1
|
Janmohammadi M, Nourbakhsh MS, Bahraminasab M. 3D printed polycaprolactone scaffold incorporated with tragacanth gum/bioactive glass and cellulose nanocrystals for bone tissue engineering. Int J Biol Macromol 2025; 305:141114. [PMID: 39956230 DOI: 10.1016/j.ijbiomac.2025.141114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Biomimetic organic-inorganic nanocomposite scaffolds hold tremendous potential to accelerate bone regeneration due to their ability to provide excellent structural and biological cues. Therefore, we employed a 3D-printed polycaprolactone host component as a mechanical support that was filled with a tragacanth gum-45S5 bioactive glass-cellulose nanocrystal guest component. The designed host-guest scaffolds were evaluated via physical, chemical, mechanical, and biological properties. Owing to the successful integration between host and guest components, the scaffolds showed enhanced physical and swelling properties (approximately 100 %) for nutrient transfer and cell proliferation. Furthermore, the host-guest scaffolds exhibited improved surface apatite formation and increased strength (3.35-16.55 MPa) within the ideal range for bone tissue engineering applications. It was verified in vitro that the host-guest scaffolds offer a highly desirable microenvironment for cell proliferation and attachment. Importantly, the host-guest scaffolds exhibited remarkable calcium deposition (4-56 %) and matrix formation. However, it was found that the proportion of cellulose nanocrystals can affect the properties of fabricated host-guest scaffolds. These results highlight the importance of optimizing the cellulose nanocrystal content in the scaffold composition to achieve the desired balance of properties for effective bone tissue engineering applications. The incorporation of cellulose nanocrystals at lower concentrations, particularly 3 wt%, represents a promising approach for developing biomimetic scaffolds that can enhance bone regeneration. Notably, the results of this study confirmed that incorporating cellulose nanocrystals at lower concentrations into the host-guest scaffolds is a viable strategy for fabricating a suitable biomaterial that enhances bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | | | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
2
|
Liu Q, Chen L, Liu H, Wang T, Li G, Zheng Z, Wang X, Kaplan DL. Promotion of bone defect repairs using multiscale 3D printed silk porous hydrogel scaffolds. Acta Biomater 2025:S1742-7061(25)00269-7. [PMID: 40228617 DOI: 10.1016/j.actbio.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Porosity plays a critical role in influencing the biological properties and performance of materials and devices. This study introduces hydrocolloid inks by incorporating porogens into silk fibroin (silk) protein solutions to generate porous hydrogel scaffolds. These inks exhibit robust printability, enabling the fabrication of complex geometries with hierarchical porosity, ranging from microscale porogen-templated pores (40 to 200 μm, with over 50 % ≥100 μm) to macroscale features determined by the 3D printing process (≥200 μm). Compatibility studies using human bone marrow mesenchymal stem cells (hMSCs) and murine embryonic osteoblast precursor cells (MC3T3-E1) demonstrate cell adhesion, infiltration, and proliferation both on the surface and within these hydrogels. Subcutaneous implantation in rats confirmed biocompatibility and the ability to support endogenous cell migration and proliferation by the hydrogels. In a rat femoral defect model, the microscale biomimetic structures significantly improved bone repair, outperforming control groups, including small pore-sized silk hydrogels (∼21.39 μm) and other 3D-printed constructs with a thickening agent (∼20.78 μm). These innovative multiscale silk 3D biomimetic scaffolds present a promising approach for effective bone defect repair for future clinical applications. STATEMENT OF SIGNIFICANCE: This study presents a transformative approach to bone defect repair through the development of 3D-printed silk hydrogel scaffolds with multiscale porosity. By incorporating dextran gel particles as sacrificial porogens, the silk scaffolds achieve hierarchical pore structures optimized for cell adhesion, proliferation, and migration. In vitro and in vivo results demonstrate that these scaffolds support robust cellular activity and significantly enhance bone regeneration compared to conventional designs, providing a scalable, biocompatible solution. The integration of silk's superior biological properties with advanced 3D printing methodologies underscores its potential to set new benchmarks in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qiucen Liu
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Li Chen
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, jiangsu, 215000, PR China
| | - Tao Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
3
|
Andrée L, Joziasse LS, Adjobo-Hermans MJW, Yang F, Wang R, Leeuwenburgh SCG. Effect of Hydroxyapatite Nanoparticle Crystallinity and Colloidal Stability on Cytotoxicity. ACS Biomater Sci Eng 2024; 10:6964-6973. [PMID: 39373188 PMCID: PMC11558557 DOI: 10.1021/acsbiomaterials.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Hydroxyapatite nanoparticles (nHA) have gained attention as potential intracellular drug delivery vehicles due to their high binding affinity for various biomolecules and pH-dependent solubility. Yet, the dependence of nHA cytocompatibility on their physicochemical properties remains unclear since numerous studies have revealed starkly contrasting results. These discrepancies may be attributed to differences in size, shape, crystallinity, and aggregation state of nHA, which complicates fundamental understanding of the factors driving nHA cytotoxicity. Here, we hypothesize that nHA cytotoxicity is primarily driven by intracellular calcium levels following the internalization of nHA nanoparticles. By investigating the cytotoxicity of spherical nHA with different crystallinity and dispersity, we find that both lower crystallinity and increased agglomeration of nHA raise cytotoxicity, with nanoparticle agglomeration being the more dominant factor. We show that the internalization of nHA enhances intracellular calcium levels and increases the production of reactive oxygen species (ROS). However, only subtle changes in intracellular calcium are observed, and their physiological relevance remains to be confirmed. In conclusion, we show that nHA agglomeration enhances ROS production and the associated cytotoxicity. These findings provide important guidelines for the future design of nHA-containing formulations for biomedical applications, implying that nHA crystallinity and especially agglomeration should be carefully controlled to optimize biocompatibility and therapeutic efficacy.
Collapse
Affiliation(s)
- Lea Andrée
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Lucas S. Joziasse
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | | | - Fang Yang
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Rong Wang
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry−Regenerative Biomaterials, Radboud University Medical Center, Nijmegen 6525 EX, The Netherlands
| |
Collapse
|
4
|
Chen Y, Chen QW, Fu FS, Gu HY, Yu A, Zhang XZ. Bone Destruction-Chemotactic Osteoprogenitor Cells Deliver Liposome Nanomedicines for the Treatment of Osteosarcoma and Osteoporosis. ACS NANO 2024; 18:29864-29879. [PMID: 39424791 DOI: 10.1021/acsnano.4c10053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Therapeutic efficacy of skeletal diseases is usually limited by unfavorable drug delivery due to incapable bone targeting and low bone affinity of conventional drug carriers, as well as relatively reduced vascularization and dense structure of bone tissues. Due to CXC chemokine receptor 4 (CXCR4)/CXC chemokine ligand 12 (CXCL12) signal axis-guided recruitment, osteoprogenitor cells (OPCs) can actively migrate to bone disease nidus. Here, drugs-loaded nanoliposomes are prepared and decorated onto OPCs by biotin-streptavidin linkage for precise bone disease targeting and effective drug delivery. In mouse models of tibia defect and orthotopic osteosarcoma, superior targeting property of OPCs-based drug delivery systems toward diseased bone niduses is verified. By encapsulating antitumor and antiosteoporosis drugs into nanoliposomes, OPCs-based drug delivery systems effectively inhibit disease development and restore bone destruction in mouse models of orthotopic osteosarcoma and ovariectomized osteoporosis. This study reveals a cell-based drug delivery system for precise bone disease targeting and highly effective drug delivery, which will find great potential as a universal drug delivery platform for targeting treatment of various bone diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang-Sheng Fu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Hui-Yun Gu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
5
|
Gupta A, Madhyastha H, Kumar A, Singh S. Osteo-modulatory potential of biologically synthesized cis-resveratrol passivated gold nanoparticles. Int J Pharm 2024; 664:124637. [PMID: 39182744 DOI: 10.1016/j.ijpharm.2024.124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Resveratrol, a stilbene, particularly trans-isomer, shows significant osteogenic potential but experiences high instability and poor bioavailability. However, cis-isomer (cRes) is not explored yet due to its instability. Our study investigates the osteoinductive potential of cRes for the first time by stabilizing it onto the surface of gold nanoparticles. cRes capped GNPs (cRGNPs) presented no toxic effects on the MC3T3-E1 cells with increased levels of alkaline phosphatase and calcium deposition. The nanoparticles presented a 2.6-fold increase in cell number compared to the control. The pro-migratory effect of the cRGNPs was also significantly higher (97.21 ± 0.99 % migration) in 4 days. The osteoinductivity was further confirmed by enhanced expression of osteoblastic genes like RUNX2, OPN, OCN, BMP, OPG, and Col1A. The stability provided to cRes upon conjugating to GNPs allowed exploration of its potential in aiding proliferation, migration, and differentiation of the pre-osteoblasts, which will be beneficial in repairing bone defects.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
6
|
Doyle SE, Cazzola CN, Coleman CM. Design considerations when creating a high throughput screen-compatible in vitro model of osteogenesis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100184. [PMID: 39313131 DOI: 10.1016/j.slasd.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Inducing osteogenic differentiation in vitro is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple in vitro models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing in vitro assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost. This review highlights the design and workflow considerations for creating a high throughput screen-compatible model of osteogenesis, comparing and contrasting osteogenic cell type, assay fabrication and culture methodology, osteogenic induction approach and repurposing existing output techniques.
Collapse
Affiliation(s)
- Stephanie E Doyle
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland.
| | - Courtney N Cazzola
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| | - Cynthia M Coleman
- Regenerative Medicine Institute, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway City, County Galway H91 FD82, Ireland
| |
Collapse
|
7
|
Kang R, Huang L, Zeng T, Ma J, Jin D. Long non-coding TRPM2-AS regulates fracture healing by targeting miR-545-3p/Bmp2. J Orthop Surg Res 2024; 19:466. [PMID: 39118176 PMCID: PMC11308420 DOI: 10.1186/s13018-024-04969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE Delayed fracture healing increases the suffering of patients. An in-depth investigation of the pathogenesis of delayed fracture healing may offer new direction for the prevention and treatment. METHODS The study included 63 normal healing tibial fractures and 58 delayed healing tibial fractures patients. Long non-coding RNA (lncRNA)TRPM2-AS, microRNA-545-3p (miR-545-3p), bone morphogenetic protein 2 (Bmp2) mRNA and osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and alkaline phosphatase (Alp) mRNA expression were determined by Real-time quantitative reverse transcription-polymerase chain reaction in serum and MC3T3-E1 cells. The prediction potential of TRPM2-AS in delayed healing fracture patients was verified by receiver operating characteristic curves. The binding relationship of TRPM2-AS/miR-545-3p/Bmp2 was evaluated by dual luciferase reporter gene assay. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry. RESULTS TRPM2-AS was remarkably down-regulated in patients with delayed fracture healing and could better predict the fracture healing status. TRPM2-AS downregulation inhibited osteogenic markers mRNA expression, restrained proliferation, and promoted apoptosis of MC3T3-E1 cells (p < 0.05). In delayed fracture healing, miR-545-3p was dramatically up-regulated and was negatively regulated by TRPM2-AS. Reducing miR-545-3p eliminate the negative effect of TRPM2-AS down-regulation on osteoblast proliferation and differentiation (p < 0.05). miR-545-3p targets Bmp2, which plays a positive role in osteoblast differentiation (p < 0.05). CONCLUSION This study found that TRPM2-AS has the potential to be a diagnostic marker for delayed fracture healing and revealed that the TRPM2-AS/miR-545-3p/Bmp2 axis affects fracture healing by regulating osteoblast.
Collapse
Affiliation(s)
- Renjie Kang
- Department of Orthopedics, Peking University First Hospital Taiyuan Hospital, Taiyuan, 030000, China
| | - Lina Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Teng Zeng
- Department of Orthopedics, The First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, No. 8, Hangkong Road, Shashi District, Jingzhou, 434000, China
| | - Jinliang Ma
- Department of Orthopedics, The First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, No. 8, Hangkong Road, Shashi District, Jingzhou, 434000, China.
| | - Danjie Jin
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68, Gehu Middle Road, Wujin District, Changzhou, 213000, China.
| |
Collapse
|
8
|
Cheng CT, Vyas PS, McClain EJ, Hoelen TCA, Arts JJC, McLaughlin C, Altman DT, Yu AK, Cheng BC. The Osteogenic Peptide P-15 for Bone Regeneration: A Narrative Review of the Evidence for a Mechanism of Action. Bioengineering (Basel) 2024; 11:599. [PMID: 38927835 PMCID: PMC11200470 DOI: 10.3390/bioengineering11060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration is a complex multicellular process involving the recruitment and attachment of osteoprogenitors and their subsequent differentiation into osteoblasts that deposit extracellular matrixes. There is a growing demand for synthetic bone graft materials that can be used to augment these processes to enhance the healing of bone defects resulting from trauma, disease or surgery. P-15 is a small synthetic peptide that is identical in sequence to the cell-binding domain of type I collagen and has been extensively demonstrated in vitro and in vivo to enhance the adhesion, differentiation and proliferation of stem cells involved in bone formation. These events can be categorized into three phases: attachment, activation and amplification. This narrative review summarizes the large body of preclinical research on P-15 in terms of these phases to describe the mechanism of action by which P-15 improves bone formation. Knowledge of this mechanism of action will help to inform the use of P-15 in clinical practice as well as the development of methods of delivering P-15 that optimize clinical outcomes.
Collapse
Affiliation(s)
- Cooper T. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Praveer S. Vyas
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Edward James McClain
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Thomáy-Claire Ayala Hoelen
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Jacobus Johannes Chris Arts
- Department of Orthopedic Surgery and CAPHRI Research School, Maastricht University Medical Center (MUMC+), P.O. Box 616 Maastricht, The Netherlands; (T.-C.A.H.); (J.J.C.A.)
| | - Colin McLaughlin
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| | - Daniel T. Altman
- Department of Orthopaedic Surgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Alexander K. Yu
- Department of Neurosurgery, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA;
| | - Boyle C. Cheng
- Neuroscience Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (C.T.C.); (P.S.V.); (C.M.)
| |
Collapse
|
9
|
Kamaya Y, Ando A, Suzuki K, Nakano K, Nagaya M, Nagashima H, Aizawa M. Development of paste-like organic/inorganic artificial bones compatible with bone remodeling cycles, consisting of β-tricalcium phosphate, calcium sulfate hemihydrate, and poly(lactic- co-glycolic acid) particles. NEW J CHEM 2024; 48:8545-8555. [DOI: 10.1039/d3nj05820d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Schematic illustration of organic/inorganic hybrid cement with the simultaneous addition of CSH and PLGA particles.
Collapse
Affiliation(s)
- Yuki Kamaya
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Akihiro Ando
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuto Suzuki
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research (MUIIBR), 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research (MUIIBR), 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research (MUIIBR), 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
10
|
Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, Pratama YA, Tahir M. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41:10257-10276. [PMID: 36420663 DOI: 10.1080/07391102.2022.2148749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Tahir
- Department of Pharmaceutical Science, Kulliyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
11
|
Wang Z, Mi F, Li J, Chen D, Lin M, Wang X, Wu S, Wu C, Liu C. Bone Marrow Stromal Cells Sorted by Semiconducting Polymer Nanodots for Bone Repair. ACS Biomater Sci Eng 2023; 9:5772-5781. [PMID: 37734919 DOI: 10.1021/acsbiomaterials.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The use of bone marrow stromal cells (BMSCs) for bone defect repair has shown great promise due to their differentiation potential. However, isolating the BMSCs from various cell types within the bone marrow remains challenging. To tackle this issue, we utilized semiconducting polymer dots (Pdots) as markers to select the BMSCs within a specific time frame. The therapeutic efficacy of the obtained Pdot-labeled BMSCs was assessed in a bone defect model. Initially, we evaluated the binding capacity of the Pdots with four different types of cells present in the bone marrow including BMSCs, osteoblasts, macrophages, and vascular endothelial cells, in vitro. Notably, BMSCs showed the most rapid uptake of the Pdots, being labeled within only one h of coculture, while other cells took four h to become labeled. Moreover, by colocalizing the Pdots with Prrx1, Sca-1, OSX, F480, and CD105 in the bone marrow cells of monocortical tibial defect (MTD) mice in vivo, we determined the proportions of BMSCs, macrophages, and vascular endothelial cells among all labeled cells from 1 to 8 h after the Pdots injection. It was found that BMSCs have the highest proportion (92%) among all labeled cells extracted after 1 h of Pdots injection. The therapeutic efficacy of the obtained Pdots-labeled BMSCs (1 h) was assessed in a bone defect model. Results showed that the new bone accrual was significantly increased in the treatment of Pdots-labeled BMSCs compared to the bone marrow cell-treated group. Our study revealed that BMSCs screened by the Pdots could improve bone defect repair, suggesting a promising application of the Pdots in bone healing.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feixue Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jinchen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dandan Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyu Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Siying Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Kushioka J, Toya M, Shen H, Hirata H, Zhang N, Huang E, Tsubosaka M, Gao Q, Teissier V, Li X, Utsunomiya T, Goodman SB. Therapeutic effects of MSCs, genetically modified MSCs, and NFĸB-inhibitor on chronic inflammatory osteolysis in aged mice. J Orthop Res 2023; 41:1004-1013. [PMID: 36031590 PMCID: PMC9971358 DOI: 10.1002/jor.25434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The number of total joint replacements is increasing, especially in elderly patients, and so too are implant-related complications such as prosthesis loosening. Wear particles from the prosthesis induce a chronic inflammatory reaction and subsequent osteolysis, leading to the need for revision surgery. This study investigated the therapeutic effect of NF-ĸB decoy oligodeoxynucleotides (ODN), mesenchymal stem cells (MSCs), and genetically-modified NF-ĸB sensing interleukin-4 over-secreting MSCs (IL4-MSCs) on chronic inflammation in aged mice. The model was generated by continuous infusion of contaminated polyethylene particles into the intramedullary space of the distal femur of aged mice (15-17 months old) for 6 weeks. Local delivery of ODN showed increased bone mineral density (BMD), decreased osteoclast-like cells, increased alkaline phosphatase (ALP)-positive area, and increased M2/M1 macrophage ratio. Local injection of MSCs and IL4-MSCs significantly decreased osteoclast-like cells and increased the M2/M1 ratio, with a greater trend for IL4-MSCs than MSCs. MSCs significantly increased ALP-positive area and BMD values compared with the control. The IL4-MSCs demonstrated higher values for both ALP-positive area and BMD. These findings demonstrated the therapeutic effects of ODN, MSCs, and IL4-MSCs on chronic inflammatory osteolysis in aged mice. The two MSC-based therapies were more effective than ODN in increasing the M2/M1 macrophage ratio, reducing bone resorption, and increasing bone formation. Specifically, MSCs were more effective in increasing bone formation, and IL4-MSCs were more effective in mitigating inflammation. This study suggests potential therapeutic strategies for treating wear particle-associated inflammatory osteolysis after arthroplasty in the elderly.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
13
|
Physiological Mineralization during In Vitro Osteogenesis in a Biomimetic Spheroid Culture Model. Cells 2022; 11:cells11172702. [PMID: 36078105 PMCID: PMC9454617 DOI: 10.3390/cells11172702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone health-targeting drug development strategies still largely rely on inferior 2D in vitro screenings. We aimed at developing a scaffold-free progenitor cell-based 3D biomineralization model for more physiological high-throughput screenings. MC3T3-E1 pre-osteoblasts were cultured in α-MEM with 10% FCS, at 37 °C and 5% CO2 for up to 28 days, in non-adherent V-shaped plates to form uniformly sized 3D spheroids. Osteogenic differentiation was induced by 10 mM β-glycerophosphate and 50 µg/mL ascorbic acid. Mineralization stages were assessed through studying expression of marker genes, alkaline phosphatase activity, and calcium deposition by histochemistry. Mineralization quality was evaluated by Fourier transformed infrared (FTIR) and scanning electron microscopic (SEM) analyses and quantified by micro-CT analyses. Expression profiles of selected early- and late-stage osteoblast differentiation markers indicated a well-developed 3D biomineralization process with strongly upregulated Col1a1, Bglap and Alpl mRNA levels and type I collagen- and osteocalcin-positive immunohistochemistry (IHC). A dynamic biomineralization process with increasing mineral densities was observed during the second half of the culture period. SEM–Energy-Dispersive X-ray analyses (EDX) and FTIR ultimately confirmed a native bone-like hydroxyapatite mineral deposition ex vivo. We thus established a robust and versatile biomimetic, and high-throughput compatible, cost-efficient spheroid culture model with a native bone-like mineralization for improved pharmacological ex vivo screenings.
Collapse
|
14
|
Zhang N, Utsunomiya T, Lin T, Kohno Y, Ueno M, Maruyama M, Huang E, Rhee C, Yao Z, Goodman SB. Mesenchymal Stem Cells and NF-κB Sensing Interleukin-4 Over-Expressing Mesenchymal Stem Cells Are Equally Effective in Mitigating Particle-Associated Chronic Inflammatory Bone Loss in Mice. Front Cell Dev Biol 2021; 9:757830. [PMID: 34722543 PMCID: PMC8551755 DOI: 10.3389/fcell.2021.757830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Wear particles from total joint arthroplasties (TJAs) induce chronic inflammation, macrophage infiltration and lead to bone loss by promoting bone destruction and inhibiting bone formation. Inhibition of particle-associated chronic inflammation and the associated bone loss is critical to the success and survivorship of TJAs. The purpose of this study is to test the hypothesis that polyethylene particle induced chronic inflammatory bone loss could be suppressed by local injection of NF-κB sensing Interleukin-4 (IL-4) over-expressing MSCs using the murine continuous polyethylene particle infusion model. The animal model was generated with continuous infusion of polyethylene particles into the intramedullary space of the femur for 6 weeks. Cells were locally injected into the intramedullary space 3 weeks after the primary surgery. Femurs were collected 6 weeks after the primary surgery. Micro-computational tomography (μCT), histochemical and immunohistochemical analyses were performed. Particle-infusion resulted in a prolonged pro-inflammatory M1 macrophage dominated phenotype and a decrease of the anti-inflammatory M2 macrophage phenotype, an increase in TRAP positive osteoclasts, and lower alkaline phosphatase staining area and bone mineral density, indicating chronic particle-associated inflammatory bone loss. Local injection of MSCs or NF-κB sensing IL-4 over-expressing MSCs reversed the particle-associated chronic inflammatory bone loss and facilitated bone healing. These results demonstrated that local inflammatory bone loss can be effectively modulated via MSC-based treatments, which could be an efficacious therapeutic strategy for periprosthetic osteolysis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Browning AP, Maclaren OJ, Buenzli PR, Lanaro M, Allenby MC, Woodruff MA, Simpson MJ. Model-based data analysis of tissue growth in thin 3D printed scaffolds. J Theor Biol 2021; 528:110852. [PMID: 34358535 DOI: 10.1016/j.jtbi.2021.110852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 10/24/2022]
Abstract
Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of cell behaviour in more biologically realistic geometries than that allowed by traditional 2D cell culture. Cell proliferation and migration in these experiments have yet to be explicitly characterised, limiting the ability of experimentalists to determine the effects of various experimental conditions, such as scaffold geometry, on cell behaviour. We consider tissue growth by osteoblastic cells in melt electro-written scaffolds that comprise thin square pores with sizes that were deliberately increased between experiments. We collect highly detailed temporal measurements of the average cell density, tissue coverage, and tissue geometry. To quantify tissue growth in terms of the underlying cell proliferation and migration processes, we introduce and calibrate a mechanistic mathematical model based on the Porous-Fisher reaction-diffusion equation. Parameter estimates and uncertainty quantification through profile likelihood analysis reveal consistency in the rate of cell proliferation and steady-state cell density between pore sizes. This analysis also serves as an important model verification tool: while the use of reaction-diffusion models in biology is widespread, the appropriateness of these models to describe tissue growth in 3D scaffolds has yet to be explored. We find that the Porous-Fisher model is able to capture features relating to the cell density and tissue coverage, but is not able to capture geometric features relating to the circularity of the tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests several areas for model refinement, and provides guidance for future experimental work that explores tissue growth in 3D printed scaffolds.
Collapse
Affiliation(s)
- Alexander P Browning
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia; ARC Centre of Excellence for Mathematical and Statistical Frontiers, QUT, Australia.
| | - Oliver J Maclaren
- Department of Engineering Science, University of Auckland, Auckland 1142, New Zealand
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Matthew Lanaro
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Mark C Allenby
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia; ARC Centre of Excellence for Mathematical and Statistical Frontiers, QUT, Australia
| |
Collapse
|
16
|
Refaaq FM, Chen X, Pang SW. Effects of topographical guidance cues on osteoblast cell migration. Sci Rep 2020; 10:20003. [PMID: 33203986 PMCID: PMC7672072 DOI: 10.1038/s41598-020-77103-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cell migration is a fundamental process that is crucial for many biological functions in the body such as immune responses and tissue regeneration. Dysregulation of this process is associated with cancer metastasis. In this study, polydimethylsiloxane platforms with various topographical features were engineered to explore the influence of guiding patterns on MC3T3-E1 osteoblast cell migration. Focusing on the guiding effects of grating patterns, variations such as etch depth, pattern discontinuity, and bending angles were investigated. In all experiments, MC3T3-E1 cells on patterned surfaces demonstrated a higher migration speed and alignment when compared to flat surfaces. The study revealed that an increase in etch depth from 150 nm to 4.5 μm enhanced cell alignment and elongation along the grating patterns. In the presence of discontinuous elements, cell migration speed was accelerated when compared to gratings of the same etch depth. These results indicated that cell directionality preference was influenced by a high level of pattern discontinuity. On patterns with bends, cells were more inclined to reverse on 45° bends, with 69% of cells reversing at least once, compared to 54% on 135° bends. These results are attributed to cell morphology and motility mechanisms that are associated with surface topography, where actin filament structures such as filopodia and lamellipodia are essential in sensing the surrounding environment and controlling cell displacement. Knowledge of geometric guidance cues could provide a better understanding on how cell migration is influenced by extracellular matrix topography in vivo.
Collapse
Affiliation(s)
- F M Refaaq
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - X Chen
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - S W Pang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Ng TK, Chen CB, Xu C, Xu Y, Yao X, Huang L, Liang JJ, Cheung HS, Pang CP, Huang Y. Attenuated regenerative properties in human periodontal ligament-derived stem cells of older donor ages with shorter telomere length and lower SSEA4 expression. Cell Tissue Res 2020; 381:71-81. [PMID: 32043210 DOI: 10.1007/s00441-020-03176-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
Periodontal ligament (PDL) stem cell properties are critical in the periodontal tissue regeneration for periodontitis. Previously, we have demonstrated that cigarette smoking attenuates PDL-derived stem cell (PDLSC) regenerative properties. Here, we report the findings on the regenerative properties of human PDLSCs with different donor ages and the underlying mechanisms. Human PDLSCs from 18 independent donors were divided into different age groups (≤ 20, 20-40, and > 40 years old). The proliferation of PDLSCs with donor age of ≤ 20 years old was significantly higher than that of the 20-40- and > 40-years-old groups, whereas the migration of PDLSCs with donor age of ≤ 20 and 20-40 years old was significantly higher than that of the > 40-years-old group. Moreover, the mesodermal lineage differentiation capabilities of PDLSCs were also higher in the donor age group of ≤ 20 years old than the donor age of > 40 years old. In addition, shorter telomere length and lower expression of SSEA4 were found in PDLSCs with donor age of > 40 years old, compared with those with donor age of ≤ 20-years-old group. Besides, PDLSCs with donor age of 20-40 and > 40 years old had higher IL6 and CXCL8 gene expressions. In summary, results from this study revealed the attenuated proliferation, migration, and mesodermal lineage differentiation properties in human PDLSCs with older donor ages. Donor age of PDLSCs should be considered as the selection criteria for the periodontal tissue regeneration treatment.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China.
- Shantou University Medical College, Shantou, Guangdong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Xiaowu Yao
- Dentistry Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Li Huang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Herman S Cheung
- Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuqiang Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, North Dongxia Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
18
|
Khorolsuren Z, Lang O, Pallinger E, Foldes A, Szabolcs GG, Varga G, Mezo G, Vag J, Kohidai L. Functional and cell surface characteristics of periodontal ligament cells (PDLCs) on RGD-synthetic polypeptide conjugate coatings. J Periodontal Res 2020; 55:713-723. [PMID: 32406091 DOI: 10.1111/jre.12760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament cells (PDLCs) are an important source for periodontal tissue healing and regeneration. Proper cell adhesion is a key for survival of anchorage-dependent cells and also initiates further intracellular signals for essential cellular functions. We aimed to test 3 different synthetic conjugates with integrin-binding RGD sequence (SAK-c[RGDfC], AK-c[RGDfC], and SAK-opn on the adhesion of human PDLCs and subsequent events including proliferation, migration, behavior of cell surface molecules, and osteogenic differentiation. MATERIALS AND METHODS Synthetic peptides were synthesized by solid-phase technique and attached to branched chain polymeric polypeptides via thioether linkage. Simple adsorption method was used to coat tissue culture plastic or electric arrays. PDLCs were isolated from 24 surgically extracted human third molars. Cell adhesion and proliferation were measured with real-time impedimetric xCELLigence SP system. Cell migration assay was performed with Ibidi® Culture inserts. Cell surface antigens were detected using flow cytometry analysis. Osteogenic differentiation was assessed with alkaline phosphatase (ALP) assay and Alizarin Red S staining, and real-time qPCR was performed to analyze the osteoblast-related gene expression. Osteogenic differentiation and adipogenic differentiation of PDLCs were monitored by real-time Electrical Cell-Substrate Impedance Spectroscopy (ECIS). RESULTS Primary outcome of this study relies on that all three synthetic RGD peptides improved PDLC adhesion (P < .05). When animal serum is absent in culture medium, SAK-c[RGDfC] and AK-c[RGDfC] elevated cell adhesion (P < .05). Cell migration was enhanced by SAK-c[RGDfC] and AK-c[RGDfC] (P < .05). After 1-week treatment, all synthetic peptides elevated CD105 (1.7- to 2.2-fold) and CD146 (1.3- to 1.5-fold) markers and caused different integrin patterns. ALP activity (1.4-fold) and ARS (1.8- and 2.0-fold) were increased by SAK-c[RGDfC] and AK-c[RGDfC] in absence of osteogenic supplements, and all the peptides supported the mineralization under osteogenic condition (P < .05). RT-qPCR revealed the upregulation of bone sialoprotein (5.0- to 7.8-fold), osteocalcin (2.3- to 2.7-fold), and ALP (1.9- to 2.3-fold) gene expression in osteogenesis-induced PDLCs. ECIS monitoring showed that higher impedance was generated by the osteogenic induction compared with the adipogenic or the non-induced (P < .05). CONCLUSIONS Our study demonstrates that SAK-c[RGDfC] and AK-c[RGDfC] improved adhesion and migration of PDLCs and supported osteogenic differentiation of PDLCs. These cyclic RGD peptides proved to be applicable biocompatible material in regenerative medicine.
Collapse
Affiliation(s)
- Zambaga Khorolsuren
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Orsolya Lang
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Anna Foldes
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Gyulai-Gaál Szabolcs
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Gabor Mezo
- MTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary
| | - Janos Vag
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Kohidai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Liu H, Yang M, Wu G, Yang L, Cao Y, Liu C, Tan Z, Jin Y, Guo J, Zhu L. Effects of different oxygen concentrations on the proliferation, survival, migration, and osteogenic differentiation of MC3T3-E1 cells. Connect Tissue Res 2019; 60:240-253. [PMID: 29916278 DOI: 10.1080/03008207.2018.1487413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In physiological and pathological environments, the concentration of oxygen around osteoblasts varies widely. No studies have systematically evaluated the effects of different oxygen concentrations on the proliferation, survival, migration, and osteogenic differentiation of osteoblasts. In this study, we cultured the osteoblast precursor cell line MC3T3-E1 in small individual chambers with oxygen concentrations of 1%, 3%, 6%, 9%, and 21%. Cell proliferation was evaluated by the proliferation index test and EdU staining. To test cell survival, a live/dead assay was performed. A tablet scratch assay was performed to detect the migratory ability of the cells. Bone nodule formation experiments and immunofluorescence and Western blotting analyses of osteogenic-related proteins were performed to assess the osteogenic differentiation of the cells. We found that the proliferation and osteogenic differentiation ability of MC3T3-E1 cells in different oxygen concentrations were both approximately bell-shaped curves and that the optimal oxygen concentrations were approximately 6% and 9%, respectively. The live/dead assay showed that the survival of MC3T3-E1 cells in different oxygen concentrations was affected by the amount of serum. The tablet scratch experiment showed that there was greater cell migration with oxygen concentrations of 1%, 3%, and 21% than with oxygen concentrations of 6% and 9%. Our results have significant reference value for the intervention of the pathological processes involving osteoblasts, such as fracture, osteoporosis, and some vascular diseases. These results also have an important guiding role for the new scientific idea that osteoblasts can function as treatment cells to repair bone defects.
Collapse
Affiliation(s)
- Haixin Liu
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Minsheng Yang
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guofeng Wu
- b Department of Orthopedics , Jingzhou First People's Hospital, The First Affiliated Hospital of Yangtze University , Jingzhou , China
| | - Lianjun Yang
- c Department of Spine Orthopedics , The Third Affiliated Hospital, Southern Medical University , Guangzhou , China
| | - Yanlin Cao
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Chun Liu
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Zhiwen Tan
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Yanglei Jin
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jiasong Guo
- d Department of Histology and Embryology , Southern Medical University , Guangzhou , China.,e Key Laboratory of Tissue Construction and Detection of Guangdong Province , Guangzhou , China.,f Institute of Bone Biology, Academy of Orthopaedics, Guangdong Province , Guangzhou , China
| | - Lixin Zhu
- a Department of Spine Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
20
|
Theruvath AJ, Nejadnik H, Muehe AM, Gassert F, Lacayo NJ, Goodman SB, Daldrup-Link HE. Tracking Cell Transplants in Femoral Osteonecrosis with Magnetic Resonance Imaging: A Proof-of-Concept Study in Patients. Clin Cancer Res 2018; 24:6223-6229. [PMID: 30224340 DOI: 10.1158/1078-0432.ccr-18-1687] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Osteonecrosis is a devastating complication of high-dose corticosteroid therapy in patients with cancer. Core decompression for prevention of bone collapse has been recently combined with the delivery of autologous concentrated bone marrow aspirates. The purpose of our study was to develop an imaging test for the detection of transplanted bone marrow cells in osteonecrosis lesions. EXPERIMENTAL DESIGN In a prospective proof-of-concept clinical trial (NCT02893293), we performed serial MRI studies of nine hip joints of 7 patients with osteonecrosis before and after core decompression. Twenty-four to 48 hours prior to the surgery, we injected ferumoxytol nanoparticles intravenously to label cells in normal bone marrow with iron oxides. During the surgery, iron-labeled bone marrow cells were aspirated from the iliac crest, concentrated, and then injected into the decompression track. Following surgery, patients received follow-up MRI up to 6 months after bone marrow cell transplantation. RESULTS Iron-labeled cells could be detected in the access canal by a dark (negative) signal on T2-weighted MR images. T2* relaxation times of iron-labeled cell transplants were significantly lower compared with unlabeled cell transplants of control patients who were not injected with ferumoxytol (P = 0.02). Clinical outcomes of patients who received ferumoxytol-labeled or unlabeled cell transplants were not significantly different (P = 1), suggesting that the added ferumoxytol administration did not negatively affect bone repair. CONCLUSIONS This immediately clinically applicable imaging test could become a powerful new tool to monitor the effect of therapeutic cells on bone repair outcomes after corticosteroid-induced osteonecrosis.
Collapse
Affiliation(s)
- Ashok J Theruvath
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, California.,Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany.,Pediatric Molecular Imaging Program, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Hossein Nejadnik
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, California.,Pediatric Molecular Imaging Program, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Anne M Muehe
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, California.,Pediatric Molecular Imaging Program, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Felix Gassert
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, California.,Pediatric Molecular Imaging Program, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Norman J Lacayo
- Department of Pediatrics, Pediatric Hematology/Oncology, Lucile Packard Children's Hospital and Stanford Cancer Center, Stanford University, Stanford, California
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and Bioengineering, Stanford Hospital, Stanford University, Stanford, California
| | - Heike E Daldrup-Link
- Department of Radiology, Pediatric Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, California. .,Pediatric Molecular Imaging Program, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Department of Pediatrics, Pediatric Hematology/Oncology, Lucile Packard Children's Hospital and Stanford Cancer Center, Stanford University, Stanford, California
| |
Collapse
|
21
|
Strontium-Substituted Bioceramics Particles: A New Way to Modulate MCP-1 and Gro-α Production by Human Primary Osteoblastic Cells. MATERIALS 2016; 9:ma9120985. [PMID: 28774105 PMCID: PMC5456992 DOI: 10.3390/ma9120985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
Abstract
Background: To avoid morbidity and limited availability associated with autografts, synthetic calcium phosphate (CaP) ceramics were extensively developed and used as bone filling materials. Controlling their induced-inflammatory response nevertheless remained a major concern. Strontium-containing CaP ceramics were recently demonstrated for impacting cytokines’ secretion pattern of human primary monocytes. The present study focuses on the ability of strontium-containing CaP to control the human primary bone cell production of two major inflammatory and pro-osteoclastogenic mediators, namely MCP-1 and Gro-α, in response to ceramics particles. Methods: This in vitro study was performed using human primary osteoblasts in which their response to ceramics was evaluated by PCR arrays, antibody arrays were used for screening and real-time PCR and ELISA for more focused analyses. Results: Study of mRNA and protein expression highlights that human primary bone cells are able to produce these inflammatory mediators and reveal that the adjunction of CaP in the culture medium leads to their enhanced production. Importantly, the current work determines the down-regulating effect of strontium-substituted CaP on MCP-1 and Gro-α production. Conclusion: Our findings point out a new capability of strontium to modulate human primary bone cells’ communication with the immune system.
Collapse
|
22
|
Li J, Xu Q, Teng B, Yu C, Li J, Song L, Lai YX, Zhang J, Zheng W, Ren PG. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomater 2016; 42:389-399. [PMID: 27326916 DOI: 10.1016/j.actbio.2016.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. STATEMENT OF SIGNIFICANCE Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Chen Yu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yu-Xiao Lai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
23
|
Chen Z, Liu HL. Restoration of miR-1305 relieves the inhibitory effect of nicotine on periodontal ligament-derived stem cell proliferation, migration, and osteogenic differentiation. J Oral Pathol Med 2016; 46:313-320. [PMID: 27604968 DOI: 10.1111/jop.12492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nicotine hinders the regenerative potentials of human periodontal ligament-derived stem cells (PDLSCs) and delays the healing process of periodontal diseases, but the underlying mechanism remains unclear. miR-1305 upregulation and its potential target RUNX2 downregulation exist in the PDLSCs exposed to nicotine. In this study, we aimed to investigate whether nicotine inhibits PDLSC proliferation, migration, and osteogenic differentiation by increasing miR-1305 level and decreasing RUNX2 level. METHODS Quantitative real-time PCR (qRT-PCR) and Western blot assays were performed to detect the expression levels of miR-1305 and RUNX2 in the PDLSCs exposed to nicotine, respectively. PDLSCs with miR-1305 overexpression, low expression, or RUNX2 overexpression were constructed by lipofectin transfection. MTT, migration, and Western blot assays were applied to assess the effect of miR-1305 on PDLSC proliferation, migration, and osteogenic differentiation, respectively. Target prediction and luciferase reporter assays were performed to investigate the targets of miR-1305. RESULTS Nicotine promoted miR-1305 expression and inhibited RUNX2 expression in PDLSCs. Cell proliferation, migration, and differentiation detection showed that nicotine suppressed proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieved the inhibitory effect of nicotine on PDLSCs. Moreover, we identified and validated that RUNX2 was a direct target of miR-1305, and upregulation of RUNX2 had similar effects with the downregulation of miR-1305 on relieving the inhibitory effect of nicotine on PDLSCs. CONCLUSION Nicotine suppresses proliferation, migration, and osteogenic differentiation of PDLSCs, and restoration of miR-1305 relieves the inhibitory effect of nicotine on PDLSCs depending on its target RUNX2.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stomatology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hui-Li Liu
- Department of Stomatology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials. Sci Rep 2015; 5:7828. [PMID: 25591783 PMCID: PMC5379007 DOI: 10.1038/srep07828] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/15/2014] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking contributes to the development of destructive periodontal diseases and delays its healing process. Our previous study demonstrated that nicotine, a major constituent in the cigarette smoke, inhibits the regenerative potentials of human periodontal ligament-derived stem cells (PDLSC) through microRNA (miRNA) regulation. In this study, we hypothesized that the delayed healing in cigarette smokers is caused by the afflicted regenerative potential of smoker PDLSC. We cultured PDLSC from teeth extracted from smokers and non-smokers. In smoker PDLSC, we found significantly reduced proliferation rate and retarded migration capabilities. Moreover, alkaline phosphatase activity, calcium deposition and acidic polysaccharide staining were reduced after BMP2-induced differentiation. In contrast, more lipid deposition was observed in adipogenic-induced smoker PDLSC. Furthermore, two nicotine-related miRNAs, hsa-miR-1305 (22.08 folds, p = 0.040) and hsa-miR-18b (15.56 folds, p = 0.018), were significantly upregulated in smoker PDLSC, suggesting these miRNAs might play an important role in the deteriorative effects on stem cells by cigarette smoke. Results of this study provide further evidences that cigarette smoking affects the regenerative potentials of human adult stem cells.
Collapse
|
25
|
Lin TH, Tamaki Y, Pajarinen J, Waters HA, Woo DK, Yao Z, Goodman SB. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-κB as a therapeutic target. Acta Biomater 2014; 10:1-10. [PMID: 24090989 DOI: 10.1016/j.actbio.2013.09.034] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Biomaterial-induced tissue responses in patients with total joint replacement are associated with the generation of wear particles, which may lead to chronic inflammation and local bone destruction (periprosthetic osteolysis). Inflammatory reactions associated with wear particles are mediated by several important signaling pathways, the most important of which involves the transcription factor NF-κB. NF-κB activation is essential for macrophage recruitment and maturation, as well as the production of pro-inflammatory cytokines and chemokines such as TNF-α, IL-1β, IL-6 and MCP1. In addition, NF-κB activation contributes to osteoclast differentiation and maturation via RANK/RANKL signaling, which increases bone destruction and reduces bone formation. Targeting individual downstream cytokines directly (such as TNF-α or IL-1β) may not effectively prevent wear particle induced osteolysis. A more logical upstream therapeutic approach may be provided by direct modulation of the core IκB/IKKα/β/NF-κB signaling pathway in the local environment. However, the timing, dose and strategy for administration should be considered. Suppression of chronic inflammation via inhibition of NF-κB activity in patients with malfunctioning joint replacements may be an effective strategy to mitigate wear particle induced periprosthetic osteolysis.
Collapse
Affiliation(s)
- Tzu-hua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy 2013; 15:1309-22. [PMID: 23999157 DOI: 10.1016/j.jcyt.2013.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 01/14/2023]
Abstract
This review summarizes recent efforts to create vascularized bone tissue in vitro and in vivo through the use of cell-based therapy approaches. The treatment of large and recalcitrant bone wounds is a serious clinical problem, and in the United States approximately 10% of all fractures are complicated by delayed union or non-union. Treatment approaches with the use of growth factor and gene delivery have shown some promise, but results are variable and clinical complications have arisen. Cell-based therapies offer the potential to recapitulate key components of the bone-healing cascade, which involves concomitant regeneration of vasculature and new bone tissue. For this reason, osteogenic and vasculogenic cell types have been combined in co-cultures to capitalize on the function of each cell type and to promote heterotypic interactions. Experiments in both two-dimensional and three-dimensional systems have provided insight into the mechanisms by which osteogenic and vasculogenic cells interact to form vascularized bone, and these approaches have been translated to ectopic and orthotopic models in small-animal studies. The knowledge generated by these studies will inform and facilitate the next generation of pre-clinical studies, which are needed to move cell-based orthopaedic repair strategies into the clinic. The science and application of cytotherapy for repair of large and ischemic bone defects is developing rapidly and promises to provide new treatment methods for these challenging clinical problems.
Collapse
|
27
|
Abstract
OBJECTIVE A review of the innovative role molecular imaging plays in musculoskeletal radiology is provided. Musculoskeletal molecular imaging is under development in four key areas: imaging the activity of osteoblasts and osteoclasts, imaging of molecular and cellular biomarkers of arthritic joint destruction, cellular imaging of osteomyelitis, and imaging generators of musculoskeletal pain. CONCLUSION Together, these applications suggest that next-generation musculoskeletal radiology will facilitate quantitative visualization of molecular and cellular biomarkers, an advancement that appeared futuristic just a decade ago.
Collapse
|
28
|
Guo YJ, Long T, Chen W, Ning CQ, Zhu ZA, Guo YP. Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3583-91. [PMID: 23910253 DOI: 10.1016/j.msec.2013.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/20/2013] [Accepted: 04/08/2013] [Indexed: 01/27/2023]
Abstract
Implant-associated infection is a serious problem in orthopaedic surgery. One of the most effective ways is to introduce a controlled antibiotics delivery system into the bone filling materials, achieving sustained release of antibiotics in the local sites of bone defects. In the present work, mesoporous carbonated hydroxyapatite microspheres (MCHMs) loaded with gentamicin have been fabricated according to the following stages: (i) the preparation of the MCHMs by hydrothermal method using calcium carbonate microspheres as sacrificial templates, and (ii) loading gentamicin into the MCHMs. The MCHMs exhibit the 3D hierarchical nanostructures constructed by nanoplates as building blocks with mesopores and macropores, which make them have the higher drug loading efficiency of 70-75% than the conventional hydroxyapatite particles (HAPs) of 20-25%. The gentamicin-loaded MCHMs display the sustained drug release property, and the controlled release of gentamicin can minimize significantly bacterial adhesion and prevent biofilm formation against S. epidermidis. The biocompatibility tests by using human bone marrow stromal cells (hBMSCs) as cell models indicate that the gentamicin-loaded MCHMs have as excellent biocompatibility as the HAPs, and the dose of the released gentamicin from the MCHMs has no toxic effects on the hBMSCs. Hence, the gentamicin-loaded MCHMs can be served as a simple, non-toxic and controlled drug delivery system to treat bone infections.
Collapse
Affiliation(s)
- Ya-Jun Guo
- The Key Laboratory of Resource Chemistry of Ministry of Education, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | |
Collapse
|
29
|
Goodman SB. Cell-based therapies for regenerating bone. MINERVA ORTOPEDICA E TRAUMATOLOGICA : ORGANO UFFICIALE DELLA SOCIETA PIEMONTESE-LIGURE-LOMBARDA DI ORTOPEDIA E TRAUMATOLOGIA 2013; 64:107-113. [PMID: 24436510 PMCID: PMC3891509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellular therapies to replenish bone lost due to acquired conditions such as trauma, infection, tumor, periprosthetic osteolysis and other etiologies have become widespread. Traditional, open, surgical bone grafting techniques have given way to newer cellular therapies that are potentially less invasive and have a lower complication rate and faster recovery time. These new technologies include bone marrow harvesting with concentration of osteoprogenitor cells with/without cell culture, scaffolds which are both osteoconductive and osteoinductive, attempts to facilitate mesenchymal stem cell and osteoprogenitor cell homing both locally and systemically, genetic engineering of specialized stem cells, and the use of potentially immune-privileged fetal and other types of stem cells. Some of these techniques have already been introduced into the orthopaedic clinic, whereas others are still in the pre-clinical testing phase. Given the limited supply of autologous graft, these new techniques will have a dramatic impact on bone regeneration in the future.
Collapse
Affiliation(s)
- S B Goodman
- Orthopedic Research Laboratories, Stanford University, Stanford, CA, USA
| |
Collapse
|
30
|
Jawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, Babij P, Genovese MC. Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res 2013; 31:155-63. [PMID: 22887736 DOI: 10.1002/jor.22186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/12/2012] [Indexed: 02/04/2023]
Abstract
Sclerostin is a glycoprotein secreted by osteocytes and inhibits osteoblastogenesis via inhibition of Wnt signaling. We hypothesized that sclerostin antibody (Scl-AbIII) would accelerate the healing of a murine femoral non-critical size bone defect model. A unilateral and unicortical 0.8 mm-sized drill hole was made in the proximal femoral shaft of adult female nude mice. One group of mice received subcutaneous injections of Scl-AbIII and a second group received vehicle only. Reporter MC3T3 osteoprogenitor cells were injected via the tail vein 3 days after surgery to monitor systemic trafficking of exogenous osteoprogenitors. Bioluminescence imaging (BLI), microcomputed tomography (microCT), micropositron emission tomography (microPET) and histological analysis were used to compare the bone healing responses to Scl-AbIII treatment. Bone mineral density (BMD) significantly increased at the defect site after week 1, and was significantly higher in the treatment compared with the control group at all time points. This finding was also confirmed on histological analysis by increased deposition of new woven bone. MicroPET scanning showed a trend for greater activity in the control group at day 21 compared with the Scl-AbIII group, indicating early bone maturation following treatment with Scl-AbIII. Whereas the BLI signals derived from the injected osteoprogenitor cells showed no differences between vehicle and Scl-AbIII treated groups, systemic migration of MC3T3 cells to the bone defect was clearly identified in both groups using immunohistochemistry. Systemic administration of Scl-AbIII resulted in earlier healing and maturation of a non-critical size bone defect. These findings underscore the potential use of Scl-AbIII for treatment of complicated fractures, non-unions, and other clinical scenarios.
Collapse
Affiliation(s)
- Muhammad U Jawad
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway Street, Mail Code 6342 Redwood City, Stanford, California 94063, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cheung WH, Chin WC, Wei FY, Li G, Leung KS. Applications of exogenous mesenchymal stem cells and low intensity pulsed ultrasound enhance fracture healing in rat model. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:117-125. [PMID: 23062370 DOI: 10.1016/j.ultrasmedbio.2012.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/10/2012] [Accepted: 08/21/2012] [Indexed: 06/01/2023]
Abstract
The present study aimed to investigate the effects of combined treatment of exogenous mesenchymal stem cells (MSCs) and low intensity pulsed ultrasound (LIPUS) on fracture healing by comparing LIPUS-MSC, MSC and control (CTL) groups. Radiography and quantitative callus width/area demonstrated that the MSC-LIPUS group had the best healing, MSC group the second and CTL group the poorest with significant differences among each at different time points. Micro-CT data supported that MSC-LIPUS had the highest bone volume/tissue volume. Histomorphometry showed a significantly faster remodeling in late phase in MSC-LIPUS and MSC groups. These indicated that the combined treatment of MSCs and LIPUS was beneficial to fracture healing. Regenerative power and homing ability of MSCs were shown by promotion in fracture healing and locally found green fluorescent protein (GFP)-labeled MSCs at fracture calluses. This evidence reflects that co-treatment of MSCs and LIPUS may be developed as an intervention for delayed union or nonunion.
Collapse
Affiliation(s)
- Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | | | | | | | | |
Collapse
|
32
|
Ng TK, Carballosa CM, Pelaez D, Wong HK, Choy KW, Pang CP, Cheung HS. Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential. Stem Cells Dev 2012; 22:781-90. [PMID: 23030247 DOI: 10.1089/scd.2012.0434] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.
Collapse
Affiliation(s)
- Tsz Kin Ng
- Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, Florida 33125, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Osteoprogenitor cells show therapeutic potential for bone repair. BONEKEY REPORTS 2012; 1:55. [PMID: 23951454 DOI: 10.1038/bonekey.2012.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|