1
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
2
|
Azari Matin A, Fattah K, Saeidpour Masouleh S, Tavakoli R, Houshmandkia SA, Moliani A, Moghimimonfared R, Pakzad S, Dalir Abdolahinia E. Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1469-1493. [PMID: 35321624 DOI: 10.1080/09205063.2022.2056941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Continuous remodeling is not able to repair large bone defects. Bone tissue engineering is aimed to repair these defects by creating bone grafts. To do this, several technologies and biomaterials have been employed to fabricate an in vivo-like supportive matrix. Electrospinning is a versatile technique to fabricate porous matrices with interconnected pores and high surface area, replicating in vivo microenvironment. Electrospun scaffolds have been used in a large number of studies to provide a matrix for bone regeneration and osteogenic differentiation of stem cells such as induced pluripotent stem cells (iPSCs). Electrospinning uses both natural and synthetic polymers, either alone or in combination, to fabricate scaffolds. Among them, synthetic polymers have had a great promise in bone regeneration and repair. They allow the fabrication of biocompatible and biodegradable scaffolds with high mechanical properties, suitable for bone engineering. Furthermore, several attempts have done to increase the osteogenic properties of these scaffolds. This paper reviewed the potential of synthetic electrospun scaffolds in osteogenic differentiation of iPSCs. In addition, the approaches to improve the osteogenic differentiation of these scaffolds are addressed.
Collapse
Affiliation(s)
- Arash Azari Matin
- Department of Biology, California State University, Northridge, CA, USA
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Tavakoli
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moghimimonfared
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sahar Pakzad
- Department of Oral and Maxillofacial Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Shibahara K, Hayashi K, Nakashima Y, Ishikawa K. Effects of Channels and Micropores in Honeycomb Scaffolds on the Reconstruction of Segmental Bone Defects. Front Bioeng Biotechnol 2022; 10:825831. [PMID: 35372306 PMCID: PMC8971796 DOI: 10.3389/fbioe.2022.825831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 01/17/2023] Open
Abstract
The reconstruction of critical-sized segmental bone defects is a key challenge in orthopedics because of its intractability despite technological advancements. To overcome this challenge, scaffolds that promote rapid bone ingrowth and subsequent bone replacement are necessary. In this study, we fabricated three types of carbonate apatite honeycomb (HC) scaffolds with uniaxial channels bridging the stumps of a host bone. These HC scaffolds possessed different channel and micropore volumes. The HC scaffolds were implanted into the defects of rabbit ulnar shafts to evaluate the effects of channels and micropores on bone reconstruction. Four weeks postoperatively, the HC scaffolds with a larger channel volume promoted bone ingrowth compared to that with a larger micropore volume. In contrast, 12 weeks postoperatively, the HC scaffolds with a larger volume of the micropores rather than the channels promoted the scaffold resorption by osteoclasts and bone formation. Thus, the channels affected bone ingrowth in the early stage, and micropores affected scaffold resorption and bone formation in the middle stage. Furthermore, 12 weeks postoperatively, the HC scaffolds with large volumes of both channels and micropores formed a significantly larger amount of new bone than that attained using HC scaffolds with either large volume of channels or micropores, thereby bridging the host bone stumps. The findings of this study provide guidance for designing the pore structure of scaffolds.
Collapse
Affiliation(s)
- Keigo Shibahara
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Lalzawmliana V, Mukherjee P, Roy S, Roy M, Nandi SK. Ceramic Biomaterials in Advanced Biomedical Applications. FUNCTIONAL BIOMATERIALS 2022:371-408. [DOI: 10.1007/978-981-16-7152-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Qiu H. The role of natural polymers in bone tissue engineering. J Control Release 2021; 338:571-582. [PMID: 34481026 DOI: 10.1016/j.jconrel.2021.08.055] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
Bone is a dynamic self-healing organ and a continuous remodeling ensures the restoration of the bone structure and function over time. However, bone remodeling is not able to repair large traumatic injuries. Therefore, surgical interventions and bone substitutes are required. The aim of bone tissue engineering is to repair and regenerate tissues and engineered a bone graft as a bone substitute. To met this goal, several natural or synthetic polymers have been used to develop a biocompatible and biodegradable polymeric construct. Among the polymers, natural polymers have higher biocompatibility, excellent biodegradability, and no toxicity. So far, collagen, chitosan, gelatin, silk fibroin, alginate, cellulose, and starch, alone or in combination, have been widely used in bone tissue engineering. These polymers have been used as scaffolds, hydrogels, and micro-nanospheres. The functionalization of the polymer with growth factors and bioactive glasses increases the potential use of polymers for bone regeneration. As bone is a dynamic highly vascularized tissue, the vascularization of the polymeric scaffolds is vital for successful bone regeneration. Several in vivo and in vitro strategies have been used to vascularize the polymeric scaffolds. In this review, the application of the most commonly used natural polymers is discussed.
Collapse
Affiliation(s)
- Linqi Guo
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Zhihui Liang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Liang Yang
- Department of Orthopaedics, The People's Hospital of Daqing, Daqing 163000, China
| | - Wenyan Du
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Tao Yu
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Huayu Tang
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Changde Li
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Hongbin Qiu
- Department of Public Health, Jiamusi University, Jiamusi, 154000, China.
| |
Collapse
|
6
|
Bone Morphogenetic Proteins, Carriers, and Animal Models in the Development of Novel Bone Regenerative Therapies. MATERIALS 2021; 14:ma14133513. [PMID: 34202501 PMCID: PMC8269575 DOI: 10.3390/ma14133513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone formation. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers, inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs, sheep, and non-human primates. In this review, we summarized bone regeneration strategies and animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be considered when planning animal experiments, including anatomical characteristics of the species used, appropriate BMP dosing, duration of the observation period, and sample size.
Collapse
|
7
|
Safarova Y, Umbayev B, Hortelano G, Askarova S. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Regen Med 2020; 15:1579-1594. [PMID: 32297546 DOI: 10.2217/rme-2019-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In pathological bone conditions (e.g., osteoporotic fractures or critical size bone defects), increasing the pool of osteoblast progenitor cells is a promising therapeutic approach to facilitate bone healing. Since mesenchymal stem cells (MSCs) give rise to the osteogenic lineage, a number of clinical trials investigated the potential of MSCs transplantation for bone regeneration. However, the engraftment of transplanted cells is often hindered by insufficient oxygen and nutrients supply and the tendency of MSCs to home to different sites of the body. In this review, we discuss various approaches of MSCs transplantation for bone regeneration including scaffold and hydrogel constructs, genetic modifications and surface engineering of the cell membrane aimed to improve homing and increase cell viability, proliferation and differentiation.
Collapse
Affiliation(s)
- Yuliya Safarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering & Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- School of Sciences & Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
8
|
Lim ZXH, Rai B, Tan TC, Ramruttun AK, Hui JH, Nurcombe V, Teoh SH, Cool SM. Autologous bone marrow clot as an alternative to autograft for bone defect healing. Bone Joint Res 2019; 8:107-117. [PMID: 30997036 PMCID: PMC6444063 DOI: 10.1302/2046-3758.83.bjr-2018-0096.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objectives Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done. Methods We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses. Results Comparable results were obtained with autologous BMA clot and ABG, except for the quantification of new bone by micro-CT. Significantly more bone was found in the ABG-treated ulnar defects than in those treated with autologous BMA clot. This is possibly due to the remnants of necrotic autograft fragments that persisted within the healing defects at week 12 post-surgery. Conclusion As similar treatment outcomes were achieved by the two strategies, the preferred treatment would be one that is associated with a lower risk of complications. Hence, these results demonstrate that coagulated BMA can be considered as an alternative autogenous therapy for long bone healing. Cite this article: Z. X. H. Lim, B. Rai, T. C. Tan, A. K. Ramruttun, J. H. Hui, V. Nurcombe, S. H. Teoh, S. M. Cool. Autologous bone marrow clot as an alternative to autograft for bone defect healing. Bone Joint Res 2019;8:107–117. DOI: 10.1302/2046-3758.83.BJR-2018-0096.R1.
Collapse
Affiliation(s)
- Z X H Lim
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - B Rai
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Science and Maths Cluster, Singapore University of Technology & Design (SUTD), Singapore
| | - T C Tan
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - A K Ramruttun
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - J H Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - V Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College, Singapore
| | - S H Teoh
- Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - S M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
9
|
Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S. Histopathological Evaluation of Polycaprolactone Nanocomposite Compared with Tricalcium Phosphate in Bone Healing. J Vet Res 2018; 62:385-394. [PMID: 30584621 PMCID: PMC6295997 DOI: 10.2478/jvetres-2018-0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION In recent years, the use of bone scaffolds as bone tissue substitutes, especially the use of such as hydroxyapatite and tricalcium phosphate, has been very popular. Today, the use of modern engineering techniques and advances in nanotechnology have expanded the use of nanomaterials as bone scaffolds for bone tissue applications. MATERIAL AND METHODS This study was performed on 60 adult male New Zealand rabbits divided into four experimental groups: the control group without any treatment, the second group receiving hydroxyapatite, the third group treated with β-tricalcium phosphate, and the fourth group receiving nanocomposite polycaprolactone (PCL) scaffold. In a surgical procedure, a defect 6 mm in diameter was made in a hind limb femur. Four indexes were used to assess histopathology, which were union index, spongiosa index, cortex index, and bone marrow. RESULTS The results showed that nanocomposite PCL and control groups always had the respective highest and lowest values among all the groups at all time intervals. The histopathological assessment demonstrated that the quantity of newly formed lamellar bone in the nanocomposite PCL group was higher than in other groups. CONCLUSION All these data suggest that PCL had positive effects on the bone healing process, which could have great potential in tissue engineering and clinical applications.
Collapse
Affiliation(s)
| | | | - Ahmad Asghari
- Department of Clinical Science, 1477893855Tehran, Iran
| | - Abolfazl Akbarzadeh
- Universal Scientific Education and Research Network (USERN), 5165665811Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665811Tabriz, Iran
| | - Saeed Hesaraki
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, 1477893855Tehran, Iran
| |
Collapse
|
10
|
Zhang XM, Huang Y, Zhang K, Qu LH, Cong X, Su JZ, Wu LL, Yu GY, Zhang Y. Expression patterns of tight junction proteins in porcine major salivary glands: a comparison study with human and murine glands. J Anat 2018; 233:167-176. [PMID: 29851087 DOI: 10.1111/joa.12833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Tight junction (TJ) proteins play a dynamic role in paracellular fluid transport in salivary gland epithelia. Most TJ studies are carried out in mice and rats. However, the morphology of rodent salivary glands differs from that of human glands. This study aimed to compare the histological features and the expression pattern of TJ proteins in porcine salivary glands with those of human and mouse. The results showed that porcine parotid glands were pure serous glands. Submandibular glands (SMGs) were serous acinar cell-predominated mixed glands, whereas sublingual glands were mucous acinar cell-predominated. Human SMGs were mixed glands containing fewer mucous cells than porcine SMGs, whereas the acinar cells of murine SMGs are seromucous. The histological features of the duct system in the porcine and human SMGs were similar and included intercalated, striated and excretory ducts, but the murine SMG contained a specific structure, the granular convoluted tubule. TJ proteins, including claudin-1 to claudin-12, occludin and zonula occludin-1 (ZO-1), were detected in the porcine major salivary glands and human SMGs by RT-PCR; however, claudin-6, claudin-9 and claudin-11 were not detected in the murine SMG. As shown by immunofluorescence, claudin-1, claudin-3, claudin-4, occludin and ZO-1 were distributed in both acinar and ductal cells in the porcine and human SMGs, whereas claudin-1 and claudin-3 were mainly present in acinar cells, and claudin-4 was mainly distributed in ductal cells in the murine SMG. In addition, 3D images showed that the TJ proteins arranged in a honeycomb-like structure on the luminal surface of the ducts, whereas their arrangements in acini were irregular in porcine SMGs. In summary, the expression pattern of TJ proteins in salivary glands is similar between human and miniature pig, which may be a candidate animal for studies on salivary gland TJ function.
Collapse
Affiliation(s)
- Xue-Ming Zhang
- Center for Salivary Gland Diseases, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Huang
- Center for Salivary Gland Diseases, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kuo Zhang
- Department of Laboratory Animal Science, Peking University Health Science Center, Beijing, China
| | - Ling-Han Qu
- Center for Salivary Gland Diseases, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University School of Basic Medical Sciences, Beijing, China
| | - Jia-Zeng Su
- Center for Salivary Gland Diseases, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University School of Basic Medical Sciences, Beijing, China
| | - Guang-Yan Yu
- Center for Salivary Gland Diseases, Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Segredo-Morales E, García-García P, Évora C, Delgado A. BMP delivery systems for bone regeneration: Healthy vs osteoporotic population. Review. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Mechanical properties of additively manufactured octagonal honeycombs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1307-17. [DOI: 10.1016/j.msec.2016.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/31/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022]
|
13
|
Hedayati R, Sadighi M, Mohammadi Aghdam M, Zadpoor AA. Mechanical Properties of Additively Manufactured Thick Honeycombs. MATERIALS 2016; 9:ma9080613. [PMID: 28773735 PMCID: PMC5509007 DOI: 10.3390/ma9080613] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
Abstract
Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.
Collapse
Affiliation(s)
- Reza Hedayati
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 158754413, Iran.
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| | - Mojtaba Sadighi
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 158754413, Iran.
| | - Mohammad Mohammadi Aghdam
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran 158754413, Iran.
| | - Amir Abbas Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| |
Collapse
|
14
|
Iandolo D, Ravichandran A, Liu X, Wen F, Chan JKY, Berggren M, Teoh S, Simon DT. Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering. Adv Healthc Mater 2016; 5:1505-12. [PMID: 27111453 DOI: 10.1002/adhm.201500874] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/17/2016] [Indexed: 01/31/2023]
Abstract
Bones have been shown to exhibit piezoelectric properties, generating electrical potential upon mechanical deformation and responding to electrical stimulation with the generation of mechanical stress. Thus, the effects of electrical stimulation on bone tissue engineering have been extensively studied. However, in bone regeneration applications, only few studies have focused on the use of electroactive 3D biodegradable scaffolds at the interphase with stem cells. Here a method is described to combine the bone regeneration capabilities of 3D-printed macroporous medical grade polycaprolactone (PCL) scaffolds with the electrical and electrochemical capabilities of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). PCL scaffolds have been highly effective in vivo as bone regeneration grafts, and PEDOT is a leading material in the field of organic bioelectronics, due to its stability, conformability, and biocompatibility. A protocol is reported for scaffolds functionalization with PEDOT, using vapor-phase polymerization, resulting in a conformal conducting layer. Scaffolds' porosity and mechanical stability, important for in vivo bone regeneration applications, are retained. Human fetal mesenchymal stem cells proliferation is assessed on the functionalized scaffolds, showing the cytocompatibility of the polymeric coating. Altogether, these results show the feasibility of the proposed approach to obtain electroactive scaffolds for electrical stimulation of stem cells for regenerative medicine.
Collapse
Affiliation(s)
- Donata Iandolo
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping SE‐601 74 Sweden
| | | | - Xianjie Liu
- Department of Physics Chemistry and Biology Linköping University Linköping SE‐581 83 Sweden
| | - Feng Wen
- School of Chemical and Biomedical Engineering Nanyang Technological University 637459 Singapore
| | - Jerry K. Y. Chan
- Department of Obstetrics and Gynaecology Yong Loo Lin School of Medicine National University of Singapore 119077 Singapore
- Department of Reproductive Medicine KK Women's and Children's Hospital 229899 Singapore
- Cancer and Stem Cell Biology Program Duke‐NUS Graduate Medical School 169857 Singapore
| | - Magnus Berggren
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping SE‐601 74 Sweden
| | - Swee‐Hin Teoh
- School of Chemical and Biomedical Engineering Nanyang Technological University 637459 Singapore
| | - Daniel T. Simon
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping SE‐601 74 Sweden
| |
Collapse
|
15
|
El Backly RM, Chiapale D, Muraglia A, Tromba G, Ottonello C, Santolini F, Cancedda R, Mastrogiacomo M. A modified rabbit ulna defect model for evaluating periosteal substitutes in bone engineering: a pilot study. Front Bioeng Biotechnol 2015; 2:80. [PMID: 25610828 PMCID: PMC4285175 DOI: 10.3389/fbioe.2014.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/11/2014] [Indexed: 11/13/2022] Open
Abstract
The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX®) membrane was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX®) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.
Collapse
Affiliation(s)
- Rania M El Backly
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy ; Faculty of Dentistry, Alexandria University , Alexandria , Egypt
| | - Danilo Chiapale
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | | | | | | | - Federico Santolini
- IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Ranieri Cancedda
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Maddalena Mastrogiacomo
- DIMES, University of Genova , Genova , Italy ; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| |
Collapse
|
16
|
Li N, Jiang C, Zhang X, Gu X, Zhang J, Yuan Y, Liu C, Shi J, Wang J, Li Y. Preparation of an rhBMP-2 loaded mesoporous bioactive glass/calcium phosphate cement porous composite scaffold for rapid bone tissue regeneration. J Mater Chem B 2015; 3:8558-8566. [PMID: 32262696 DOI: 10.1039/c5tb01423a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An rhBMP-2/MBG/CPC scaffold is beneficial for rapid bone tissue regeneration in the early stage.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chuan Jiang
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Xingdi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xinfeng Gu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
17
|
Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, Zhang C. 3D-printed magnetic Fe 3O 4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2014; 2:7583-7595. [PMID: 32261896 DOI: 10.1039/c4tb01063a] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, three-dimensional (3D) magnetic Fe3O4 nanoparticles containing mesoporous bioactive glass/polycaprolactone (Fe3O4/MBG/PCL) composite scaffolds have been fabricated by the 3D-printing technique. The physiochemical properties, in vitro bioactivity, anticancer drug delivery, mechanical strength, magnetic heating ability and cell response of Fe3O4/MBG/PCL scaffolds were systematically investigated. The results showed that Fe3O4/MBG/PCL scaffolds had uniform macropores of 400 μm, high porosity of 60% and excellent compressive strength of 13-16 MPa. The incorporation of magnetic Fe3O4 nanoparticles into MBG/PCL scaffolds did not influence their apatite mineralization ability but endowed excellent magnetic heating ability and significantly stimulated proliferation, alkaline phosphatase (ALP) activity, osteogenesis-related gene expression (RUNX2, OCN, BSP, BMP-2 and Col-1) and extra-cellular matrix (ECM) mineralization of human bone marrow-derived mesenchymal stem cells (h-BMSCs). Moreover, using doxorubicin (DOX) as a model anticancer drug, Fe3O4/MBG/PCL scaffolds exhibited a sustained drug release for use in local drug delivery therapy. Therefore, the 3D-printed Fe3O4/MBG/PCL scaffolds showed the potential multifunctionality of enhanced osteogenic activity, local anticancer drug delivery and magnetic hyperthermia.
Collapse
Affiliation(s)
- Jianhua Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Zaky SH, Lee KW, Gao J, Jensen A, Close J, Wang Y, Almarza AJ, Sfeir C. Poly(Glycerol Sebacate) Elastomer: A Novel Material for Mechanically Loaded Bone Regeneration. Tissue Eng Part A 2014; 20:45-53. [DOI: 10.1089/ten.tea.2013.0172] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Samer Helal Zaky
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kee-Won Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jin Gao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adrianna Jensen
- Department of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Close
- Department of Dental Public Health and Information Management, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alejandro J. Almarza
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Charles Sfeir
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Qian J, Suo A, Jin X, Xu W, Xu M. Preparation andin vitrocharacterization of biomorphic silk fibroin scaffolds for bone tissue engineering. J Biomed Mater Res A 2013; 102:2961-71. [DOI: 10.1002/jbm.a.34964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Junmin Qian
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Aili Suo
- First Affiliated Hospital of Medical College of Xi'an Jiaotong University; Xi'an 710061 China
| | - Xinxia Jin
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Minghui Xu
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
20
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part II: challenges on the evolution from single to multiple bioactive factor delivery. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:327-52. [PMID: 23249320 DOI: 10.1089/ten.teb.2012.0727] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors.
Collapse
Affiliation(s)
- Vítor E Santo
- 3Bs Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | |
Collapse
|
22
|
Liu Y, Chan JKY, Teoh SH. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med 2012; 9:85-105. [DOI: 10.1002/term.1617] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/13/2012] [Accepted: 08/25/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Yuchun Liu
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore 119228
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore 119228
- Department of Reproductive Medicine, KK Women's and Children's Hospital; Singapore 229899
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School; Singapore
| | - Swee-Hin Teoh
- Division of Bioengineering, School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637459
| |
Collapse
|
23
|
Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 2012; 31:688-705. [PMID: 23142624 DOI: 10.1016/j.biotechadv.2012.10.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/21/2012] [Accepted: 10/26/2012] [Indexed: 12/15/2022]
Abstract
Clinical translation of scaffold-based bone tissue engineering (BTE) therapy still faces many challenges despite intense investigations and advancement over the years. To address these clinical barriers, it is important to analyse the current technical challenges in constructing a clinically relevant scaffold and subsequent clinical issues relating to bone repair. This review highlights the key challenges hampering widespread clinical translation of scaffold-based vascularised BTE, with a focus on the repair of large non-union defects. The main limitations of current scaffolds include the lack of sufficient vascularisation, insufficient mechanical strength as well as issues relating to the osseointegration of the bioresorbable scaffold and bone infection management. Critical insights on the current trends of scaffold technologies and future directions for advancing next-generation BTE scaffolds into the clinical realm are discussed. Considerations concerning regulatory approval and the route towards commercialisation of the scaffolds for widespread clinical utility will also be introduced.
Collapse
Affiliation(s)
- Yuchun Liu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore 637459, Singapore
| | | | | |
Collapse
|
24
|
Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev 2012; 64:1277-91. [PMID: 22512928 DOI: 10.1016/j.addr.2012.03.014] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 12/11/2022]
Abstract
Over the past several decades, recombinant human bone morphogenetic proteins (rhBMPs) have been the most extensively studied and widely used osteoinductive agents for clinical bone repair. Since rhBMP-2 and rhBMP-7 were cleared by the U.S. Food and Drug Administration for certain clinical uses, millions of patients worldwide have been treated with rhBMPs for various musculoskeletal disorders. Current clinical applications include treatment of long bone fracture non-unions, spinal surgeries, and oral maxillofacial surgeries. Considering the growing number of recent publications related to clincal research of rhBMPs, there exists enormous promise for these proteins to be used in bone regenerative medicine. The authors take this opportunity to review the rhBMP literature paying specific attention to the current applications of rhBMPs in bone repair and spine surgery. The prospective future of rhBMPs delivered in combination with tissue engineered scaffolds is also reviewed.
Collapse
|