1
|
Yun HH, Kim SG, Park SI, Jo W, Kang KK, Lee EJ, Kim DK, Jung HS, Son JY, Park JM, Park HS, Lee S, Shin HI, Hong IH, Jeong KS. Early Osteogenic-Induced Adipose-Derived Stem Cells and Canine Bone Regeneration Potential Analyzed Using Biodegradable Scaffolds. Bioengineering (Basel) 2023; 10:1311. [PMID: 38002434 PMCID: PMC10669612 DOI: 10.3390/bioengineering10111311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The complex process of bone regeneration is influenced by factors such as inflammatory responses, tissue interactions, and progenitor cells. Currently, multiple traumas can interfere with fracture healing, causing the prolonging or failure of healing. In these cases, bone grafting is the most effective treatment. However, there are several drawbacks, such as morbidity at the donor site and availability of suitable materials. Advantages have been provided in this field by a variety of stem cell types. Adipose-derived stem cells (ASCs) show promise. In the radiological examination of this study, it was confirmed that the C/S group showed faster regeneration than the other groups, and Micro-CT also showed that the degree of bone formation in the defect area was highest in the C/S group. Compared to the control group, the change in cortical bone area in the defect area decreased in the sham group (0.874), while it slightly increased in the C/S group (1.027). An increase in relative vascularity indicates a decrease in overall bone density, but a weak depression filled with fibrous tissue was observed outside the compact bone. It was confirmed that newly formed cortical bone showed a slight difference in bone density compared to surrounding normal bone tissue due to increased distribution of cortical bone. In this study, we investigated the effect of bone regeneration by ADMSCs measured by radiation and pathological effects. These data can ultimately be applied to humans with important clinical applications in various bone diseases, regenerative, and early stages of formative differentiation.
Collapse
Affiliation(s)
- Hyun-Ho Yun
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-H.Y.); (K.-K.K.); (E.-J.L.); (J.-Y.S.); (J.-M.P.)
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (S.-G.K.); (W.J.); (D.-K.K.); (H.-S.J.)
| | - Seong-Gon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (S.-G.K.); (W.J.); (D.-K.K.); (H.-S.J.)
| | - Se-Il Park
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Woori Jo
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (S.-G.K.); (W.J.); (D.-K.K.); (H.-S.J.)
| | - Kyung-Ku Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-H.Y.); (K.-K.K.); (E.-J.L.); (J.-Y.S.); (J.-M.P.)
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (S.-G.K.); (W.J.); (D.-K.K.); (H.-S.J.)
| | - Eun-Joo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-H.Y.); (K.-K.K.); (E.-J.L.); (J.-Y.S.); (J.-M.P.)
| | - Dong-Kyu Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (S.-G.K.); (W.J.); (D.-K.K.); (H.-S.J.)
| | - Hoe-Su Jung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea; (S.-G.K.); (W.J.); (D.-K.K.); (H.-S.J.)
| | - Ji-Yoon Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-H.Y.); (K.-K.K.); (E.-J.L.); (J.-Y.S.); (J.-M.P.)
| | - Jae-Min Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-H.Y.); (K.-K.K.); (E.-J.L.); (J.-Y.S.); (J.-M.P.)
| | - Hyun-Sook Park
- Cell Engineering for Origin Research Center, Seoul 03150, Republic of Korea; (H.-S.P.); (S.L.)
| | - Sunray Lee
- Cell Engineering for Origin Research Center, Seoul 03150, Republic of Korea; (H.-S.P.); (S.L.)
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea;
| | - Il-Hwa Hong
- Department of Veterinary Pathology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-H.Y.); (K.-K.K.); (E.-J.L.); (J.-Y.S.); (J.-M.P.)
- Institute for Next Generation Unified Technology, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
2
|
Menger MM, Laschke MW, Nussler AK, Menger MD, Histing T. The vascularization paradox of non-union formation. Angiogenesis 2022; 25:279-290. [PMID: 35165821 PMCID: PMC9249698 DOI: 10.1007/s10456-022-09832-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/21/2021] [Indexed: 01/01/2023]
Abstract
Despite major research efforts to elucidate mechanisms of non-union formation, failed fracture healing remains a common complication in orthopedic surgery. Adequate vascularization has been recognized as a crucial factor for successful bone regeneration, as newly formed microvessels guarantee the supply of the callus tissue with vital oxygen, nutrients, and growth factors. Accordingly, a vast number of preclinical studies have focused on the development of vascularization strategies to stimulate fracture repair. However, recent evidence suggests that stimulation of blood vessel formation is an oversimplified approach to support bone regeneration. This review discusses the role of vascularization during bone regeneration and delineates a phenomenon, for which we coin the term "the vascularization paradox of non-union-formation". This view is based on the results of a variety of experimental studies that suggest that the callus tissue of non-unions is indeed densely vascularized and that pro-angiogenic mediators, such as vascular endothelial growth factor, are sufficiently expressed at the facture site. By gaining further insights into the molecular and cellular basis of non-union vascularization, it may be possible to develop more optimized treatment approaches or even prevent the non-union formation in the future.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| |
Collapse
|
3
|
Xu HZ, Su JS. Restoration of critical defects in the rabbit mandible using osteoblasts and vascular endothelial cells co-cultured with vascular stent-loaded nano-composite scaffolds. J Mech Behav Biomed Mater 2021; 124:104831. [PMID: 34555626 DOI: 10.1016/j.jmbbm.2021.104831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
The success of large bone defect repair with tissue engineering technology depends mainly on angiogenesis and osteogenesis. In this study, we prepared poly-caprolactone/nano-hydroxyapatite/beta-calcium phosphate (PCL/nHA/β-TCP) composite scaffolds loaded with poly-(lactic-co-glycolic acid)/nano-hydroxyapatite/collagen/heparin sodium (PLGA/nHA/Col/HS) nanofiber small vascular stent by electrospinning and hot press forming-particle leaching methods. Supramolecular electrostatic self-assembly technology was used to modify the surfaces of small vascular stents to aid in hydrophilicity and anticoagulation. The surfaces of composite scaffolds were modified with an Arg-Gly-Asp (RGD) short peptide by physical adsorption to supply cell adhesion sites. The scaffolds were then combined with rabbit bone marrow-derived osteoblasts (OBs) and rabbit bone marrow-derived vascular endothelial cells (RVECs) to construct large, biologically active vascularized tissue-engineered bone in vitro; this bone was then used to repair critical bone defects in rabbit mandibles. Mechanical and biocompatibility testing results showed that PCL/nHA/β-TCP composite scaffolds loaded with small vascular stents had good surface structure, mechanical properties, biocompatibility, and bone-regeneration induction potential. Twelve weeks after implantation, histological analysis and X-ray scans showed that the use of osteoblasts and vascular endothelial cells co-cultured with PCL/nHA/β-TCP scaffolds was sufficient to repair critical defects in rabbit mandibles.
Collapse
Affiliation(s)
- Hong Zhen Xu
- Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jian Sheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Glaeser JD, Behrens P, Stefanovic T, Salehi K, Papalamprou A, Tawackoli W, Metzger MF, Eberlein S, Nelson T, Arabi Y, Kim K, Baloh RH, Ben-David S, Cohn-Schwartz D, Ryu R, Bae HW, Gazit Z, Sheyn D. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration. Stem Cells Transl Med 2021; 10:797-809. [PMID: 33512772 PMCID: PMC8046069 DOI: 10.1002/sctm.20-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 01/17/2023] Open
Abstract
Replacement of lost cranial bone (partly mesodermal and partly neural crest‐derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow‐derived mesenchymal stromal cells (mesoderm‐derived BM‐MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell‐mesenchymal progenitor cells (iNCC‐MPCs) improves implant‐to‐bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC‐MPCs. BM‐MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non‐obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (μCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC‐MPC‐Luc2 vs BM‐MSC‐Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, μCT analysis showed enhanced structural parameters in the iNCC‐MPC‐Luc2 group and increased bone volume in the BM‐MSC‐Luc2 group compared to controls. Histology demonstrated improved integration of iNCC‐MPC‐Luc2 allografts compared to BM‐MSC‐Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft‐host interphase in cell‐seeded groups. The iNCC‐MPC‐Luc2 group also demonstrated improved biomechanical properties compared to BM‐MSC‐Luc2 implants and cell‐free controls. Our results show an improved integration of iNCC‐MPC‐Luc2‐coated allografts compared to BM‐MSC‐Luc2 and controls, suggesting the use of iNCC‐MPCs as potential cell source for cranial bone repair.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Behrens
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samuel Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Trevor Nelson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yasaman Arabi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Doron Cohn-Schwartz
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Internal Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Robert Ryu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hyun W Bae
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
5
|
Najdanović JG, Cvetković VJ, Stojanović ST, Vukelić-Nikolić MĐ, Živković JM, Najman SJ. Vascularization and osteogenesis in ectopically implanted bone tissue-engineered constructs with endothelial and osteogenic differentiated adipose-derived stem cells. World J Stem Cells 2021; 13:91-114. [PMID: 33584982 PMCID: PMC7859989 DOI: 10.4252/wjsc.v13.i1.91] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A major problem in the healing of bone defects is insufficient or absent blood supply within the defect. To overcome this challenging problem, a plethora of approaches within bone tissue engineering have been developed recently. Bearing in mind that the interplay of various diffusible factors released by endothelial cells (ECs) and osteoblasts (OBs) have a pivotal role in bone growth and regeneration and that adjacent ECs and OBs also communicate directly through gap junctions, we set the focus on the simultaneous application of these cell types together with platelet-rich plasma (PRP) as a growth factor reservoir within ectopic bone tissue engineering constructs.
AIM To vascularize and examine osteogenesis in bone tissue engineering constructs enriched with PRP and adipose-derived stem cells (ASCs) induced into ECs and OBs.
METHODS ASCs isolated from adipose tissue, induced in vitro into ECs, OBs or just expanded were used for implant construction as followed: BPEO, endothelial and osteogenic differentiated ASCs with PRP and bone mineral matrix; BPUI, uninduced ASCs with PRP and bone mineral matrix; BC (control), only bone mineral matrix. At 1, 2, 4 and 8 wk after subcutaneous implantation in mice, implants were extracted and endothelial-related and bone-related gene expression were analyzed, while histological analyses were performed after 2 and 8 wk.
RESULTS The percentage of vascularization was significantly higher in BC compared to BPUI and BPEO constructs 2 and 8 wk after implantation. BC had the lowest endothelial-related gene expression, weaker osteocalcin immunoexpression and Spp1 expression compared to BPUI and BPEO. Endothelial-related gene expression and osteocalcin immunoexpression were higher in BPUI compared to BC and BPEO. BPEO had a higher percentage of vascularization compared to BPUI and the highest CD31 immunoexpression among examined constructs. Except Vwf, endothelial-related gene expression in BPEO had a later onset and was upregulated and well-balanced during in vivo incubation that induced late onset of Spp1 expression and pronounced osteocalcin immunoexpression at 2 and 8 wk. Tissue regression was noticed in BPEO constructs after 8 wk.
CONCLUSION Ectopically implanted BPEO constructs had a favorable impact on vascularization and osteogenesis, but tissue regression imposed the need for discovering a more optimal EC/OB ratio prior to considerations for clinical applications.
Collapse
Affiliation(s)
- Jelena G Najdanović
- Department of Biology and Human Genetics; Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Vladimir J Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš 18106, Serbia
| | - Sanja T Stojanović
- Department of Biology and Human Genetics; Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Marija Đ Vukelić-Nikolić
- Department of Biology and Human Genetics; Scientific Research Center for Biomedicine; Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Jelena M Živković
- Department of Biology and Human Genetics; Scientific Research Center for Biomedicine; Faculty of Medicine, University of Niš, Niš 18108, Serbia
| | - Stevo J Najman
- Department of Biology and Human Genetics; Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš 18108, Serbia
| |
Collapse
|
6
|
Padash A, Halabian R, Salimi A, Kazemi NM, Shahrousvand M. Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker. Hum Cell 2020; 34:310-324. [PMID: 33090371 DOI: 10.1007/s13577-020-00449-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
Polycaprolactone diol is the cornerstone, equipped with polyacrylonitrile and cellulose nanowhiskers (CNWs), of biocompatible and biodegradable polyurethanes (PUs). The solvent casting/particulate leaching technique was employed to contracting foam scaffolds with bimodal sizes from the combination of polyurethane/polyacrylonitrile/cellulose nanowhisker nanocomposites. Sugar and sodium chloride are components used as porogens to develop the leaching method and fabricate the 3D scaffolds. Incorporation of different percentages of cellulose nanowhisker leads to the various efficient structures with biodegradability and biocompatibility properties. All nanocomposites scaffolds, as revealed by MTT assay using mesenchymal stem cell (MSC) lines, were non-cytotoxic. PU/PAN/CNW foam scaffolds were used for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Based on the results, PU/PAN/CNW nanocomposites could not only support osteogenic differentiation but can also enhance the proliferation of hMSCs in three-dimensional synthetic extracellular matrix.
Collapse
Affiliation(s)
- Arash Padash
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Negar Motakef Kazemi
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Shahrousvand
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Jahromi M, Razavi S, Seyedebrahimi R, Reisi P, Kazemi M. Regeneration of Rat Sciatic Nerve Using PLGA Conduit Containing Rat ADSCs with Controlled Release of BDNF and Gold Nanoparticles. J Mol Neurosci 2020; 71:746-760. [PMID: 33029736 DOI: 10.1007/s12031-020-01694-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Implantation of a nerve guidance conduit (NGC) carrying neuroprotective factors is promising for repairing peripheral nerve injury. Here, we developed a novel strategy for repairing peripheral nerve injury by gold nanoparticles (AuNPs) and brain-derived neurotrophic factor (BDNF)-encapsulated chitosan in laminin-coated nanofiber of Poly(l-lactide-co-glycolide) (PLGA) conduit and transplantation of rat adipose-derived stem cells (r-ADSCs) suspended in alginate. Then, the beneficial effect of AuNPs, BDNF, and r-ADSCs on nerve regeneration was evaluated in rat sciatic nerve transection model. In vivo experiments showed that the combination of AuNPs- and BDNF-encapsulated chitosan nanoparticles in laminin-coated nanofiber of PLGA conduit with r-ADSCs could synergistically facilitate nerve regeneration. Furthermore, the in vivo histology, immunohistochemistry, and behavioral results demonstrated that the AuNPs- and BDNF-encapsulated chitosan nanoparticles in NGC could significantly reinforce the repair performance of r-ADSCs, which may also contribute to the therapeutic outcome of the AuNPs, BDNF, and r-ADSCs strategies. In this study, we found that the combination of AuNPs and BDNF releases in NGC with r-ADSCs may represent a new potential strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744176, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744176, Iran.
| | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744176, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Winkler S, Mutschall H, Biggemann J, Fey T, Greil P, Körner C, Weisbach V, Meyer-Lindenberg A, Arkudas A, Horch RE, Steiner D. Human Umbilical Vein Endothelial Cell Support Bone Formation of Adipose-Derived Stem Cell-Loaded and 3D-Printed Osteogenic Matrices in the Arteriovenous Loop Model. Tissue Eng Part A 2020; 27:413-423. [PMID: 32723066 DOI: 10.1089/ten.tea.2020.0087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: For the regeneration of large volume tissue defects, the interaction between angiogenesis and osteogenesis is a crucial prerequisite. The surgically induced angiogenesis by means of an arteriovenous loop (AVL), is a powerful methodology to enhance vascularization of osteogenic matrices. Moreover, the AVL increases oxygen and nutrition supply, thereby supporting cell survival as well as tissue formation. Adipose-derived stem cells (ADSCs) are interesting cell sources because of their simple isolation, expansion, and their osteogenic potential. This study targets to investigate the coimplantation of human ADSCs after osteogenic differentiation and human umbilical vein endothelial cells (HUVECs), embedded in a vascularized osteogenic matrix of hydroxyapatite (HAp) ceramic for bone tissue engineering. Materials and Methods: An osteogenic matrix consisting of HAp granules and fibrin has been vascularized by means of an AVL. Trials in experimental groups of four settings were performed. Control experiments without any cells (A) and three cell-loaded groups using HUVECs (B), ADSCs (C), as well as the combination of ADSCs and HUVECs (D) were performed. The scaffolds were implanted in a porous titanium chamber, fixed subcutaneously in the hind leg of immunodeficient Rowett Nude rats and explanted after 6 weeks. Results: In all groups, the osteogenic matrix was strongly vascularized. Moreover, remodeling processes and bone formation in the cell-containing groups with more bone in the coimplantation group were proved successful. Conclusion: Vascularization and bone formation of osteogenic matrices consisting of ADSCs and HUVECs in the rat AVL model could be demonstrated successfully for the first time. Hence, the coimplantation of differentiated ADSCs with HUVECs may therefore be considered as a promising approach for bone tissue engineering.
Collapse
Affiliation(s)
- Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, München, Germany
| | - Hilkea Mutschall
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jonas Biggemann
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Peter Greil
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carolin Körner
- Department of Materials Science and Engineering, Institute of Science and Technology of Metals, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, München, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Cavallo M, Maglio M, Parrilli A, Pagani S, Martini L, Castagnini F, Rotini R, Fini M. Vascular Supply and Bone Marrow Concentrate for the Improvement of Allograft in Bone Defects: A Comparative In Vivo Study. J Surg Res 2020; 252:1-8. [PMID: 32203731 DOI: 10.1016/j.jss.2020.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Surgical repair of critical-sized bone defects still remains a big challenge in orthopedic surgery. Biological enhancement, such as growth factors or cells, can stimulate a better outcome in bone regeneration driven by well-established treatments such as allogenic bone graft. However, despite the surgical options available, correct healing can be slowed down or compromised by insufficient vascular supply to the injured site. MATERIALS AND METHODS In this pilot study, critical size bone defects in rabbit radius were treated with allograft bone, in combination with vascular bundle and autologous bone marrow concentrate seeded onto a commercial collagen scaffold. Microtomographical, histological and immunohistochemical assessments were performed to evaluate allograft integration and bone regeneration. RESULTS Results showed that the surgical deviation of vascular bundle in the bone graft, regardless from the addition of bone marrow concentrate, promote the onset of healing process at short experimental times (8 wk) in comparison with the other groups, enhancing graft integration. CONCLUSION The surgical procedure tested stimulates bone healing at early times, preserving native bone architecture, and can be easily combined with biological adjuvant.
Collapse
Affiliation(s)
- Marco Cavallo
- Shoulder and Elbow Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Melania Maglio
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Martini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Castagnini
- Ortopedia-Traumatologia e Chirurgia Protesica e dei reimpianti d'anca e di ginocchio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Roberto Rotini
- Shoulder and Elbow Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
10
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
11
|
Böhrnsen F, Melsheimer P, Natorp M, Rolf H, Schminke B, Kauffmann P, Wolfer S, Schliephake H. Cotransplantation of mesenchymal stromal cells and endothelial cells on calcium carbonate and hydroxylapatite scaffolds in vivo. J Craniomaxillofac Surg 2020; 49:238-245. [PMID: 33483245 DOI: 10.1016/j.jcms.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/06/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022] Open
Abstract
This study investigated the cotransplantation of bone marrow mesenchymal stromal cells (BMSC) and human umbilical cord endothelial cells (HUVEC), and evaluated their contribution to vascular and bone tissue engineering in vivo. To evaluate the success of osteogenic differentiation and timely vascularization of different osteoconductive scaffolds in vivo, we transferred BMSC and HUVEC pre-cultivated calcium carbonate (CaCO3) and hydroxylapatite (HA) matrices into immunocompromised RNU-rats, and analyzed mineralization, expression of osteopontin, and vascular integration via new vessel formation. After in vivo transplantation, pre-cultivated scaffolds demonstrated overall improved mineralization of 44% for CaCO3 (p = 0.01, SD ± 14.3) and 34% for HA (p = 0.001, SD ± 17.8), as well as improved vascularization of 5.6 vessels/0.1 mm2 on CaCO3 (p < 0.0001, SD ± 2.0) and 5.3 vessels/0.1 mm2 on HA (p < 0.0001, SD ± 2.4) compared with non-pre-cultivated controls. However, no significant differences between the implantation of BMSC-only, HUVEC-only, or BMSC + HUVEC cocultures could be observed. There is an increasing demand for improved bone regeneration in tissue engineering. Cotransplantation of mesenchymal stromal cells and endothelial cells often demonstrates synergistic improvements in vitro. However, the benefits or superiority of cotransplantation was not evident in vivo and so will require further investigation.
Collapse
Affiliation(s)
- Florian Böhrnsen
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany.
| | - Petra Melsheimer
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Mareike Natorp
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Hans Rolf
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Boris Schminke
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Philipp Kauffmann
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Susanne Wolfer
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medicine Göttingen, Germany
| |
Collapse
|
12
|
Naudot M, Barre A, Caula A, Sevestre H, Dakpé S, Mueller AA, Devauchelle B, Testelin S, Marolleau JP, Le Ricousse S. Co-transplantation of Wharton's jelly mesenchymal stem cell-derived osteoblasts with differentiated endothelial cells does not stimulate blood vessel and osteoid formation in nude mice models. J Tissue Eng Regen Med 2020; 14:257-271. [PMID: 31713308 DOI: 10.1002/term.2989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022]
Abstract
A major challenge in bone tissue engineering is the lack of post-implantation vascular growth into biomaterials. In the skeletal system, blood vessel growth appears to be coupled to osteogenesis-suggesting the existence of molecular crosstalk between endothelial cells (ECs) and osteoblastic cells. The present study (performed in two murine ectopic models) was designed to determine whether co-transplantation of human Wharton's jelly mesenchymal stem cell-derived osteoblasts (WJMSC-OBs) and human differentiated ECs enhances bone regeneration and stimulates angiogenesis, relative to the seeding of WJMSC-OBs alone. Human WJMSC-OBs and human ECs were loaded into a silicate-substituted calcium phosphate (SiCaP) scaffold and then ectopically implanted at subcutaneous or intramuscular sites in nude mice. At both subcutaneous and intramuscular implantation sites, we observed ectopic bone formation and osteoids composed of host cells when WJMSC-OBs were seeded into the scaffold. However, the addition of ECs was associated with a lower level of osteogenesis, and we did not observe stimulation of blood vessel ingrowth. in vitro studies demonstrated that WJMSC-OBs lost their ability to secrete vascular endothelial growth factor and stromal cell-derived factor 1-including when ECs were present. In these two murine ectopic models, our cell-matrix environment combination did not seem to be optimal for inducing vascularized bone reconstruction.
Collapse
Affiliation(s)
- Marie Naudot
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
| | - Anaïs Barre
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France
| | - Alexandre Caula
- Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Henri Sevestre
- Service d'anatomie et de cytology pathologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Stéphanie Dakpé
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,Institut Faire Faces, Amiens, France
| | - Andreas Albert Mueller
- Department of Cranio-Maxillofacial Surgery, University and University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, Regenerative Medicine and Oral Health Technologies, University of Basel, Allschwil, Switzerland
| | - Bernard Devauchelle
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,Institut Faire Faces, Amiens, France
| | - Sylvie Testelin
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Service de chirurgie maxillo-faciale, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,Institut Faire Faces, Amiens, France
| | - Jean Pierre Marolleau
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France.,EA 4666, HEMATIM, University of Picardie Jules Verne, Amiens, France
| | - Sophie Le Ricousse
- EA 7516, CHIMERE, University of Picardie Jules Verne, Amiens, France.,Institut Faire Faces, Amiens, France
| |
Collapse
|
13
|
Nyberg E, Farris A, O'Sullivan A, Rodriguez R, Grayson W. Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration. Tissue Eng Part A 2019; 25:1459-1469. [DOI: 10.1089/ten.tea.2018.0341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ethan Nyberg
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley Farris
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aine O'Sullivan
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
14
|
Bolte J, Vater C, Culla AC, Ahlfeld T, Nowotny J, Kasten P, Disch AC, Goodman SB, Gelinsky M, Stiehler M, Zwingenberger S. Two-step stem cell therapy improves bone regeneration compared to concentrated bone marrow therapy. J Orthop Res 2019; 37:1318-1328. [PMID: 30628121 DOI: 10.1002/jor.24215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Adult stem cells are a promising tool to positively influence bone regeneration. Concentrated bone marrow therapy entails isolating osteoprogenitor cells during surgery with, however, only low cells yield. Two step stem cell therapy requires an additional harvesting procedure but generates high numbers of progenitor cells that facilitate osteogenic pre-differentiation. To further improve bone regeneration, stem cell therapy can be combined with growth factors from platelet rich plasma (PRP) or its lysate (PL) to potentially fostering vascularization. The aim of this study was to investigate the effects of bone marrow concentrate (BMC), osteogenic pre-differentiation of mesenchymal stromal cells (MSCs), and PL on bone regeneration and vascularization. Bone marrow from four different healthy human donors was used for either generation of BMC or for isolation of MSCs. Seventy-two mice were randomized to six groups (Control, PL, BMC, BMC + PL, pre-differentiated MSCs, pre-differentiated MSCs + PL). The influence of PL, BMC, and pre-differentiated MSCs was investigated systematically in a 2 mm femoral bone defect model. After a 6-week follow-up, the pre-differentiated MSCs + PL group showed the highest bone volume, highest grade of histological defect healing and highest number of bridged defects with measurable biomechanical stiffness. Using expanded and osteogenically pre-differentiated MSCs for treatment of a critical-size bone defect was favorable with regards to bone regeneration compared to treatment with cells from BMC. The addition of PL alone had no significant influence; therefore the role of PL for bone regeneration remains unclear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1318-1328, 2019.
Collapse
Affiliation(s)
- Julia Bolte
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Corina Vater
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Anna Carla Culla
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Jörg Nowotny
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Philip Kasten
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| | - Alexander C Disch
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Maik Stiehler
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
15
|
Casap N, Rushinek H, Jensen OT. Vertical Alveolar Augmentation Using BMP-2/ACS/Allograft with Printed Titanium Shells to Establish an Early Vascular Scaffold. Oral Maxillofac Surg Clin North Am 2019; 31:473-487. [PMID: 31133506 DOI: 10.1016/j.coms.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Traditional reconstruction of major alveolar ridge deficiency has required autogenous cortical cancellous particulate bone grafts, often augmented with particulate allogeneic components. Now there is a new concept to consider, that of orthoalveolar form. This paradigm shift involves components of the tissue engineering triad of inductive growth factors combined with a matrix and stem cells, together with osteotomies or devices designed for space maintenance. Reported here is early experience with computer technology used to redesign deficient alveolar ridges deriving ideal alveolar-shaped bone-forms made from powdered titanium, sintered by laser at high temperature using rapid prototype technology.
Collapse
Affiliation(s)
- Nardy Casap
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel.
| | - Heli Rushinek
- Department of Oral and Maxillofacial Surgery, Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel
| | - Ole T Jensen
- Department of Oral Maxillofacial Surgery, University of Utah, School of Dentistry, 530 Wakara Way, Salt Lake City, Utah 84108, USA
| |
Collapse
|
16
|
Roux BM, Akar B, Zhou W, Stojkova K, Barrera B, Brankov J, Brey EM. Preformed Vascular Networks Survive and Enhance Vascularization in Critical Sized Cranial Defects. Tissue Eng Part A 2018; 24:1603-1615. [PMID: 30019616 DOI: 10.1089/ten.tea.2017.0493] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular networks provide nutrients, oxygen, and progenitor cells that are essential for bone function. It has been proposed that a preformed vascular network may enhance the performance of engineered bone. In this study vascular networks were generated from human umbilical vein endothelial cell and mesenchymal stem cell spheroids encapsulated in fibrin scaffolds, and the stability of preformed vascular networks and their effect on bone regeneration were assessed in an in vivo bone model. Under optimized culture conditions, extensive vessel-like networks formed throughout the scaffolds in vitro. After vascular network formation, the vascularized scaffolds were implanted in a critical sized calvarial defect in nude rats. Immunohistochemical staining for CD31 showed that the preformed vascular networks survived and anastomosed with host tissue within 1 week of implantation. The prevascularized scaffolds enhanced overall vascularization after 1 and 4 weeks. Early bone formation around the perimeter of the defect area was visible in X-ray images of samples after 4 weeks. Prevascularized scaffolds may be a promising strategy for engineering vascularized bone.
Collapse
Affiliation(s)
- Brianna M Roux
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Edward Hines, Jr. V.A. Hospital , Hines, Illinois
| | - Banu Akar
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Edward Hines, Jr. V.A. Hospital , Hines, Illinois
| | - Wei Zhou
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Katerina Stojkova
- 3 Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas
| | - Beatriz Barrera
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Jovan Brankov
- 4 Department of Electrical and Computer Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Eric M Brey
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,3 Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas.,5 Research Service, Audie L. Murphy Memorial V.A. Hospital , San Antonio, Texas
| |
Collapse
|
17
|
Tissue Engineered Bone Differentiated From Human Adipose Derived Stem Cells Inhibit Posterolateral Fusion in an Athymic Rat Model. Spine (Phila Pa 1976) 2018; 43:533-541. [PMID: 28816826 PMCID: PMC5812848 DOI: 10.1097/brs.0000000000002384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Biological augmentation spinal arthrodesis trial in athymic rats. OBJECTIVE To assess the efficacy of tissue-engineered bone to promote L4-L5 intertransverse process fusion in an athymic rat model. SUMMARY OF BACKGROUND DATA Each year in the United States, over 400,000 spinal fusion surgeries are performed requiring bone graft. The current gold standard for posterolateral lumbar fusion is autogenous iliac crest bone graft (ICBG), but the harvesting of ICBG is associated with increased operative time and significant complications. This being the case, an alternative cost-effective bone graft source is needed. METHODS Bovine bone cores were sterilized and decellularized for scaffold production. Human adipose derived mesenchymal stem cells (ADSC) were obtained and verified by tridifferentiation testing and seeded onto dried scaffolds. The seeded cores were cultured for 5 weeks in culture medium designed to mimic endochondral ossification and produce hypertrophic chondrocytes. Single-level intertransverse process fusions were performed at the L4-L5 level of 31 athymic rats. Fifteen rats were implanted with the hypertrophic chondrocyte seeded scaffold and 16 had scaffold alone. Half of the study rats were sacrificed at 3 weeks and the other half at 6 weeks. Spinal fusion was assessed using 2D and 3D micro computed tomography (μCT) analysis and tissue histology. RESULTS At 3 weeks, none of the tissue engineered rats had partial or complete fusion, whereas 62.5% of the decellularized rats fused and another 12.5% had partial fusions (P = 0.013). At 6 weeks, none of the tissue engineered rats fused and 50% had partial fusions, whereas 87.5% of the decellularized rats fused (P = 0.002). CONCLUSION Tissue engineered bone composed of hypertrophic chondrocytes inhibits posterolateral fusion in an athymic rat model and therefore does not represent a promising cost-effective bone graft substitute. LEVEL OF EVIDENCE N/A.
Collapse
|
18
|
Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydr Polym 2017; 171:281-291. [DOI: 10.1016/j.carbpol.2017.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/24/2017] [Accepted: 05/07/2017] [Indexed: 11/22/2022]
|
19
|
Zhou J, Rogers JH, Lee SH, Sun D, Yao H, Mao JJ, Kong KY. Oral Mucosa Harbors a High Frequency of Endothelial Cells: A Novel Postnatal Cell Source for Angiogenic Regeneration. Stem Cells Dev 2016; 26:91-101. [PMID: 27832737 DOI: 10.1089/scd.2016.0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Endothelial progenitor cells/endothelial cells (EPCs/ECs) have great potential to treat pathological conditions such as cardiac infarction, muscle ischemia, and bone fractures, but isolation of EPC/ECs from existing cell sources is challenging due to their low EC frequency. We have isolated endothelial progenitor (EP)-like cells from rat oral mucosa and characterized their yield, immunophenotype, growth, and in vivo angiogenic potential. The frequency of EP-like cells derived from oral mucosa is thousands of folds higher than EPCs derived from donor-match bone marrow samples. EP-like cells from oral mucosa were positive for EC markers CD31, VE-Cadherin, and VEGFR2. Oral mucosa-derived EP-like cells displayed robust uptake of acetylated low-density lipoprotein and formed stable capillary networks in Matrigel. Subcutaneously implanted oral mucosa-derived EP-like cells anastomosed with host blood vessels, implicating their ability to elicit angiogenesis. Similar to endothelial colony-forming cells, EP-like cells from oral mucosa have a significantly higher proliferative rate than human umbilical vein endothelial cells. These findings identify a putative EPC source that is easily accessible in the oral cavity, potentially from discarded tissue specimens, and yet with robust yield and potency for angiogenesis in tissue and organ regeneration.
Collapse
Affiliation(s)
- Jian Zhou
- 1 Center for Craniofacial Regeneration, Columbia University Medical Center , New York, New York.,2 Department of General Dentistry, Capital Medical University School of Stomatology , Beijing, China
| | - Jason H Rogers
- 3 Department of Internal Medicine and the Cancer Research and Treatment Center, University of New Mexico Health Science Center , Albuquerque, New Mexico
| | - Scott H Lee
- 4 Pratt School of Engineering, Duke University , Durham, North Carolina
| | - DongMing Sun
- 5 W. M. Keck Center for Collaborative Neuroscience, Rutgers University , New Brunswick, New Jersey
| | - Hai Yao
- 6 Clemson-MUSC Bioengineering Program , Department of Craniofacial Biology, Charleston, South Carolina
| | - Jeremy J Mao
- 1 Center for Craniofacial Regeneration, Columbia University Medical Center , New York, New York
| | - Kimi Y Kong
- 1 Center for Craniofacial Regeneration, Columbia University Medical Center , New York, New York.,7 Hematology/Oncology Division, Department of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
20
|
García JR, García AJ. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res 2016; 6:77-95. [PMID: 26014967 DOI: 10.1007/s13346-015-0236-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
21
|
Comparison of Endothelial Differentiation Capacities of Human and Rat Adipose-Derived Stem Cells. Plast Reconstr Surg 2016; 138:1231-1241. [DOI: 10.1097/prs.0000000000002791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Shanbhag S, Pandis N, Mustafa K, Nyengaard JR, Stavropoulos A. Cell Cotransplantation Strategies for Vascularized Craniofacial Bone Tissue Engineering: A Systematic Review and Meta-Analysis of Preclinical In Vivo Studies. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:101-117. [PMID: 27733094 DOI: 10.1089/ten.teb.2016.0283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regenerative potential of tissue-engineered bone constructs may be enhanced by in vitro coculture and in vivo cotransplantation of vasculogenic and osteogenic (progenitor) cells. The objective of this study was to systematically review the literature to answer the focused question: In animal models, does cotransplantation of osteogenic and vasculogenic cells enhance bone regeneration in craniofacial defects, compared with solely osteogenic cell-seeded constructs? Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, electronic databases were searched for controlled animal studies reporting cotransplantation of endothelial cells (ECs) with mesenchymal stem cells (MSCs) or osteoblasts in craniofacial critical size defect (CSD) models. Twenty-two studies were included comparing outcomes of MSC/scaffold versus MSC+EC/scaffold (co)transplantation in calvarial (n = 15) or alveolar (n = 7) CSDs of small (rodents, rabbits) and large animal (minipigs, dogs) models. On average, studies presented with an unclear to high risk of bias. MSCs were derived from autologous, allogeneic, xenogeneic, or human (bone marrow, adipose tissue, periosteum) sources; in six studies, ECs were derived from MSCs by endothelial differentiation. In most studies, MSCs and ECs were cocultured in vitro (2-17 days) before implantation. Coculture enhanced MSC osteogenic differentiation and an optimal MSC:EC seeding ratio of 1:1 was identified. Alloplastic copolymer or composite scaffolds were most often used for in vivo implantation. Random effects meta-analyses were performed for histomorphometric and radiographic new bone formation (%NBF) and vessel formation in rodents' calvarial CSDs. A statistically significant benefit in favor of cotransplantation versus MSC-only transplantation for radiographic %NBF was observed in rat calvarial CSDs (weighted mean difference 7.80% [95% confidence interval: 1.39-14.21]); results for histomorphometric %NBF and vessel formation were inconclusive. Overall, heterogeneity in the meta-analyses was high (I2 > 80%). In summary, craniofacial bone regeneration is enhanced by cotransplantation of vasculogenic and osteogenic cells. Although the direction of treatment outcome is in favor of cotransplantation strategies, the magnitude of treatment effect does not seem to be of relevance, unless proven otherwise in clinical studies.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| | - Nikolaos Pandis
- 3 Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern , Bern, Switzerland
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Jens R Nyengaard
- 4 Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University , Aarhus, Denmark
| | - Andreas Stavropoulos
- 2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| |
Collapse
|
23
|
Wallner C, Abraham S, Wagner JM, Harati K, Ismer B, Kessler L, Zöllner H, Lehnhardt M, Behr B. Local Application of Isogenic Adipose-Derived Stem Cells Restores Bone Healing Capacity in a Type 2 Diabetes Model. Stem Cells Transl Med 2016; 5:836-44. [PMID: 27102648 DOI: 10.5966/sctm.2015-0158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Bone regeneration is typically a reliable process without scar formation. The endocrine disease type 2 diabetes prolongs and impairs this healing process. In a previous work, we showed that angiogenesis and osteogenesis-essential steps of bone regeneration-are deteriorated, accompanied by reduced proliferation in type 2 diabetic bone regeneration. The aim of the study was to improve these mechanisms by local application of adipose-derived stem cells (ASCs) and facilitate bone regeneration in impaired diabetic bone regeneration. The availability of ASCs in great numbers and the relative ease of harvest offers unique advantages over other mesenchymal stem cell entities. A previously described unicortical tibial defect model was utilized in diabetic mice (Lepr(db-/-)). Isogenic mouse adipose-derived stem cells (mASCs)(db-/db-) were harvested, transfected with a green fluorescent protein vector, and isografted into tibial defects (150,000 living cells per defect). Alternatively, control groups were treated with Dulbecco's modified Eagle's medium or mASCs(WT). In addition, wild-type mice were identically treated. By means of immunohistochemistry, proteins specific for angiogenesis, cell proliferation, cell differentiation, and bone formation were analyzed at early (3 days) and late (7 days) stages of bone regeneration. Additionally, histomorphometry was performed to examine bone formation rate and remodeling. Histomorphometry revealed significantly increased bone formation in mASC(db-/db-)-treated diabetic mice as compared with the respective control groups. Furthermore, locally applied mASCs(db-/db-) significantly enhanced neovascularization and osteogenic differentiation. Moreover, bone remodeling was upregulated in stem cell treatment groups. Local application of mACSs can restore impaired diabetic bone regeneration and may represent a therapeutic option for the future. SIGNIFICANCE This study showed that stem cells obtained from fat pads of type 2 diabetic mice are capable of reconstituting impaired bone regeneration in type 2 diabetes. These multipotent stem cells promote both angiogenesis and osteogenesis in type 2 diabetic bony defects. These data might prove to have great clinical implications for bony defects in the ever-increasing type 2 diabetic patient population.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Abraham
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Kamran Harati
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Britta Ismer
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Lukas Kessler
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Hannah Zöllner
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Wang D, Gilbert JR, Shaw MA, Shakir S, Losee JE, Billiar TR, Cooper GM. Toll-like receptor 4 mediates the regenerative effects of bone grafts for calvarial bone repair. Tissue Eng Part A 2016; 21:1299-308. [PMID: 25603990 DOI: 10.1089/ten.tea.2014.0215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Craniofacial trauma is difficult to repair and presents a significant burden to the healthcare system. The inflammatory response following bone trauma is critical to initiate healing, serving to recruit inflammatory and progenitor cells and to promote angiogenesis. A role for inflammation in graft-induced bone regeneration has been suggested, but is still not well understood. The current study assessed the impact of Toll-like receptor (TLR4) signaling on calvarial repair in the presence of morselized bone components. Calvarial defects in wild-type and global TLR4(-/-) knockout mouse strains were treated with fractionated bone components in the presence or absence of a TLR4 neutralizing peptide. Defect healing was subsequently evaluated over 28 days by microcomputed tomography and histology. The matrix-enriched fraction of morselized bone stimulated calvarial bone repair comparably with intact bone graft, although the capacity for grafts to induce calvarial bone repair was significantly diminished by inhibition or genetic ablation of TLR4. Overall, our findings suggest that the matrix component of bone graft stimulates calvarial bone repair in a TLR4-dependent manner. These results support the need to better understand the role of inflammation in the design and implementation of strategies to improve bone healing.
Collapse
Affiliation(s)
- Dan Wang
- 1 Department of Stomatology, Tenth People's Hospital of Tongji University , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Cohn Yakubovich D, Tawackoli W, Sheyn D, Kallai I, Da X, Pelled G, Gazit D, Gazit Z. Computed Tomography and Optical Imaging of Osteogenesis-angiogenesis Coupling to Assess Integration of Cranial Bone Autografts and Allografts. J Vis Exp 2015:e53459. [PMID: 26779586 DOI: 10.3791/53459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A major parameter determining the success of a bone-grafting procedure is vascularization of the area surrounding the graft. We hypothesized that implantation of a bone autograft would induce greater bone regeneration by abundant blood vessel formation. To investigate the effect of the graft on neovascularization at the defect site, we developed a micro-computed tomography (µCT) approach to characterize newly forming blood vessels, which involves systemic perfusion of the animal with a polymerizing contrast agent. This method enables detailed vascular analysis of an organ in its entirety. Additionally, blood perfusion was assessed using fluorescence imaging (FLI) of a blood-borne fluorescent agent. Bone formation was quantified by FLI using a hydroxyapatite-targeted probe and µCT analysis. Stem cell recruitment was monitored by bioluminescence imaging (BLI) of transgenic mice that express luciferase under the control of the osteocalcin promoter. Here we describe and demonstrate preparation of the allograft, calvarial defect surgery, µCT scanning protocols for the neovascularization study and bone formation analysis (including the in vivo perfusion of contrast agent), and the protocol for data analysis. The 3D high-resolution analysis of vasculature demonstrated significantly greater angiogenesis in animals with implanted autografts, especially with respect to arteriole formation. Accordingly, blood perfusion was significantly higher in the autograft group by the 7(th) day after surgery. We observed superior bone mineralization and measured greater bone formation in animals that received autografts. Autograft implantation induced resident stem cell recruitment to the graft-host bone suture, where the cells differentiated into bone-forming cells between the 7(th) and 10(th) postoperative day. This finding means that enhanced bone formation may be attributed to the augmented vascular feeding that characterizes autograft implantation. The methods depicted may serve as an optimal tool to study bone regeneration in terms of tightly bounded bone formation and neovascularization.
Collapse
Affiliation(s)
- Doron Cohn Yakubovich
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine
| | - Wafa Tawackoli
- Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center;
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| | - Ilan Kallai
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine
| | - Xiaoyu Da
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center
| | - Gadi Pelled
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine; Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center
| | - Dan Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine; Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center
| | - Zulma Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine; Department of Surgery, Cedars-Sinai Medical Center; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center
| |
Collapse
|
26
|
Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. J Craniofac Surg 2015; 25:1504-9. [PMID: 24943502 DOI: 10.1097/scs.0000000000000755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Critical-sized bone defects can lead to significant morbidity, and interventions are limited by the availability and donor-site morbidity of bone grafts. Polymer scaffolds seeded with cells have been explored to replace bone grafts. Adipose-derived stem cells have shown great promise for vascularization and osteogenesis of these constructs, and cocultures of differentiated stem cells are being explored to augment vessel and bone formation. Adipose-derived stem cells were differentiated into endothelial cells and osteoblasts, and in vitro studies showed increased proliferation of cocultured cells compared with undifferentiated adipose-derived stem cells and monocultures of endothelial cells and osteoblasts. The cells were seeded into polylactic acid gas-plasma-treated scaffolds as cocultures and monocultures and then implanted into critical-sized rat calvarial defects. The cocultures were in a 1:1 osteoblast to endothelial cell ratio. The increase in proliferation seen by the cocultured cells in vitro did not translate to increased vascularization and osteogenesis in vivo. In vivo, there were trends of increased vascularization in the endothelial cell group and increased osteogenesis in the osteoblast and endothelial monoculture groups, but no increase was seen in the coculture group compared with the undifferentiated adipose-derived stem cells. Endothelial cells enhance vascularization and osteoblast and endothelial cell monocultures enhance bone formation in the polymer scaffold. Predifferentiation of adipose-derived stem cells is promising for improving vascularization and osteogenesis in polymer scaffolds but requires future evaluation of coculture ratios to fully characterize this response.
Collapse
|
27
|
Gamie Z, MacFarlane RJ, Tomkinson A, Moniakis A, Tran GT, Gamie Y, Mantalaris A, Tsiridis E. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data. Expert Opin Biol Ther 2015; 14:1611-39. [PMID: 25303322 DOI: 10.1517/14712598.2014.945414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. AREAS COVERED In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. EXPERT OPINION Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.
Collapse
Affiliation(s)
- Zakareya Gamie
- Aristotle University Medical School, 'PapaGeorgiou' Hospital, Academic Orthopaedic Unit , Thessaloniki , Greece
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Najdanović JG, Cvetković VJ, Stojanović S, Vukelić-Nikolić MĐ, Stanisavljević MN, Živković JM, Najman SJ. The Influence of Adipose-Derived Stem Cells Induced into Endothelial Cells on Ectopic Vasculogenesis and Osteogenesis. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Roux BM, Cheng MH, Brey EM. Engineering clinically relevant volumes of vascularized bone. J Cell Mol Med 2015; 19:903-14. [PMID: 25877690 PMCID: PMC4420594 DOI: 10.1111/jcmm.12569] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility.
Collapse
Affiliation(s)
- Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | | | | |
Collapse
|
30
|
In vitro co-culture strategies to prevascularization for bone regeneration: A brief update. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0095-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Bléry P, Corre P, Malard O, Sourice S, Pilet P, Amouriq Y, Guicheux J, Weiss P, Espitalier F. Evaluation of new bone formation in irradiated areas using association of mesenchymal stem cells and total fresh bone marrow mixed with calcium phosphate scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2711-2720. [PMID: 25081644 DOI: 10.1007/s10856-014-5282-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/16/2014] [Indexed: 06/03/2023]
Abstract
The consequences of the treatment of the squamous cell carcinomas of the upper aerodigestive tract (bone removal and external radiation therapy) are constant. Tissue engineering using biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSC) is considered as a promising alternative. We previously demonstrated the efficacy of BCP and total fresh bone marrow (TBM) in regenerating irradiated bone defect. The aim of this study was to know if adding MSC to BCP + TBM mixture could improve the bone formation in irradiated bone defects. Twenty-four Lewis 1A rats received a single dose of 20 Gy to the hind limbs. MSC were sampled from non-irradiated donors and amplified in proliferative, and a part in osteogenic, medium. 3 weeks after, defects were created on femurs and tibias, which were filled with BCP alone, BCP + TBM, BCP + TBM + uncommitted MSC, or BCP + TBM + committed MSC. 3 weeks after, samples were removed and prepared for qualitative and quantitative analysis. The rate of bone ingrowth was significantly higher after implantation of BCP + TBM mixture. The adding of a high concentration of MSC, committed or not, didn't improve the bone regeneration. The association BCP + TBM remains the most efficient material for bone substitution in irradiated areas.
Collapse
Affiliation(s)
- P Bléry
- INSERM, UMR-S 791, Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire, LIOAD, 1 Place Alexis Ricordeau, 44042, Nantes Cedex 1, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li DQ, Li M, Liu PL, Zhang YK, Lu JX, Li JM. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor. Orthopedics 2014; 37:685-90. [PMID: 25275969 DOI: 10.3928/01477447-20140924-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/12/2014] [Indexed: 02/03/2023]
Abstract
Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].
Collapse
|
33
|
Combination of acellular nerve graft and schwann cells-like cells for rat sciatic nerve regeneration. Neural Plast 2014; 2014:139085. [PMID: 25114806 PMCID: PMC4120921 DOI: 10.1155/2014/139085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023] Open
Abstract
Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. Results. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P < 0.05), and the difference between groups B and C was not statistically significant (P > 0.05). Conclusion. The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.
Collapse
|
34
|
Smith CA, Richardson SM, Eagle MJ, Rooney P, Board T, Hoyland JA. The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering. J Tissue Eng Regen Med 2014; 9:595-604. [PMID: 24945627 DOI: 10.1002/term.1934] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 01/02/2023]
Abstract
Fresh-frozen biological allograft remains the most effective substitute for the 'gold standard' autograft, sharing many of its osteogenic properties but, conversely, lacking viable osteogenic cells. Tissue engineering offers the opportunity to improve the osseointegration of this material through the addition of mesenchymal stem cells (MSCs). However, the presence of dead, immunogenic and potentially harmful bone marrow could hinder cell adhesion and differentiation, graft augmentation and incorporation, and wash procedures are therefore being utilized to remove the marrow, thereby improving the material's safety. To this end, we assessed the efficiency of a novel wash technique to produce a biocompatible, biological scaffold void of cellular material that was mechanically stable and had osteoinductive potential. The outcomes of our investigations demonstrated the efficient removal of marrow components (~99.6%), resulting in a biocompatible material with conserved biomechanical stability. Additionally, the scaffold was able to induce osteogenic differentiation of MSCs, with increases in osteogenic gene expression observed following extended culture. This study demonstrates the efficiency of the novel wash process and the potential of the resultant biological material to serve as a scaffold in bone allograft tissue engineering.
Collapse
Affiliation(s)
- C A Smith
- Centre for Tissue Injury and Repair, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
35
|
Carvalho PP, Leonor IB, Smith BJ, Dias IR, Reis RL, Gimble JM, Gomes ME. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study. J Biomed Mater Res A 2013; 102:3102-11. [PMID: 24123913 DOI: 10.1002/jbm.a.34983] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022]
Abstract
The repair of large bony defects remains challenging in the clinical setting. Human adipose-derived stromal/stem cells (hASCs) have been reported to differentiate along different cell lineages, including the osteogenic. The objective of the present study was to assess the bone regeneration potential of undifferentiated hASCs loaded in starch-polycaprolactone (SPCL) scaffolds, in a critical-sized nude mice calvarial defect. Human ASCs were isolated from lipoaspirate of five female donors, cryopreserved, and pooled together. Critical-sized (4 mm) calvarial defects were created in the parietal bone of adult male nude mice. Defects were either left empty, treated with an SPCL scaffold alone, or SPCL scaffold with human ASCs. Histological analysis and Micro-CT imaging of the retrieved implants were performed. Improved new bone deposition and osseointegration was observed in SPCL loaded with hASC engrafted calvarial defects as compared to control groups that showed little healing. Nondifferentiated human ASCs enhance ossification of nonhealing nude mice calvarial defects, and wet-spun SPCL confirmed its suitability for bone tissue engineering. This study supports the potential translation for ASC use in the treatment of human skeletal defects.
Collapse
Affiliation(s)
- Pedro P Carvalho
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana; 3B's Research Group-Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Guimarães, Portugal; ICVS/3B's PT Government Associated Lab, Braga/Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
36
|
Ma J, Both SK, Ji W, Yang F, Prins HJ, Helder MN, Pan J, Cui FZ, Jansen JA, van den Beucken JJP. Adipose tissue-derived mesenchymal stem cells as monocultures or cocultures with human umbilical vein endothelial cells: performance in vitro and in rat cranial defects. J Biomed Mater Res A 2013; 102:1026-36. [PMID: 23640784 DOI: 10.1002/jbm.a.34775] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/07/2013] [Accepted: 04/24/2013] [Indexed: 01/16/2023]
Abstract
The aim of this study was to compare the osteogenic capacity between human adipose tissue-derived mesenchymal stem cells (AT-MSCs) and their cocultures with human umbilical vein endothelial cells (HUVECs) in vitro and their biological performance in vivo. First, the optimal cell ratio in cocultures for osteogenic differentiation was determined by seeding AT-MSCs and HUVECs in ratios varying from 100:0 to 0:100 on tissue culture plates. Afterward, AT-MSCs and AT-MSCs/HUVECs (50:50) were seeded on porous titanium fiber mesh scaffolds (Ti) for both in vitro and in vivo osteogenic evaluation. For in vitro evaluation, cell osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity and calcium assay. For in vivo evaluation, the scaffolds were implanted bilaterally into rat cranial defects (5 mm diameter) and bone formation was assessed histologically and histomorphometrically after 8 weeks. The ratio of 50:50 was chosen in the cocultures because this coculture condition retained similar amount of calcium deposition while using the least amount of AT-MSCs. Moreover, AT-MSCs showed higher osteogenic differentiation in comparison to AT-MSCs/HUVECs on Ti in vitro. Furthermore, superior bone formation was observed in AT-MSCs compared to AT-MSCs/HUVECs in rat cranial defects. In conclusion, AT-MSCs showed significantly higher osteogenic potential compared to AT-MSCs/HUVECs both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinling Ma
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reconstruction of critical-size mandibular defects in immunoincompetent rats with human adipose-derived stromal cells. J Craniomaxillofac Surg 2013; 41:496-503. [PMID: 23684529 DOI: 10.1016/j.jcms.2013.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/27/2022] Open
Abstract
In patients with bony defects, autologous bone grafts are the "gold standard" for reconstruction. In children, autologous bone harvesting is limited but tissue engineering offers an alternative. Next to bone marrow, adipose tissue is a source of mesenchymal stromal cells, and adipose-derived stromal cells (ADSC) can differentiate into osteocytes. The aim of this study was to evaluate the efficacy of bioactive implants (ADSC in fibrin glue) for repair of critical-size mandibular defects in athymic rats. Human adult ADSC embedded in fibrin glue were implanted into a critical-size defect in the rat mandible and their efficacy was compared to those of protected bone healing (pbh), autologous bone graft, and an empty defect. The newly formed bone was quantified using high-resolution flat-panel volumetric CT (fpvCT) during different observation times. After eight weeks, the specimens were assessed histologically and by micro-computed tomography (μ-CT). The radiographic examination demonstrated a significantly higher level of ossified defect area in the ADSC side compared with the pbh side. The autologous bone graft side showed significantly enhanced bone formation compared to the empty defect. The histological findings in the specimens with ADSC showed bony bridging of the defect. ADSC were capable of defect reconstruction under our experimental conditions.
Collapse
|
38
|
Link DP, Gardel LS, Correlo VM, Gomes ME, Reis RL. Osteogenic properties of starch poly(ε-caprolactone) (SPCL) fiber meshes loaded with osteoblast-like cells in a rat critical-sized cranial defect. J Biomed Mater Res A 2013; 101:3059-65. [PMID: 23505136 DOI: 10.1002/jbm.a.34614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/18/2012] [Accepted: 01/14/2013] [Indexed: 12/16/2022]
Abstract
Osteoblast-like cells together with a suitable scaffold can aid to the regeneration of bone defects. A suitable scaffold could be starch poly(ε-caprolactone) (SPCL) fiber meshes, which have shown a high potential to support bone formation in previous in vitro and in noncritical sized in vivo studies. The aim of this study was to assess the effect of these scaffolds alone or combined with osteoblast-like cells in the regeneration of a critical-sized cranial defect in male Fisher rats. Empty defects and defects filled with cell-free scaffolds were used as controls groups. Samples were analyzed by microcomputed tomography (micro-CT) and histological analyses. Histological analyses revealed that all study groups showed new bone formation from the defect edges toward the interior of the defects. In addition, bone was formed in the center of the scaffolds, especially in the groups containing preloaded osteoblast-like cells. Micro-CT reconstructions showed that bone formation increased over time and was enhanced with the inclusion of preloaded osteoblast-like cells compared with SPCL scaffolds alone. According to these results, the preloaded osteoblast-like cells contributed to the bone regeneration process in a critical-sized bone defect. Furthermore, SPCL fiber meshes proved to be an osteoconductive material to use for bone regeneration purposes.
Collapse
Affiliation(s)
- Dennis P Link
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND To fulfill the need for large volumes, devitalized allografts are used to treat massive bone defects despite a 60%, 10-year postimplantation fracture rate. Allograft healing is inferior to autografts where the periosteum orchestrates remodeling. HYPOTHESIS By augmenting allografts with a tissue engineered periosteum consisting of tunable and degradable, poly(ethylene glycol) (PEG) hydrogels for mesenchymal stem cell (MSC) transplantation, the functions critical for periosteum-mediated healing will be identified and emulated. METHOD OF STUDY PEG hydrogels will be designed to emulate periosteum-mediated autograft healing to revitalize allografts. We will exploit murine femoral defect models for these approaches. Critical-sized, 5-mm segmental defects will be created and filled with decellularized allograft controls or live autograft controls. Alternatively, defects will be treated with our experimental approaches: decellularized allografts coated with MSCs transplanted via degradable PEG hydrogels to mimic progenitor cell densities and persistence during autograft healing. Healing will be evaluated for 9 weeks using microcomputed tomography, mechanical testing, and histologic analysis. If promising, MSC densities, hydrogel compositions, and genetic methods will be used to isolate critical aspects of engineered periosteum that modulate healing. Finally, hydrogel biochemical characteristics will be altered to initiate MSC and/or host-material interactions to further promote remodeling of allografts. SIGNIFICANCE This approach represents a novel tissue engineering strategy whereby degradable, synthetic hydrogels will be exploited to emulate the periosteum. The microenvironment, which will mediate MSC transplantation, will use tunable PEG hydrogels for isolation of critical allograft revitalization factors. In addition, hydrogels will be modified with biochemical cues to further augment allografts to reduce or eliminate revision surgeries associated with allograft failures.
Collapse
|