A. Noelle Larson
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Daniel B.F. Saris
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Orthopedics, University
Medical Center Utrecht, Utrecht, Netherlands,Reconstructive Medicine, University of
Twente, Enschede, Netherlands
| | - Aaron J. Krych
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Sports Medicine Center, Mayo Clinic,
Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Andre J. van Wijnen PhD, Department of
Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Carvalho DN, Reis RL, Silva TH. Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomater Sci 2021; 9:6718-6736. [PMID: 34494053 DOI: 10.1039/d1bm00809a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The body's self-repair capacity is limited, including injuries on articular cartilage zones. Over the past few decades, tissue engineering and regenerative medicine (TERM) has focused its studies on the development of natural biomaterials for clinical applications aiming to overcome this self-therapeutic bottleneck. This review focuses on the development of these biomaterials using compounds and materials from marine sources that are able to be produced in a sustainable way, as an alternative to mammal sources (e.g., collagens) and benefiting from their biological properties, such as biocompatibility, low antigenicity, biodegradability, among others. The structure and composition of the new biomaterials require mimicking the native extracellular matrix (ECM) of articular cartilage tissue. To design an ideal temporary tissue-scaffold, it needs to provide a suitable environment for cell growth (cell attachment, proliferation, and differentiation), towards the regeneration of the damaged tissues. Overall, the purpose of this review is to summarize various marine sources to be used in the development of different tissue-scaffolds with the capability to sustain cells envisaging cartilage tissue engineering, analysing the systems displaying more promising performance, while pointing out current limitations and steps to be given in the near future.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal. .,ICVS/3B's - P.T. Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Nims RJ, Pferdehirt L, Ho NB, Savadipour A, Lorentz J, Sohi S, Kassab J, Ross AK, O'Conor CJ, Liedtke WB, Zhang B, McNulty AL, Guilak F. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. SCIENCE ADVANCES 2021; 7:eabd9858. [PMID: 33571125 PMCID: PMC7840132 DOI: 10.1126/sciadv.abd9858] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 05/12/2023]
Abstract
Mechanobiologic signals regulate cellular responses under physiologic and pathologic conditions. Using synthetic biology and tissue engineering, we developed a mechanically responsive bioartificial tissue that responds to mechanical loading to produce a preprogrammed therapeutic biologic drug. By deconstructing the signaling networks induced by activation of the mechanically sensitive ion channel transient receptor potential vanilloid 4 (TRPV4), we created synthetic TRPV4-responsive genetic circuits in chondrocytes. We engineered these cells into living tissues that respond to mechanical loading by producing the anti-inflammatory biologic drug interleukin-1 receptor antagonist. Chondrocyte TRPV4 is activated by osmotic loading and not by direct cellular deformation, suggesting that tissue loading is transduced into an osmotic signal that activates TRPV4. Either osmotic or mechanical loading of tissues transduced with TRPV4-responsive circuits protected constructs from inflammatory degradation by interleukin-1α. This synthetic mechanobiology approach was used to develop a mechanogenetic system to enable long-term, autonomously regulated drug delivery driven by physiologically relevant loading.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Noelani B Ho
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63105, USA
| | - Jeremiah Lorentz
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Sima Sohi
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Jordan Kassab
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Alison K Ross
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Christopher J O'Conor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
7
|
Synthesis of Ti powders with different morphologies via controlling the valence state of the titanium ion in KCl-NaCl molten salt. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Stefani RM, Barbosa S, Tan AR, Setti S, Stoker AM, Ateshian GA, Cadossi R, Vunjak-Novakovic G, Aaron RK, Cook JL, Bulinski JC, Hung CT. Pulsed electromagnetic fields promote repair of focal articular cartilage defects with engineered osteochondral constructs. Biotechnol Bioeng 2020; 117:1584-1596. [PMID: 31985051 PMCID: PMC8845061 DOI: 10.1002/bit.27287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/14/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Clark T. Hung
- Columbia University, New York, NY
- Clark T. Hung, 351 Engineering Terrace Building, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027, Tel: (212) 854-6542, Fax: (212) 854-8725,
| |
Collapse
|
9
|
Stefani RM, Lee AJ, Tan AR, Halder SS, Hu Y, Guo XE, Stoker AM, Ateshian GA, Marra KG, Cook JL, Hung CT. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater 2020; 102:326-340. [PMID: 31805408 PMCID: PMC6956850 DOI: 10.1016/j.actbio.2019.11.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
Articular cartilage defects are a common source of joint pain and dysfunction. We hypothesized that sustained low-dose dexamethasone (DEX) delivery via an acellular osteochondral implant would have a dual pro-anabolic and anti-catabolic effect, both supporting the functional integrity of adjacent graft and host tissue while also attenuating inflammation caused by iatrogenic injury. An acellular agarose hydrogel carrier with embedded DEX-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres (DLMS) was developed to provide sustained release for at least 99 days. The DLMS implant was first evaluated in an in vitro pro-inflammatory model of cartilage degradation. The implant was chondroprotective, as indicated by maintenance of Young's modulus (EY) (p = 0.92) and GAG content (p = 1.0) in the presence of interleukin-1β insult. In a subsequent preliminary in vivo experiment, an osteochondral autograft transfer was performed using a pre-clinical canine model. DLMS implants were press-fit into the autograft donor site and compared to intra-articular DEX injection (INJ) or no DEX (CTL). Functional scores for DLMS animals returned to baseline (p = 0.39), whereas CTL and INJ remained significantly worse at 6 months (p < 0.05). DLMS knees were significantly more likely to have improved OARSI scores for proteoglycan, chondrocyte, and collagen pathology (p < 0.05). However, no significant improvements in synovial fluid cytokine content were observed. In conclusion, utilizing a targeted DLMS implant, we observed in vitro chondroprotection in the presence of IL-1-induced degradation and improved in vivo functional outcomes. These improved outcomes were correlated with superior histological scores but not necessarily a dampened inflammatory response, suggesting a primarily pro-anabolic effect. STATEMENT OF SIGNIFICANCE: Articular cartilage defects are a common source of joint pain and dysfunction. Effective treatment of these injuries may prevent the progression of osteoarthritis and reduce the need for total joint replacement. Dexamethasone, a potent glucocorticoid with concomitant anti-catabolic and pro-anabolic effects on cartilage, may serve as an adjuvant for a variety of repair strategies. Utilizing a dexamethasone-loaded osteochondral implant with controlled release characteristics, we demonstrated in vitro chondroprotection in the presence of IL-1-induced degradation and improved in vivo functional outcomes following osteochondral repair. These improved outcomes were correlated with superior histological cartilage scores and minimal-to-no comorbidity, which is a risk with high dose dexamethasone injections. Using this model of cartilage restoration, we have for the first time shown the application of targeted, low-dose dexamethasone for improved healing in a preclinical model of focal defect repair.
Collapse
Affiliation(s)
- Robert M Stefani
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States
| | - Andy J Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States
| | - Andrea R Tan
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States
| | - Saiti S Halder
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States
| | - Aaron M Stoker
- Missouri Orthopaedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia 65212, MO, United States
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States; Department of Mechanical Engineering, Columbia University, 500 West 120th Street, 220 S.W. Mudd, New York 10027, NY, United States
| | - Kacey G Marra
- University of Pittsburgh, Biomedical Science Tower, 200 Lothrop Street, Pittsburgh 15213, PA, United States
| | - James L Cook
- Missouri Orthopaedic Institute, University of Missouri, 1100 Virginia Avenue, Columbia 65212, MO, United States
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York 10027, NY United States.
| |
Collapse
|
10
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
11
|
Adler N, Schoeniger A, Fuhrmann H. Effects of transforming growth factor-β and interleukin-1β on inflammatory markers of osteoarthritis in cultured canine chondrocytes. Am J Vet Res 2017; 78:1264-1272. [DOI: 10.2460/ajvr.78.11.1264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Adler N, Schoeniger A, Fuhrmann H. Polyunsaturated fatty acids influence inflammatory markers in a cellular model for canine osteoarthritis. J Anim Physiol Anim Nutr (Berl) 2017; 102:e623-e632. [DOI: 10.1111/jpn.12804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Affiliation(s)
- N. Adler
- Institute of Biochemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - A. Schoeniger
- Institute of Biochemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - H. Fuhrmann
- Institute of Biochemistry; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| |
Collapse
|
13
|
Kuroki K, Stoker AM, Stannard JP, Bozynski CC, Cook CR, Pfeiffer FM, Cook JL. Biologic Joint Repair Strategies: The Mizzou BioJoint Story. Toxicol Pathol 2017; 45:931-938. [DOI: 10.1177/0192623317735786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because articular cartilage has very limited healing potential, most symptomatic cartilage injuries eventually result in end-stage osteoarthritis and are treated with artificial joint replacement. Our interdisciplinary, comparative orthopedic research performed by a team of DVMs, MDs, engineers, and basic scientists has yielded marked progress toward effective biologic joint restoration strategies by bringing bench-side ideas to fruition in bedside applications in both canine and human patients. This mini-review summarizes the progress of biologic joint restoration strategies at our center.
Collapse
Affiliation(s)
- Keiichi Kuroki
- Thompson Laboratory for Regenerative Orthopaedics, The Mizzou BioJointSM Center, Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| | - Aaron M. Stoker
- Thompson Laboratory for Regenerative Orthopaedics, The Mizzou BioJointSM Center, Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| | - James P. Stannard
- Thompson Laboratory for Regenerative Orthopaedics, The Mizzou BioJointSM Center, Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| | - Chantelle C. Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, The Mizzou BioJointSM Center, Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| | - Cristi R. Cook
- Thompson Laboratory for Regenerative Orthopaedics, The Mizzou BioJointSM Center, Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| | - Ferris M. Pfeiffer
- Thompson Laboratory for Regenerative Orthopaedics, The Mizzou BioJointSM Center, Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, The Mizzou BioJointSM Center, Missouri Orthopaedic Institute, University of Missouri, Columbia, MO, USA
| |
Collapse
|
14
|
Silverstein AM, Stoker AM, Ateshian GA, Bulinski JC, Cook JL, Hung CT. Transient expression of the diseased phenotype of osteoarthritic chondrocytes in engineered cartilage. J Orthop Res 2017; 35:829-836. [PMID: 27183499 PMCID: PMC5383531 DOI: 10.1002/jor.23301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/10/2016] [Indexed: 02/04/2023]
Abstract
Due to the degradation of osteoarthritic (OA) cartilage in post-traumatic OA (PTOA), these tissues are challenging to study and manipulate in vitro. In this study, chondrocytes isolated from either PTOA (meniscal-release (MR) model) or normal (contralateral limb) cartilage of canine knee joints were used to form micropellets to assess the maintenance of the OA chondrocyte phenotype in vitro. Media samples from the micropellet cultures were used to measure matrix metalloproteinase (MMP), chemokine, and cytokine concentrations. Significant differences in matrix synthesis were observed as a function of disease with OA chondrocytes generally synthesizing more extracellular matrix with increasing time in culture. No donor dependent differences were detected. Luminex multiplex analysis of pellet culture media showed disease and time-dependent differences in interleukin (IL)-8, keratinocyte chemoattractant (KC)-like protein, MMP-1, MMP-2, and MMP-3, which are differentially expressed in OA. This memory of their diseased phenotype persists for the first 2 weeks of culture. These results demonstrate the potential to use chondrocytes from an animal model of OA to study phenotype alterations during the progression and treatment of OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:829-836, 2017.
Collapse
Affiliation(s)
- Amy M. Silverstein
- Department of Biomedical Engineering, Columbia University, New York, 1210 Amsterdam Avenue, 351 Engineering Terrace, New York 10027
| | - Aaron M. Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, 1210 Amsterdam Avenue, 351 Engineering Terrace, New York 10027,Department of Mechanical Engineering, Columbia University, New York, New York
| | - J. Chloe Bulinski
- Department of Biological Sciences, Columbia University, New York, New York
| | - James L. Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, 1210 Amsterdam Avenue, 351 Engineering Terrace, New York 10027
| |
Collapse
|
15
|
Tan AR, Hung CT. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs. Stem Cells Transl Med 2017; 6:1295-1303. [PMID: 28177194 PMCID: PMC5442836 DOI: 10.1002/sctm.16-0271] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell-based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano-chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage-specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well-developed techniques from chondrocyte-based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295-1303.
Collapse
|
16
|
Nims RJ, Cigan AD, Durney KM, Jones BK, O'Neill JD, Law WSA, Vunjak-Novakovic G, Hung CT, Ateshian GA. * Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability. Tissue Eng Part A 2017; 23:847-858. [PMID: 28193145 DOI: 10.1089/ten.tea.2016.0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When cultured with sufficient nutrient supply, engineered cartilage synthesizes proteoglycans rapidly, producing an osmotic swelling pressure that destabilizes immature collagen and prevents the development of a robust collagen framework, a hallmark of native cartilage. We hypothesized that mechanically constraining the proteoglycan-induced tissue swelling would enhance construct functional properties through the development of a more stable collagen framework. To test this hypothesis, we developed a novel "cage" growth system to mechanically prevent tissue constructs from swelling while ensuring adequate nutrient supply to the growing construct. The effectiveness of constrained culture was examined by testing constructs embedded within two different scaffolds: agarose and cartilage-derived matrix hydrogel (CDMH). Constructs were seeded with immature bovine chondrocytes and cultured under free swelling (FS) conditions for 14 days with transforming growth factor-β before being placed into a constraining cage for the remainder of culture. Controls were cultured under FS conditions throughout. Agarose constructs cultured in cages did not expand after the day 14 caging while FS constructs expanded to 8 × their day 0 weight after 112 days of culture. In addition to the physical differences in growth, by day 56, caged constructs had higher equilibrium (agarose: 639 ± 179 kPa and CDMH: 608 ± 257 kPa) and dynamic compressive moduli (agarose: 3.4 ± 1.0 MPa and CDMH 2.8 ± 1.0 MPa) than FS constructs (agarose: 193 ± 74 kPa and 1.1 ± 0.5 MPa and CDMH: 317 ± 93 kPa and 1.8 ± 1.0 MPa for equilibrium and dynamic properties, respectively). Interestingly, when normalized to final day wet weight, cage and FS constructs did not exhibit differences in proteoglycan or collagen content. However, caged culture enhanced collagen maturation through the increased formation of pyridinoline crosslinks and improved collagen matrix stability as measured by α-chymotrypsin solubility. These findings demonstrate that physically constrained culture of engineered cartilage constructs improves functional properties through improved collagen network maturity and stability. We anticipate that constrained culture may benefit other reported engineered cartilage systems that exhibit a mismatch in proteoglycan and collagen synthesis.
Collapse
Affiliation(s)
- Robert J Nims
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Alexander D Cigan
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Krista M Durney
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Brian K Jones
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - John D O'Neill
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Wing-Sum A Law
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,3 Department of Medicine, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,2 Department of Mechanical Engineering, Columbia University , New York, New York
| |
Collapse
|
17
|
Han G, Hong D, Lee BS, Ha E, Park JH, Choi IS, Kang SM, Lee JK. Systematic Study of Functionalizable, Non-Biofouling Agarose Films with Protein and Cellular Patterns on Glass Slides. Chem Asian J 2017; 12:846-852. [PMID: 28218479 DOI: 10.1002/asia.201700010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/19/2017] [Indexed: 01/28/2023]
Abstract
Herein we demonstrate a systematic investigation of chemically functionalizable, non-biofouling agarose films over large-area glass surfaces. Agarose films, prepared with various concentrations of aqueous agarose, were activated by using periodate oxidation to generate aldehyde groups at the termini of the agarose chains. The non-biofouling efficacy and binding capabilities of the activated films were evaluated by using protein and cellular patterning, performed by using a microarrayer, microcontact printing, and micromolding in capillaries. Characterization by using a fluorescence slide scanner and a scanning-probe microscope revealed that the pore sizes of the agarose films played an important role in achieving desirable film performance; the 0.2 wt % agarose film exhibited the optimum efficacy in this work.
Collapse
Affiliation(s)
- Gyeongyeop Han
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Daehwa Hong
- Department of Chemistry and Center for Cell-Encapsulation, KAIST, Daejeon, 34141, South Korea
| | - Bong Soo Lee
- Department of Chemistry and Center for Cell-Encapsulation, KAIST, Daejeon, 34141, South Korea
| | - EunRae Ha
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Ji Hun Park
- Department of Chemistry and Center for Cell-Encapsulation, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Department of Chemistry and Center for Cell-Encapsulation, KAIST, Daejeon, 34141, South Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jungkyu K Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|
18
|
Cigan AD, Durney KM, Nims RJ, Vunjak-Novakovic G, Hung CT, Ateshian GA. Nutrient Channels Aid the Growth of Articular Surface-Sized Engineered Cartilage Constructs. Tissue Eng Part A 2016; 22:1063-74. [PMID: 27481330 DOI: 10.1089/ten.tea.2016.0179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Symptomatic osteoarthritic lesions span large regions of joint surfaces and the ability to engineer cartilage constructs at clinically relevant sizes would be highly desirable. We previously demonstrated that nutrient transport limitations can be mitigated by the introduction of channels in 10 mm diameter cartilage constructs. In this study, we scaled up our previous system to cast and cultivate 40 mm diameter constructs (2.3 mm overall thickness); 4 mm diameter and channeled 10 mm diameter constructs were studied for comparison. Furthermore, to assess whether prior results using primary bovine cells are applicable for passaged cells-a more clinically realistic scenario-we cast constructs of each size with primary or twice-passaged cells. Constructs were assessed mechanically for equilibrium compressive Young's modulus (EY), dynamic modulus at 0.01 Hz (G*), and friction coefficient (μ); they were also assessed biochemically, histologically, and immunohistochemically for glycosaminoglycan (GAG) and collagen contents. By maintaining open channels, we successfully cultured robust constructs the size of entire human articular cartilage layers (growing to ∼52 mm in diameter, 4 mm thick, mass of 8 g by day 56), representing a 100-fold increase in scale over our 4 mm diameter constructs, without compromising their functional properties. Large constructs reached EY of up to 623 kPa and GAG contents up to 8.9%/ww (% of wet weight), both within native cartilage ranges, had G* >2 MPa, and up to 3.5%/ww collagen. Constructs also exhibited some of the lowest μ reported for engineered cartilage (0.06-0.11). Passaged cells produced tissue of lower quality, but still exhibited native EY and GAG content, similar to their smaller controls. The constructs produced in this study are, to our knowledge, the largest engineered cartilage constructs to date which possess native EY and GAG, and are a testament to the effectiveness of nutrient channels in overcoming transport limitations in cartilage tissue engineering.
Collapse
Affiliation(s)
- Alexander D Cigan
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Krista M Durney
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Robert J Nims
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
- 2 Department of Medicine, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
- 3 Department of Mechanical Engineering, Columbia University , New York, New York
| |
Collapse
|
19
|
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
|
20
|
Cigan AD, Roach BL, Nims RJ, Tan AR, Albro MB, Stoker AM, Cook JL, Vunjak-Novakovic G, Hung CT, Ateshian GA. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. J Biomech 2016; 49:1909-1917. [PMID: 27198889 DOI: 10.1016/j.jbiomech.2016.04.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes.
Collapse
Affiliation(s)
- Alexander D Cigan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Brendan L Roach
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robert J Nims
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Andrea R Tan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Michael B Albro
- Department of Materials, Imperial College London, London, UK
| | | | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
21
|
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98:1-22. [PMID: 27177218 DOI: 10.1016/j.biomaterials.2016.04.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
Affiliation(s)
- Brian J Huang
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, USA; Department of Orthopedic Surgery, University of California Davis, USA.
| |
Collapse
|
22
|
Roach BL, Kelmendi-Doko A, Balutis EC, Marra KG, Ateshian GA, Hung CT. Dexamethasone Release from Within Engineered Cartilage as a Chondroprotective Strategy Against Interleukin-1α. Tissue Eng Part A 2016; 22:621-32. [PMID: 26956216 DOI: 10.1089/ten.tea.2016.0018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While significant progress has been made toward engineering functional cartilage constructs with mechanical properties suitable for in vivo loading, the impact on these grafts of inflammatory cytokines, chemical factors that are elevated with trauma or osteoarthritis, is poorly understood. Previous work has shown dexamethasone to be a critical compound for cultivating cartilage with functional properties, while also providing chondroprotection from proinflammatory cytokines. This study tested the hypothesis that the incorporation of poly(lactic-co-glycolic acid) (PLGA) (75:25) microspheres that release dexamethasone from within chondrocyte-seeded agarose hydrogel constructs would promote development of constructs with functional properties and protect constructs from the deleterious effects of interleukin-1α (IL-1α). After 28 days of growth culture, experimental groups were treated with IL-1α (10 ng/mL) for 7 days. Reaching native equilibrium moduli and proteoglycan levels, dexamethasone-loaded microsphere constructs exhibited tissue properties similar to microsphere-free control constructs cultured in dexamethasone-supplemented culture media and were insensitive to IL-1α exposure. These findings are in stark contrast to constructs containing dexamethasone-free microspheres or no microspheres, cultured without dexamethasone, where IL-1α exposure led to significant tissue degradation. These results support the use of dexamethasone delivery from within engineered cartilage, through biodegradable microspheres, as a strategy to produce mechanically functional tissues that can also combat the deleterious effects of local proinflammatory cytokine exposure.
Collapse
Affiliation(s)
- Brendan L Roach
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Arta Kelmendi-Doko
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Elaine C Balutis
- 3 Department of Orthopedics and Sports Medicine, Mount Sinai Health System , New York, New York
| | - Kacey G Marra
- 2 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,6 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
23
|
Nover AB, Jones BK, Yu WT, Donovan DS, Podolnick JD, Cook JL, Ateshian GA, Hung CT. A puzzle assembly strategy for fabrication of large engineered cartilage tissue constructs. J Biomech 2016; 49:668-677. [PMID: 26895780 DOI: 10.1016/j.jbiomech.2016.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 11/15/2022]
Abstract
Engineering of large articular cartilage tissue constructs remains a challenge as tissue growth is limited by nutrient diffusion. Here, a novel strategy is investigated, generating large constructs through the assembly of individually cultured, interlocking, smaller puzzle-shaped subunits. These constructs can be engineered consistently with more desirable mechanical and biochemical properties than larger constructs (~4-fold greater Young׳s modulus). A failure testing technique was developed to evaluate the physiologic functionality of constructs, which were cultured as individual subunits for 28 days, then assembled and cultured for an additional 21-35 days. Assembled puzzle constructs withstood large deformations (40-50% compressive strain) prior to failure. Their ability to withstand physiologic loads may be enhanced by increases in subunit strength and assembled culture time. A nude mouse model was utilized to show biocompatibility and fusion of assembled puzzle pieces in vivo. Overall, the technique offers a novel, effective approach to scaling up engineered tissues and may be combined with other techniques and/or applied to the engineering of other tissues. Future studies will aim to optimize this system in an effort to engineer and integrate robust subunits to fill large defects.
Collapse
Affiliation(s)
- Adam B Nover
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, NY 10027, USA.
| | - Brian K Jones
- Department of Mechanical Engineering, Columbia University, 242 S. W. Mudd, 500 West 120th Street, Mail Code: 4703, New York, NY 10027, USA.
| | - William T Yu
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, NY 10027, USA.
| | - Daniel S Donovan
- Department of Orthopedic Surgery, Mount Sinai West, 1000 Tenth Avenue, New York, NY 10019, USA; Department of Orthopedic Surgery, Mount Sinai St. Luke׳s, 1111 Amsterdam Avenue, New York, NY 10025, USA.
| | - Jeremy D Podolnick
- Department of Orthopedic Surgery, Mount Sinai West, 1000 Tenth Avenue, New York, NY 10019, USA; Department of Orthopedic Surgery, Mount Sinai St. Luke׳s, 1111 Amsterdam Avenue, New York, NY 10025, USA.
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Avenue, DC953.000, Columbia, MO 65212, USA.
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, NY 10027, USA; Department of Mechanical Engineering, Columbia University, 242 S. W. Mudd, 500 West 120th Street, Mail Code: 4703, New York, NY 10027, USA.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, NY 10027, USA.
| |
Collapse
|
24
|
Nover AB, Stefani RM, Lee SL, Ateshian GA, Stoker AM, Cook JL, Hung CT. Long-term storage and preservation of tissue engineered articular cartilage. J Orthop Res 2016; 34:141-8. [PMID: 26296185 PMCID: PMC4710567 DOI: 10.1002/jor.23034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/18/2015] [Indexed: 02/04/2023]
Abstract
With limited availability of osteochondral allografts, tissue engineered cartilage grafts may provide an alternative treatment for large cartilage defects. An effective storage protocol will be critical for translating this technology to clinical use. The purpose of this study was to evaluate the efficacy of the Missouri Osteochondral Allograft Preservation System (MOPS) for room temperature storage of mature tissue engineered grafts, focusing on tissue property maintenance during the current allograft storage window (28 days). Additional research compares MOPS to continued culture, investigates temperature influence, and examines longer-term storage. Articular cartilage constructs were cultured to maturity using adult canine chondrocytes, then preserved with MOPS at room temperature, in refrigeration, or kept in culture for an additional 56 days. MOPS storage maintained desired chondrocyte viability for 28 days of room temperature storage, retaining 75% of the maturity point Young's modulus without significant decline in biochemical content. Properties dropped past this time point. Refrigeration maintained properties similar to room temperature at 28 days, but proved better at 56 days. For engineered grafts, MOPS maintained the majority of tissue properties for the 28-day window without clearly extending that period as it had for native grafts. These results are the first evaluating engineered cartilage storage.
Collapse
Affiliation(s)
- Adam B. Nover
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, New York 10027
| | - Robert M. Stefani
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, New York 10027
| | - Stephanie L. Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, New York 10027
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, New York 10027,Department of Mechanical Engineering, Columbia University, 242 S. W. Mudd, 500 West 120th Street, Mail Code: 4703, New York, New York 10027
| | - Aaron M. Stoker
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E Campus Dr., Columbia, Missouri 65211
| | - James L. Cook
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E Campus Dr., Columbia, Missouri 65211,Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Avenue, DC953.000, Columbia, Missouri 65212
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, Mail Code: 8904, New York, New York 10027
| |
Collapse
|
25
|
Tan AR, VandenBerg CD, Attur M, Abramson SB, Knight MM, Bulinski JC, Ateshian GA, Cook JL, Hung CT. Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult. Arthritis Res Ther 2015; 17:361. [PMID: 26667364 PMCID: PMC4704536 DOI: 10.1186/s13075-015-0876-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/26/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND During osteoarthritis and following surgical procedures, the environment of the knee is rich in proinflammatory cytokines such as IL-1. Introduction of tissue-engineered cartilage constructs to a chemically harsh milieu may limit the functionality of the implanted tissue over long periods. A chemical preconditioning scheme (application of low doses of IL-1) was tested as a method to prepare developing engineered tissue to withstand exposure to a higher concentration of the cytokine, known to elicit proteolysis as well as rapid degeneration of cartilage. METHODS Using an established juvenile bovine model system, engineered cartilage was preconditioned with low doses of IL-1α (0.1 ng/mL, 0.5 ng/mL, and 1.0 ng/mL) for 7 days before exposure to an insult dose (10 ng/mL). The time frame over which this protection is afforded was investigated by altering the amount of time between preconditioning and insult as well as the time following insult. To explore a potential mechanism for this protection, one set of constructs was preconditioned with CoCl2, a chemical inducer of hypoxia, before exposure to the IL-1α insult. Finally, we examined the translation of this preconditioning method to extend to clinically relevant adult, passaged chondrocytes from a preclinical canine model. RESULTS Low doses of IL-1α (0.1 ng/mL and 0.5 ng/mL) protected against subsequent catabolic degradation by cytokine insult, preserving mechanical stiffness and biochemical composition. Regardless of amount of time between preconditioning scheme and insult, protection was afforded. In a similar manner, preconditioning with CoCl2 similarly allowed for mediation of catabolic damage by IL-1α. The effects of preconditioning on clinically relevant adult, passaged chondrocytes from a preclinical canine model followed the same trends with low-dose IL-1β offering variable protection against insult. CONCLUSIONS Chemical preconditioning schemes have the ability to protect engineered cartilage constructs from IL-1-induced catabolic degradation, offering potential modalities for therapeutic treatments.
Collapse
Affiliation(s)
- Andrea R Tan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
| | - Curtis D VandenBerg
- Department of Orthopedic Surgery, St. Luke's-Roosevelt Hospital Center, 1000 10th Avenue, New York, NY, USA.
| | - Mukundan Attur
- New York University Hospital for Joint Disease, 301 E. 17th Street, New York, NY, USA.
| | - Steven B Abramson
- New York University Hospital for Joint Disease, 301 E. 17th Street, New York, NY, USA.
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, London, UK.
| | - J Chloe Bulinski
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY, USA.
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
- Department of Mechanical Engineering, Columbia University, 500 W. 120th Street, New York, NY, USA.
| | - James L Cook
- Comparative Orthopaedic Laboratory, University of Missouri, 1100 Virginia Avenue, Columbia, MO, USA.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, USA.
| |
Collapse
|
26
|
Porous titanium bases for osteochondral tissue engineering. Acta Biomater 2015; 27:286-293. [PMID: 26320541 DOI: 10.1016/j.actbio.2015.08.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/15/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022]
Abstract
Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young's modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. STATEMENT OF SIGNIFICANCE The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials.
Collapse
|
27
|
Roach BL, Hung CT, Cook JL, Ateshian GA, Tan AR. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints. Methods 2015; 84:103-8. [PMID: 25794950 PMCID: PMC4667358 DOI: 10.1016/j.ymeth.2015.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/12/2015] [Indexed: 01/23/2023] Open
Abstract
Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm(2)), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding.
Collapse
Affiliation(s)
- Brendan L Roach
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
| | - Clark T Hung
- Columbia University, Department of Biomedical Engineering, New York, NY, USA
| | - James L Cook
- University of Missouri, Comparative Orthopaedic Laboratory, Columbia, MO, USA
| | - Gerard A Ateshian
- Columbia University, Department of Mechanical Engineering, New York, NY, USA
| | - Andrea R Tan
- Columbia University, Department of Biomedical Engineering, New York, NY, USA.
| |
Collapse
|
28
|
Farrell MJ, Shin JI, Smith LJ, Mauck RL. Functional consequences of glucose and oxygen deprivation on engineered mesenchymal stem cell-based cartilage constructs. Osteoarthritis Cartilage 2015; 23:134-42. [PMID: 25241241 PMCID: PMC4275365 DOI: 10.1016/j.joca.2014.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Tissue engineering approaches for cartilage repair have focused on the use of mesenchymal stem cells (MSCs). For clinical success, MSCs must survive and produce extracellular matrix in the physiological context of the synovial joint, where low nutrient conditions engendered by avascularity, nutrient utilization, and waste production prevail. This study sought to delineate the role of microenvironmental stressors on MSC viability and functional capacity in three dimensional (3D) culture. DESIGN We evaluated the impact of glucose and oxygen deprivation on the functional maturation of 3D MSC-laden agarose constructs. Since MSC isolation procedures result in a heterogeneous cell population, we also utilized micro-pellet culture to investigate whether clonal subpopulations respond to these microenvironmental stressors in a distinct fashion. RESULTS MSC health and the functional maturation of 3D constructs were compromised by both glucose and oxygen deprivation. Importantly, glucose deprivation severely limited viability, and so compromised the functional maturation of 3D constructs to the greatest extent. The observation that not all cells died suggested there exists heterogeneity in the response of MSC populations to metabolic stressors. Population heterogeneity was confirmed through a series of studies utilizing clonally derived subpopulations, with a spectrum of matrix production and cell survival observed under conditions of metabolic stress. CONCLUSIONS Our findings show that glucose deprivation has a significant impact on functional maturation, and that some MSC subpopulations are more resilient to metabolic challenge than others. These findings suggest that pre-selection of subpopulations that are resilient to metabolic challenge may improve in vivo outcomes.
Collapse
Affiliation(s)
- M J Farrell
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA
| | - J I Shin
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - L J Smith
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R L Mauck
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Department of Veterans Affairs, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Abstract
Cartilage repair in terms of replacement, or
regeneration of damaged or diseased articular cartilage with functional tissue,
is the ‘holy grail’ of joint surgery. A wide spectrum of strategies
for cartilage repair currently exists and several of these techniques
have been reported to be associated with successful clinical outcomes
for appropriately selected indications. However, based on respective
advantages, disadvantages, and limitations, no single strategy, or
even combination of strategies, provides surgeons with viable options
for attaining successful long-term outcomes in the majority of patients.
As such, development of novel techniques and optimisation of current techniques
need to be, and are, the focus of a great deal of research from
the basic science level to clinical trials. Translational research
that bridges scientific discoveries to clinical application involves
the use of animal models in order to assess safety and efficacy
for regulatory approval for human use. This review article provides
an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94.
Collapse
Affiliation(s)
- J L Cook
- University of Missouri, ComparativeOrthopaedic Laboratory and Missouri Orthopaedic Institute, Columbia, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Park J, Gerber MH, Babensee JE. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J Biomed Mater Res A 2014; 103:170-84. [PMID: 24616366 DOI: 10.1002/jbm.a.35150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022]
Abstract
Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.
Collapse
Affiliation(s)
- Jaehyung Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia, 30332
| | | | | |
Collapse
|
31
|
Alegre-Aguarón E, Sampat SR, Xiong JC, Colligan RM, Bulinski JC, Cook JL, Ateshian GA, Brown LM, Hung CT. Growth factor priming differentially modulates components of the extracellular matrix proteome in chondrocytes and synovium-derived stem cells. PLoS One 2014; 9:e88053. [PMID: 24516581 PMCID: PMC3917883 DOI: 10.1371/journal.pone.0088053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/03/2014] [Indexed: 12/17/2022] Open
Abstract
To make progress in cartilage repair it is essential to optimize protocols for two-dimensional cell expansion. Chondrocytes and SDSCs are promising cell sources for cartilage repair. We previously observed that priming with a specific growth factor cocktail (1 ng/mL transforming growth factor-β1, 5 ng/mL basic fibroblast growth factor, and 10 ng/mL platelet-derived growth factor-BB) in two-dimensional culture, led to significant improvement in mechanical and biochemical properties of synovium-derived stem cell (SDSC)-seeded constructs. The current study assessed the effect of growth factor priming on the proteome of canine chondrocytes and SDSCs. In particular, growth factor priming modulated the proteins associated with the extracellular matrix in two-dimensional cultures of chondrocytes and SDSCs, inducing a partial dedifferentiation of chondrocytes (most proteins associated with cartilage were down-regulated in primed chondrocytes) and a partial differentiation of SDSCs (some collagen-related proteins were up-regulated in primed SDSCs). However, when chondrocytes and SDSCs were grown in pellet culture, growth factor-primed cells maintained their chondrogenic potential with respect to glycosaminoglycan and collagen production. In conclusion, the strength of the label-free proteomics technique is that it allows for the determination of changes in components of the extracellular matrix proteome in chondrocytes and SDSCs in response to growth factor priming, which could help in future tissue engineering strategies.
Collapse
Affiliation(s)
- Elena Alegre-Aguarón
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Sonal R. Sampat
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Jennifer C. Xiong
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Ryan M. Colligan
- Quantitative Proteomics Center, Columbia University, New York, New York, United States of America
| | - J. Chloë Bulinski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri, United States of America
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- Department of Mechanical Engineering, Columbia University, New York, New York, United States of America
| | - Lewis M. Brown
- Quantitative Proteomics Center, Columbia University, New York, New York, United States of America
- * E-mail: (LMB); (CTH)
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
- * E-mail: (LMB); (CTH)
| |
Collapse
|
32
|
Meretoja VV, Dahlin RL, Wright S, Kasper FK, Mikos AG. Articular chondrocyte redifferentiation in 3D co-cultures with mesenchymal stem cells. Tissue Eng Part C Methods 2014; 20:514-23. [PMID: 24387702 DOI: 10.1089/ten.tec.2013.0532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this work, we evaluated the ability of 3D co-cultures with mesenchymal stem cells (MSCs) to redifferentiate monolayer expanded articular chondrocytes (ACs) and produce cartilaginous extracellular matrix at varying stages of the dedifferentiation process and further examined the dependency of this effect on the culture medium composition. Primary bovine ACs were expanded in monolayers for up to nine population doublings to obtain seven cell stocks with gradually increasing levels of dedifferentiation. Culture expanded ACs were then seeded as monocultures and co-cultures with rabbit bone marrow-derived MSCs (30:70 ratio of ACs-to-MSCs) on porous scaffolds. Parallel cultures were established for each cell population in serum-containing growth medium and serum-free induction medium supplemented with dexamethasone and TGF-β3. After 3 weeks, all groups were analyzed for DNA content, glycosaminoglycan (GAG) and hydroxyproline (HYP) production, and chondrogenic gene expression. Significant enhancements in cellularity, GAG content and GAG/HYP ratio, and chondrogenic phenotype were observed in the induction medium compared to growth medium at all levels of AC expansion. Furthermore, primary co-cultures showed similarly enhanced chondrogenesis compared to monocultures in both culture media, whereas passaged ACs benefitted from co-culturing only in the induction medium. We conclude that co-cultures of ACs and MSCs can produce superior in vitro engineered cartilage in comparison to pure AC cultures, due to both heterotypic cellular interactions and decreased need for monolayer expansion of biopsied chondrocytes. While the initial level of AC dedifferentiation affected the quality of the engineered constructs, co-culture benefits were realized at all stages of AC expansion when suitable chondroinductive culture medium was used.
Collapse
|
33
|
Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in Multiphasic Osteochondral Tissue Engineering. Anat Rec (Hoboken) 2013; 297:26-35. [DOI: 10.1002/ar.22795] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- June E. Jeon
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive Atlanta, GA 30332, USA
| |
Collapse
|
34
|
Grande DA, Schwartz JA, Brandel E, Chahine NO, Sgaglione N. Articular Cartilage Repair: Where We Have Been, Where We Are Now, and Where We Are Headed. Cartilage 2013; 4:281-5. [PMID: 26069673 PMCID: PMC4297160 DOI: 10.1177/1947603513494402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This review traces the genealogy of the field of articular cartilage repair from its earliest attempts to its present day vast proliferation of research advances. Prior to the 1980s there was only sporadic efforts to regenerate articular cartilage as it was considered to be incapable of regeneration based on historical dogma. The first flurry of reports documented the use of various cell types ultimately leading to the first successful demonstration of autologous chondrocyte transplantation which was later translated to clinical use and has resulted in the revised axiom that cartilage regeneration is possible. The current field of cartilage repair is multifaceted and some of the 1980s' vintage concepts have been revisited with state of the art technology now available. The future of the field is now poised to undertake the repair of whole cartilage surfaces beyond focal defects and an appreciation for integrated whole joint health to restore cartilage homeostasis.
Collapse
Affiliation(s)
- Daniel A. Grande
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - John A. Schwartz
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - Eric Brandel
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - Nadeen O. Chahine
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| | - Nicholas Sgaglione
- Department of Orthopaedic Surgery, Feinstein Institute for Medical Research, North Shore–LIJ Health Systems, Manhasset, NY, USA
| |
Collapse
|
35
|
Yin Z, Yang X, Jiang Y, Xing L, Xu Y, Lu Y, Ding P, Ma J, Xu Y, Gui J. Platelet-rich plasma combined with agarose as a bioactive scaffold to enhance cartilage repair: an in vitro study. J Biomater Appl 2013; 28:1039-50. [PMID: 23828781 DOI: 10.1177/0885328213492573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether the platelet-rich plasma-agarose gel scaffold could be a bioactive scaffold capable of growth factors release for cartilage repair. METHODS Porcine chondrocytes were seeded in agarose gel and platelet-rich plasma-agarose gel. During the 28-days culture, microstructure of hydrogels and morphologies of chondrocytes seeded in the hydrogels were observed using scanning electron microscope; viability of chondrocytes in gels was examined by live/dead assay; qualitative and quantitative analysis of glycosaminoglycan, collagen and DNA were assessed by histological, immunohistochemical staining and biochemical assay; gene expression was measured by real-time polymerase chain reaction. In vitro cartilage ring models were used to evaluate the integration of the scaffolds, and the integration strength was analyzed by mechanical push-out tests. RESULTS Scanning electron microscope revealed both scaffolds had highly uniform porous structure. Live/dead scaffolds showed 100% cells alive in both groups. After 28-days culture, glycosaminoglycan, collagen, DNA content and chondrocyte-related genes expression in platelet-rich plasma-agarose gel were significantly higher than pure agarose gel. Integration strength in platelet-rich plasma-agarose gel was also higher compared to pure agarose gel. CONCLUSION Platelet-rich plasma showed a positive effect on chondrocytes proliferation, differentiation and integration between native cartilage and engineered tissue when combined with agarose gel. Our findings suggest that platelet-rich plasma-agarose gel scaffold is a promising bioactive scaffold for future cartilage tissue engineering and future clinical works.
Collapse
Affiliation(s)
- Zhaowei Yin
- 1Orthopaedic Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cigan AD, Nims RJ, Albro MB, Esau JD, Dreyer MP, Vunjak-Novakovic G, Hung CT, Ateshian GA. Insulin, ascorbate, and glucose have a much greater influence than transferrin and selenous acid on the in vitro growth of engineered cartilage in chondrogenic media. Tissue Eng Part A 2013; 19:1941-8. [PMID: 23544890 DOI: 10.1089/ten.tea.2012.0596] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The primary goal of this study was to characterize the response of chondrocyte-seeded agarose constructs to varying concentrations of several key nutrients in a chondrogenic medium, within the overall context of optimizing the key nutrients and the placement of nutrient channels for successful growth of cartilage tissue constructs large enough to be clinically relevant in the treatment of osteoarthritis (OA). To this end, chondrocyte-agarose constructs (ø4×2.34 mm, 30×10(6) cells/mL) were subjected to varying supplementation levels of insulin (0× to 30× relative to standard supplementation), transferrin (0× to 30×), selenous acid (0× to 10×), ascorbate (0× to 30×), and glucose (0× to 3×). The quality of resulting engineered tissue constructs was evaluated by their compressive modulus (E(-Y)), tensile modulus (E(+Y)), hydraulic permeability (k), and content of sulfated glycosaminoglycans (sGAG) and collagen (COL); DNA content was also quantified. Three control groups from two separate castings of constructs (1× concentrations of all medium constituents) were used. After 42 days of culture, values in each of these controls were, respectively, E(-Y)=518±78, 401±113, 236±67 kPa; E(+Y)=1420±430, 1140±490, 1240±280 kPa; k=2.3±0.8×10(-3), 5.4±7.0×10(-3), 3.3±1.3×10(-3) mm(4)/N·s; sGAG=7.8±0.3, 6.3±0.4, 4.1±0.5%/ww; COL=1.3±0.2, 1.1±0.3, 1.4±0.4%/ww; and DNA=11.5±2.2, 12.1±0.6, 5.2±2.8 μg/disk. The presence of insulin and ascorbate was essential, but their concentrations may drop as low as 0.3× without detrimental effects on any of the measured properties; excessive supplementation of ascorbate (up to 30×) was detrimental to E(-Y), and 30× insulin was detrimental to both E(+Y) and E(-Y). The presence of glucose was similarly essential, and matrix elaboration was significantly dependent on its concentration (p<10(-6)), with loss of functional properties, composition, and cellularity observed at ≤0.3×; excessive glucose supplementation (up to 3×) showed no detrimental effects. In contrast, transferrin and selenous acid had no influence on matrix elaboration. These findings suggest that adequate distributions of insulin, ascorbate, and glucose, but not necessarily of transferrin and selenous acid, must be ensured within large engineered cartilage constructs to produce a viable substitute for joint tissue lost due to OA.
Collapse
Affiliation(s)
- Alexander D Cigan
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Whitney GA, Mera H, Weidenbecher M, Awadallah A, Mansour JM, Dennis JE. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. Biores Open Access 2013; 1:157-65. [PMID: 23514898 PMCID: PMC3559237 DOI: 10.1089/biores.2012.0231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Scaffold-free cartilage engineering techniques may provide a simple alternative to traditional methods employing scaffolds. We previously reported auricular chondrocyte-derived constructs for use in an engineered trachea model; however, the construct generation methods were not reported in detail. In this study, methods for cartilage construct generation from auricular and articular cell sources are described in detail, and the resulting constructs are compared for use in a joint resurfacing model. Attachment of cartilage sheets to porous tantalum is also investigated as a potential vehicle for future attachment to subchondral bone. Large scaffold-free cartilage constructs were produced from culture-expanded chondrocytes from skeletally mature rabbits, and redifferentiated in a chemically-defined culture medium. Auricular constructs contained more glycosaminoglycan (39.6±12.7 vs. 9.7±1.9 μg/mg wet weight, mean and standard deviation) and collagen (2.7±0.45 vs. 1.1±0.2 μg/mg wet weight, mean and standard deviation) than articular constructs. Aggregate modulus was also higher for auricular constructs vs. articular constructs (0.23±0.07 vs. 0.12±0.03 MPa, mean and standard deviation). Attachment of constructs to porous tantalum was achieved by neocartilage ingrowth into tantalum pores. These results demonstrate that large scaffold-free neocartilage constructs can be produced from mature culture-expanded chondrocytes in a chemically-defined medium, and that these constructs can be attached to porous tantalum.
Collapse
Affiliation(s)
- G Adam Whitney
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio. ; Department of Orthopaedics, Case Western Reserve University , Cleveland, Ohio. ; Hope Heart Matrix Biology Program, Benaroya Research Institute , Seattle, Washington
| | | | | | | | | | | |
Collapse
|
38
|
Waters HA, Geffre CP, Gonzales DA, Grana WA, Szivek JA. Co-Culture of Adipose Derived Stem Cells and Chondrocytes with Surface Modifying Proteins Induces Enhanced Cartilage Tissue Formation. J INVEST SURG 2013; 26:118-26. [DOI: 10.3109/08941939.2012.728681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Hoenig E, Leicht U, Winkler T, Mielke G, Beck K, Peters F, Schilling AF, Morlock MM. Mechanical properties of native and tissue-engineered cartilage depend on carrier permeability: a bioreactor study. Tissue Eng Part A 2013; 19:1534-42. [PMID: 23387321 DOI: 10.1089/ten.tea.2012.0538] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The implantation of osteochondral constructs-tissue-engineered (TE) cartilage on a bone substitute carrier-is a promising method to treat defects in articular cartilage. Currently, however, the TE cartilage's mechanical properties are clearly inferior to those of native cartilage. Their improvement has been the subject of various studies, mainly focusing on growth factors and physical loading during cultivation. With the approach of osteochondral constructs another aspect arises: the permeability of the carrier materials. The purpose of this study was to investigate whether and how the permeability of the subchondral bone influences the properties of native cartilage and whether the bone substitute carrier's permeability influences the TE cartilage of osteochondral constructs accordingly. Consequently, the influence of the subchondral bone's permeability on native cartilage was determined: Native porcine cartilage-bone cylinders were cultivated for 2 weeks in a bioreactor under mechanical loading with and without restricted permeability of the bone. For the TE cartilage these two permeability conditions were investigated using permeable and impermeable tricalciumphosphate carriers under equivalent cultivation conditions. All specimens were evaluated mechanically, biochemically, and histologically. The restriction of the bone's permeability significantly decreased the Young's modulus of native cartilage in vitro. No biochemical differences were found. This finding was confirmed for TE cartilage: While the biochemical parameters were not affected, a permeable carrier improved the cell morphology and mechanical properties in comparison to an impermeable one. In conclusion, the carrier permeability was identified as a determining factor for the mechanical properties of TE cartilage of osteochondral constructs.
Collapse
Affiliation(s)
- Elisa Hoenig
- Biomechanics Section, Hamburg University of Technology, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Garrity JT, Stoker AM, Sims HJ, Cook JL. Improved osteochondral allograft preservation using serum-free media at body temperature. Am J Sports Med 2012; 40:2542-8. [PMID: 22972852 DOI: 10.1177/0363546512458575] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral allografts (OCAs) are currently preserved at 4°C and used within 28 days of donor harvest. The window of opportunity for implantation is limited to 14 days due to a 2-week disease testing protocol. HYPOTHESIS Osteochondral allograft tissues stored at 37°C will have significantly higher chondrocyte viability, as well as superior biochemical and biomechanical properties, than those stored at 4°C. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral allografts from 15 adult canine cadavers were aseptically harvested within 4 hours of death. Medial and lateral femoral condyles were stored in Media 1, similar to the current standard, or Media 2, an anti-inflammatory and chondrogenic media containing dexamethasone and transforming growth factor-β3, at 4°C or 37°C for up to 56 days. Chondrocyte viability, glycosaminoglycan (GAG) and collagen (hydroxyproline [HP]) content, biomechanical properties, and collagen II and aggrecan content were assessed at days 28 and 56. Five femoral condyles were stored overnight and assessed the next day to serve as controls. RESULTS Storage in Media 1 at 37°C maintained chondrocyte viability at significantly higher levels than in any other media-temperature combination and at levels not significantly different from controls. Osteochondral allografts stored in either media at 4°C showed a significant decrease in chondrocyte viability throughout storage. Glycosaminoglycan and HP content were maintained through 56 days of storage in OCAs in Media 1 at 37°C. There were no significant differences in elastic or dynamic moduli among groups at day 56. Qualitative immunohistochemistry demonstrated the presence of collagen II and aggrecan throughout all layers of cartilage. CONCLUSION Osteochondral allograft viability, matrix content and composition, and biomechanical properties were maintained at "fresh" levels through 56 days of storage in Media 1 at 37°C. Osteochondral allografts stored at 4°C were unable to maintain viability or matrix integrity through 28 days of storage. These findings suggest that storage of OCAs in a defined media at 37°C is superior to current protocols (4°C) for tissue preservation prior to transplantation. CLINICAL RELEVANCE Storage of OCAs in serum-free chemically defined media at 37°C can increase the "window of opportunity" for implantation of optimal tissue from 14 days to 42 days after disease testing clearance.
Collapse
Affiliation(s)
- Joseph T Garrity
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, USA.
| | | | | | | |
Collapse
|
41
|
O'hEireamhoin S, Buckley CT, Jones E, McGonagle D, Mulhall KJ, Kelly DJ. Recapitulating aspects of the oxygen and substrate environment of the damaged joint milieu for stem cell-based cartilage tissue engineering. Tissue Eng Part C Methods 2012; 19:117-27. [PMID: 22834895 DOI: 10.1089/ten.tec.2012.0142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human infrapatellar fat pad contains a source of mesenchymal stem cells (FPSCs) that potentially offer a novel population for the treatment of damaged or diseased articular cartilage. Existing cartilage repair strategies such as microfracture harness the presence of a low-oxygen microenvironment, fibrin clot formation at sites of microfracture, and elevations in growth factors in the damaged joint milieu. Bearing this in mind, the objective of this study was to determine the chondrogenic potential of diseased human FPSCs in a model system that recapitulates some of these features. In the first phase of the study, the role of transforming growth factor beta-3 (TGF-β3) and fibroblast growth factor-2 (FGF-2), in addition to an altered oxygen-tension environment, on the colony-forming unit-fibroblast (CFU-F) capacity and growth kinetics of human FPSCs during monolayer expansion was evaluated. The subsequent chondrogenic capacity of these cells was quantified in both normoxic (20%) and low- (5%) oxygen conditions. Expansion in FGF-2 was shown to reduce CFU-F numbers, but simultaneously increase both the colony size and the cell yield compared to standard expansion conditions. Supplementation with both FGF-2 and TGF-β3 significantly reduced cell-doubling time. Expansion in FGF-2, followed by differentiation at 5% oxygen tension, was observed to synergistically enhance subsequent sulfated glycosaminoglycan (sGAG) accumulation after chondrogenic induction. FPSCs expanded in FGF-2 were then encapsulated in either agarose or fibrin hydrogels in an attempt to engineer cartilaginous grafts. sGAG synthesis was higher in fibrin constructs, and was further enhanced by differentiation at 5% oxygen tension, accumulating 2.7% (ww) sGAG after 42 days in culture. These results indicate that FPSCs, a readily accessible cell population, form cartilage in an in vitro environment that recapitulates several key biological features of cartilage repair during microfracture and also point toward the potential utility of such cells when combined with fibrin hydrogel scaffolds.
Collapse
Affiliation(s)
- Sven O'hEireamhoin
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
42
|
Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, Mauck RL. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater 2012; 8:3027-34. [PMID: 22546516 DOI: 10.1016/j.actbio.2012.04.033] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 01/04/2023]
Abstract
Engineered cartilage based on adult mesenchymal stem cells (MSCs) is an alluring goal for the repair of articular defects. However, efforts to date have failed to generate constructs with sufficient mechanical properties to function in the demanding environment of the joint. Our findings with a novel photocrosslinked hyaluronic acid (HA) hydrogel suggest that stiff gels (high HA concentration, 5% w/v) foster chondrogenic differentiation and matrix production, but limit overall functional maturation due to the inability of the formed matrix to diffuse away from the point of production and form a contiguous network. In the current study, we hypothesized that increasing the MSC seeding density would decrease the required diffusional distance, and so expedite the development of functional properties. To test this hypothesis bovine MSCs were encapsulated at seeding densities of either 20,000,000 or 60,000,000 cells ml(-1) in 1%, 3%, and 5% (w/v) HA hydrogels. Counter to our hypothesis the higher concentration HA gels (3% and 5%) did not develop more rapidly with increased MSC seeding density. However, the biomechanical properties of the low concentration (1%) HA constructs increased markedly (nearly 3-fold with a 3-fold increase in seeding density). To ensure that optimal nutrient access was delivered, we next cultured these constructs under dynamic culture conditions (with orbital shaking) for 9 weeks. Under these conditions 1% HA seeded at 60,000,000 MSCs ml(-1) reached a compressive modulus in excess of 1 MPa (compared with 0.3-0.4 MPa for free swelling constructs). This is the highest level we have reported to date in this HA hydrogel system, and represents a significant advance towards functional stem cell-based tissue engineered cartilage.
Collapse
|
43
|
O’Connell GD, Lima EG, Bian L, Chahine NO, Albro MB, Cook JL, Ateshian GA, Hung CT. Toward engineering a biological joint replacement. J Knee Surg 2012; 25:187-96. [PMID: 23057137 PMCID: PMC3700804 DOI: 10.1055/s-0032-1319783] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis is a major cause of disability and pain for patients in the United States. Treatments for this degenerative disease represent a significant challenge considering the poor regenerative capacity of adult articular cartilage. Tissue-engineering techniques have advanced over the last two decades such that cartilage-like tissue can be cultivated in the laboratory for implantation. Even so, major challenges remain for creating fully functional tissue. This review article overviews some of these challenges, including overcoming limitations in nutrient supply to cartilage, improving in vitro collagen production, improving integration of engineered cartilage with native tissue, and exploring the potential for engineering full articular surface replacements.
Collapse
Affiliation(s)
| | - Eric G. Lima
- Department of Mechanical Engineering, Cooper Union, New York
| | - Liming Bian
- Department of Mechanical & Automation Engineering, Biomedical Engineering Programme, The Chinese University of Hong Kong, Hong Kong
| | - Nadeen O. Chahine
- Department of Bioengineering, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Michael B. Albro
- Department of Mechanical Engineering, Columbia University, New York
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
| | | | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York
| |
Collapse
|
44
|
Khanarian NT, Haney NM, Burga RA, Lu HH. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 2012; 33:5247-58. [PMID: 22531222 DOI: 10.1016/j.biomaterials.2012.03.076] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/24/2012] [Indexed: 11/26/2022]
Abstract
Regeneration of the osteochondral interface is critical for integrative and functional cartilage repair. This study focuses on the design and optimization of a hydrogel-ceramic composite scaffold of agarose and hydroxyapatite (HA) for calcified cartilage formation. The first study objective was to compare the effects of HA on non-hypertrophic and hypertrophic chondrocytes cultured in the composite scaffold. Specifically, cell growth, biosynthesis, hypertrophy, and scaffold mechanical properties were evaluated. Next, the ceramic phase of the scaffold was optimized in terms of particle size (200 nm vs. 25 μm) and dose (0-6 w/v%). It was observed that while deep zone chondrocyte (DZC) biosynthesis and hypertrophy remained unaffected, hypertrophic chondrocytes measured higher matrix deposition and mineralization potential with the addition of HA. Most importantly, higher matrix content translated into significant increases in both compressive and shear mechanical properties. While cell hypertrophy was independent of ceramic size, matrix deposition was higher only with the addition of micron-sized ceramic particles. In addition, the highest matrix content, mechanical properties and mineralization potential were found in scaffolds with 3% micro-HA, which approximates both the mineral aggregate size and content of the native interface. These results demonstrate that the biomimetic hydrogel-ceramic composite is optimal for calcified cartilage formation and is a promising design strategy for osteochondral interface regeneration.
Collapse
Affiliation(s)
- Nora T Khanarian
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, 351 Engineering Terrace, MC 8904, NY 10027, USA
| | | | | | | |
Collapse
|
45
|
Erickson IE, van Veen SC, Sengupta S, Kestle SR, Mauck RL. Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent. Clin Orthop Relat Res 2011; 469:2744-53. [PMID: 21424832 PMCID: PMC3171558 DOI: 10.1007/s11999-011-1869-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cartilage degeneration is common in the aged, and aged chondrocytes are inferior to juvenile chondrocytes in producing cartilage-specific extracellular matrix. Mesenchymal stem cells (MSCs) are an alternative cell type that can differentiate toward the chondrocyte phenotype. Aging may influence MSC chondrogenesis but remains less well studied, particularly in the bovine system. QUESTIONS/PURPOSES The objectives of this study were (1) to confirm age-related changes in bovine articular cartilage, establish how age affects chondrogenesis in cultured pellets for (2) chondrocytes and (3) MSCs, and (4) determine age-related changes in the biochemical and biomechanical development of clinically relevant MSC-seeded hydrogels. METHODS Native bovine articular cartilage from fetal (n = 3 donors), juvenile (n = 3 donors), and adult (n = 3 donors) animals was analyzed for mechanical and biochemical properties (n = 3-5 per donor). Chondrocyte and MSC pellets (n = 3 donors per age) were cultured for 6 weeks before analysis of biochemical content (n = 3 per donor). Bone marrow-derived MSCs of each age were also cultured within hyaluronic acid hydrogels for 3 weeks and analyzed for matrix deposition and mechanical properties (n = 4 per age). RESULTS Articular cartilage mechanical properties and collagen content increased with age. We observed robust matrix accumulation in three-dimensional pellet culture by fetal chondrocytes with diminished collagen-forming capacity in adult chondrocytes. Chondrogenic induction of MSCs was greater in fetal and juvenile cell pellets. Likewise, fetal and juvenile MSCs in hydrogels imparted greater matrix and mechanical properties. CONCLUSIONS Donor age and biochemical microenvironment were major determinants of both bovine chondrocyte and MSC functional capacity. CLINICAL RELEVANCE In vitro model systems should be evaluated in the context of age-related changes and should be benchmarked against human MSC data.
Collapse
Affiliation(s)
- Isaac E. Erickson
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104 USA ,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Steven C. van Veen
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104 USA
| | - Swarnali Sengupta
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104 USA
| | - Sydney R. Kestle
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104 USA ,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104 USA ,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
46
|
Jayabalan P, Tan AR, Rahaman MN, Bal BS, Hung CT, Cook JL. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study. Clin Orthop Relat Res 2011; 469:2754-63. [PMID: 21365338 PMCID: PMC3171527 DOI: 10.1007/s11999-011-1818-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts. QUESTIONS/PURPOSES (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement increase the collagen and glycosaminoglycan production and improve the mechanical properties in a tissue-engineered cartilage layer? METHODS In Study 1, bioactive glass samples (n = 4) were attached to a chondrocyte-seeded agarose layer to form an osteochondral construct, cultured for 6 weeks, and compared to controls. In Study 2, bioactive glass samples (n = 5) were cocultured with cell-seeded agarose for 6 weeks. The cell-seeded agarose layer was exposed to BG 13-93 either continuously or for the first or last 2 weeks in culture or had no exposure. RESULTS Osteochondral constructs with a BG 13-93 base had improved glycosaminoglycan deposition but less collagen II content. Agarose scaffolds that had a temporal exposure to BG 13-93 within the culture medium had improved mechanical and biochemical properties compared to continuous or no exposure. CONCLUSIONS When used as a subchondral substrate, BG 13-93 did not improve biochemical properties compared to controls. However, as a culture medium supplement, BG 13-93 improved the biochemical and mechanical properties of a tissue-engineered cartilage layer. CLINICAL RELEVANCE BG 13-93 may not be suitable in osteochondral constructs but could have potential as a medium supplement for neocartilage formation.
Collapse
Affiliation(s)
- Prakash Jayabalan
- Comparative Orthopaedic Laboratory, University of Missouri, 900 East Campus Drive, Columbia, MO 65211 USA
| | - Andrea R. Tan
- Cellular Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Mohammed N. Rahaman
- Department of Material Science and Engineering, Missouri University of Science & Technology, Rolla, MO USA
| | - B. Sonny Bal
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO USA
| | - Clark T. Hung
- Cellular Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, 900 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
47
|
Kanazawa S, Fujihara Y, Sakamoto T, Asawa Y, Komura M, Nagata S, Takato T, Hoshi K. Tissue responses against tissue-engineered cartilage consisting of chondrocytes encapsulated within non-absorbable hydrogel. J Tissue Eng Regen Med 2011; 7:1-9. [PMID: 21916014 DOI: 10.1002/term.458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 06/11/2011] [Indexed: 11/06/2022]
Abstract
To disclose the influence of foreign body responses raised against a non-absorbable hydrogel consisting of tissue-engineered cartilage, we embedded human/canine chondrocytes within agarose and transplanted them into subcutaneous pockets in nude mice and donor beagles. One month after transplantation, cartilage formation was observed in the experiments using human chondrocytes in nude mice. No significant invasion of blood cells was noted in the areas where the cartilage was newly formed. Around the tissue-engineered cartilage, agarose fragments, a dense fibrous connective tissue and many macrophages were observed. On the other hand, no cartilage tissue was detected in the autologous transplantation of canine chondrocytes. Few surviving chondrocytes were observed in the agarose and no accumulation of blood cells was observed in the inner parts of the transplants. Localizations of IgG and complements were noted in areas of agarose, and also in the devitalized cells embedded within the agarose. Even if we had inhibited the proximity of the blood cells to the transplanted cells, the survival of the cells could not be secured. We suggest that these cytotoxic mechanisms seem to be associated not only with macrophages but also with soluble factors, including antibodies and complements.
Collapse
Affiliation(s)
- Sanshiro Kanazawa
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Oswald ES, Ahmed HS, Kramer SP, Bulinski JC, Ateshian GA, Hung CT. Effects of hypertonic (NaCl) two-dimensional and three-dimensional culture conditions on the properties of cartilage tissue engineered from an expanded mature bovine chondrocyte source. Tissue Eng Part C Methods 2011; 17:1041-9. [PMID: 21797756 DOI: 10.1089/ten.tec.2011.0212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinically relevant mature cartilage cells (chondrocytes) present challenges for use in cartilage tissue engineering applications, given their low capacity for cell division and tissue production. Since the in situ environment of chondrocytes is hypertonic relative to standard culture medium conditions, in this study we tested the hypothesis that using culture medium of a hypertonic, more physiologic osmolarity during both two-dimensional (2D) expansion of mature bovine chondrocytes (MBCs) and their subsequent encapsulation culture in three-dimensional (3D) agarose hydrogel constructs produces improved engineered tissue construct mechanical and biochemical properties. Results demonstrate that 2D expansion of MBCs in hypertonic (NaCl) medium before encapsulation yielded improved construct mechanical properties. However, 3D encapsulation culture of cells in hypertonic (NaCl) medium yielded poorer construct mechanical properties. Osmolarity-related differences in construct biochemical content and organization may have contributed to differences in mechanical properties, as construct glycosaminoglycan content correlated moderately with construct mechanical properties, and construct collagen distribution varied between 3D osmotic culture groups. Results of this study suggest that application of hypertonic (NaCl) medium during 2D mature chondrocyte expansion, but not 3D encapsulated chondrocyte culture, may serve as a convenient and inexpensive method for improving mechanical properties of expanded cell-seeded constructs.
Collapse
Affiliation(s)
- Elizabeth S Oswald
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
49
|
Ng KW, O'Conor CJ, Kugler LE, Cook JL, Ateshian GA, Hung CT. Transient supplementation of anabolic growth factors rapidly stimulates matrix synthesis in engineered cartilage. Ann Biomed Eng 2011; 39:2491-500. [PMID: 21833681 DOI: 10.1007/s10439-011-0356-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 07/08/2011] [Indexed: 12/29/2022]
Abstract
The purpose of the presented work is to examine the response of engineered cartilage to a transient, 2-week application of anabolic growth factors compared to continuous exposure in in vitro culture. Immature bovine chondrocytes were suspended in agarose hydrogel and cultured for 28 days (Study 1) or 42 days (Study 2) in chondrogenic media with TGF-β1, TGF-β3, or IGF-I either added for only the first 14 days in culture or added to the media for the entire study period. In both studies, there were no statistical differences in tissue mechanical or biochemical properties between the growth factors on day 14. In Study 1, growth factor removal led to a significant and drastic increase in Young's modulus and glycosaminoglycans content compared to continuously exposed controls on day 28. In Study 2, both TGF-β1 and β3 led to significantly higher mechanical properties and collagen content vs. IGF-I on day 42. These results indicate that the rapid rise in tissue properties (previously observed with TGF-β3 only) is not dependent on the type but rather the temporal application of the anabolic growth factor. These findings shed light on possible techniques to rapidly develop engineered cartilage tissue for the future treatment of osteoarthritis.
Collapse
Affiliation(s)
- Kenneth W Ng
- Research Division, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
50
|
Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:281-99. [PMID: 21510824 DOI: 10.1089/ten.teb.2011.0077] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair.
Collapse
Affiliation(s)
- Kara L Spiller
- Biomaterials and Drug Delivery Laboratory, Drexel University, Philadelphia, Pensylvania, USA.
| | | | | |
Collapse
|