1
|
Zhang Y, Zhou C, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J, Liang W. Dual release scaffolds as a promising strategy for enhancing bone regeneration: an updated review. Nanomedicine (Lond) 2025; 20:371-388. [PMID: 39891431 PMCID: PMC11812394 DOI: 10.1080/17435889.2025.2457317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Advancements in tissue regeneration, particularly bone regeneration is key area of research due to potential of novel therapeutic approaches. Efforts to reduce reliance on autologous and allogeneic bone grafts have led to the development of biomaterials that promote synchronized and controlled bone healing. However, the use of growth factors is limited by their short half-life, slow tissue penetration, large molecular size and potential toxicity. These factors suggest that traditional delivery methods may be inadequate hence, to address these challenges, new strategies are being explored. These novel approaches include the use of bioactive substances within advanced delivery systems that enable precise spatiotemporal control. Dual-release composite scaffolds offer a promising solution by reducing the need for multiple surgical interventions and simplifying the treatment process. These scaffolds allow for sustained and controlled drug release, enhancing bone repair while minimizing the drawbacks of conventional methods. This review explores various dual-drug release systems, discussing their modes of action, types of drugs used and release mechanisms to improve bone regeneration.
Collapse
Affiliation(s)
- Yongtao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Wähnert D, Miersbach M, Colcuc C, Brianza S, Vordemvenne T, Plecko M, Schwarz A. Promoting bone callus formation by taking advantage of the time-dependent fracture gap strain modulation. Front Surg 2024; 11:1376441. [PMID: 38756355 PMCID: PMC11096559 DOI: 10.3389/fsurg.2024.1376441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Delayed union and non-union of fractures continue to be a major problem in trauma and orthopedic surgery. These cases are challenging for the surgeon. In addition, these patients suffer from multiple surgeries, pain and disability. Furthermore, these cases are a major burden on healthcare systems. The scientific community widely agrees that the stability of fixation plays a crucial role in determining the outcome of osteosynthesis. The extent of stabilization affects factors like fracture gap strain and fluid flow, which, in turn, influence the regenerative processes positively or negatively. Nonetheless, a growing body of literature suggests that during the fracture healing process, there exists a critical time frame where intervention can stimulate the bone's return to its original form and function. This article provides a summary of existing evidence in the literature regarding the impact of different levels of fixation stability on the strain experienced by newly forming tissues. We will also discuss the timing and nature of this "window of opportunity" and explore how current knowledge is driving the development of new technologies with design enhancements rooted in mechanobiological principles.
Collapse
Affiliation(s)
- Dirk Wähnert
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Marco Miersbach
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Christian Colcuc
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | | | - Thomas Vordemvenne
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Michael Plecko
- Department of Orthopaedics and Traumatology, Trauma Hospital Graz (UKH), Graz, Austria
| | - Angelika Schwarz
- Department of Orthopaedics and Traumatology, Trauma Hospital Graz (UKH), Graz, Austria
| |
Collapse
|
3
|
Azadi S, Yazdanpanah MA, Afshari A, Alahdad N, Chegeni S, Angaji A, Rezayat SM, Tavakol S. Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix. J Tissue Eng 2024; 15:20417314241303818. [PMID: 39670180 PMCID: PMC11635874 DOI: 10.1177/20417314241303818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
There have been remarkable advancements in regenerative medicine for bone regeneration, tackling the worldwide health concern of tissue loss. Tissue engineering uses the body's natural capabilities and applies biomaterials and bioactive molecules to replace damaged or lost tissues and restore their functionality. While synthetic ceramics have overcome some challenges associated with allografts and xenografts, they still need essential growth factors and biomolecules. Combining ceramics and bioactive molecules, such as peptides derived from biological motifs of vital proteins, is the most effective approach to achieve optimal bone regeneration. These bioactive peptides induce various cellular processes and modify scaffold properties by mimicking the function of natural osteogenic, angiogenic and antibacterial biomolecules. The present review aims to consolidate the latest and most pertinent information on the advancements in bioactive peptides, including angiogenic, osteogenic, antimicrobial, and self-assembling peptide nanofibers for bone tissue regeneration, elucidating their biological effects and potential clinical implications.
Collapse
Affiliation(s)
- Sareh Azadi
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Yazdanpanah
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Ali Afshari
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Niloofar Alahdad
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Solmaz Chegeni
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolhamid Angaji
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Research and Development, Tavakol Biomimetic Technologies Company, Tehran, Iran
| |
Collapse
|
4
|
Al Qabbani A, Rani KGA, AlKawas S, Sheikh Abdul Hamid S, Yap Abdullah A, Samsudin AR, Azlina A. Evaluation of the osteogenic potential of demineralized and decellularized bovine bone granules following implantation in rat calvaria critical-size defect model. PLoS One 2023; 18:e0294291. [PMID: 38127838 PMCID: PMC10734957 DOI: 10.1371/journal.pone.0294291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this study was to compare the ability of demineralized (DMB) and decellularized (DCC) bovine bone granules to support bone regeneration in rat calvaria critical-size defects. DMB and DCC were prepared using a previously published method. The granule size used ranged between 500 and 750 μm. A total of forty-eight Sprague-Dawley rats were divided into two groups (n = 24). A pair of 5 mm diameter defects were created on the calvaria of the rats in the right and left parietal bone in both groups. Group A animals received DMB granules and Group B received DCC granules in the right parietal defect side while the left parietal untreated defect acted as sham surgery for both groups. Four animals per group were euthanized in a CO2 chamber at day 7, 14 and 21 post-surgery and the calvaria implantation site biopsy harvested was subjected to osteogenic gene expression analysis. Another four animals per group were euthanized at days 15, 30 and 60 post surgery and the calvaria implantation site biopsy harvested was subjected to histological, immunohistochemistry, RAMAN spectroscopy and Micro-CT analysis at the mentioned time points. Statistical analysis was conducted using t-tests and ANOVA. Histomorphometry showed significantly higher new bone formation in the DCC sites (p<0.05) compared to DMB. Both DMB and DCC implantation sites showed distinct staining for osteocalcin and osteopontin proteins compared to their respective sham sites. By day 21 after implantation, DCC sites demonstrated significantly elevated mRNA levels of osteonectin (p<0.001), osteopontin (p<0.001), osteocalcin (p<0.0001), ALP (p<0.01), and BMP-2 (p<0.001) compared to DMB. However, VEGF expression showed no significant differences at this time point between the two groups. Micro-CT analysis also showed enhanced defect closure and higher bone density in DCC implanted sites while RAMAN spectra demonstrated increased abundance of collagen and bone minerals, especially, PO43- ions than DMB. In conclusion, both DMB and DCC granules demonstrated favorable osteogenic potential in critical-sized defects, with DCC exhibited superior osteoconductive, osteoinductive and osteogenesis properties.
Collapse
Affiliation(s)
- Ali Al Qabbani
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Dental Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - K. G. Aghila Rani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sausan AlKawas
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - A. R. Samsudin
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Azlina
- School of Dental Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
5
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
6
|
López-Valverde N, Aragoneses J, Rodríguez C, Aragoneses JM. Effect on osseointegration of dental implants treated with carboxyethylphosphonic acid and functionalized with BMP-2: preliminary study on a minipig model. Front Bioeng Biotechnol 2023; 11:1244667. [PMID: 37576987 PMCID: PMC10413559 DOI: 10.3389/fbioe.2023.1244667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Rough titanium surfaces biofunctionalised by osteogenic proteins, such as BMP-2, have been shown to accelerate the osseointegration process and reduce waiting times for prosthetic loading. The preclinical study presented here compared the bone in contact with the implant and bone neoformation and density between titanium (Ti) implants with a conventional etched surface (SLA type) and others treated with carboxyethylphosphonic acid (CEPA) and bone morphogenetic protein 2 (BMP-2), after 4 weeks of implantation in the tibia of a minipig model. Methods: Sixteen implants (eight experimental and eight control) of Ti-Al16-V4 with a tapered screw design and internal hexagonal connection were randomly inserted into the tibiae of four minipigs, four in each tibia. The experimental implants were treated with CEPA and BMP-2 and sterilised with gamma radiation (25 KG). The insertion torque was 40 N and primary stability was measured with the Osstell® device (ISQ 64 ± 2.6). Five bone parameters were evaluated: bone in contact with the implant (BIC), bone in contact with the corrected implant (BICc), new bone formation (BV/TV), bone density between threads (BAI/TA) and peri-implant bone density (BAP/TA). A histomorphometric study was performed and the samples were digitised with Adobe Photoshop Cs6. Statistical analysis of the variables was performed using SAS 9.4. Results: After a period of 4 weeks, no significant clinical signs were observed and all implants were integrated. Light microscopy of the experimental group revealed an ICB with no signs of fiber tissue, but with areas of ectopic new bone in the medullary space. Statistical analysis showed significant results for BIC and BICc (p = 0.0001 and p = 0.001, respectively). No statistical signification was found for the other parameters evaluated. Conclusion: Despite the limitations of this study, our results demonstrated that dental implant surfaces treated with CEPA and BMP-2 improve their biological response to osseointegration.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, Faculty of Medicine, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Javier Aragoneses
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | | |
Collapse
|
7
|
Grosso A, Lunger A, Burger MG, Briquez PS, Mai F, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone. NPJ Regen Med 2023; 8:15. [PMID: 36914692 PMCID: PMC10011536 DOI: 10.1038/s41536-023-00288-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF) physiologically regulates both angiogenesis and osteogenesis, but its application in bone tissue engineering led to contradictory outcomes. A poorly understood aspect is how VEGF dose impacts the coordination between these two processes. Taking advantage of a unique and highly tunable platform, here we dissected the effects of VEGF dose over a 1,000-fold range in the context of tissue-engineered osteogenic grafts. We found that osteo-angiogenic coupling is exquisitely dependent on VEGF dose and that only a tightly defined dose range could stimulate both vascular invasion and osteogenic commitment of progenitors, with significant improvement in bone formation. Further, VEGF dose regulated Notch1 activation and the induction of a specific pro-osteogenic endothelial phenotype, independently of the promotion of vascular invasion. Therefore, in a therapeutic perspective, fine-tuning of VEGF dose in the signaling microenvironment is key to ensure physiological coupling of accelerated vascular invasion and improved bone formation.
Collapse
Affiliation(s)
- Andrea Grosso
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Lunger
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Maximilian G Burger
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA.,Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Francesca Mai
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL, 60637, USA
| | - Dirk J Schaefer
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Banfi
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland. .,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nunzia Di Maggio
- Regenerative Angiogenesis Laboratory, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
8
|
Wen J, Cai D, Gao W, He R, Li Y, Zhou Y, Klein T, Xiao L, Xiao Y. Osteoimmunomodulatory Nanoparticles for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040692. [PMID: 36839060 PMCID: PMC9962115 DOI: 10.3390/nano13040692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Treatment of large bone fractures remains a challenge for orthopedists. Bone regeneration is a complex process that includes skeletal cells such as osteoblasts, osteoclasts, and immune cells to regulate bone formation and resorption. Osteoimmunology, studying this complicated process, has recently been used to develop biomaterials for advanced bone regeneration. Ideally, a biomaterial shall enable a timely switch from early stage inflammatory (to recruit osteogenic progenitor cells) to later-stage anti-inflammatory (to promote differentiation and terminal osteogenic mineralization and model the microstructure of bone tissue) in immune cells, especially the M1-to-M2 phenotype switch in macrophage populations, for bone regeneration. Nanoparticle (NP)-based advanced drug delivery systems can enable the controlled release of therapeutic reagents and the delivery of therapeutics into specific cell types, thereby benefiting bone regeneration through osteoimmunomodulation. In this review, we briefly describe the significance of osteoimmunology in bone regeneration, the advancement of NP-based approaches for bone regeneration, and the application of NPs in macrophage-targeting drug delivery for advanced osteoimmunomodulation.
Collapse
Affiliation(s)
- Jingyi Wen
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Donglin Cai
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Wendong Gao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Ruiying He
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430061, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200231, China
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
9
|
A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication. Acta Biomater 2022; 154:641-649. [PMID: 36261107 DOI: 10.1016/j.actbio.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
We previously described an immortalized, genetically-engineered human Mesenchymal stromal cell line to generate BMP2-enriched Chondrogenic Matrices (MB-CM), which after devitalization and storage could efficiently induce ectopic bone tissue by endochondral ossification. In order to increase the efficiency of MB-CM utilization towards engineering scaled-up bone structures, here we hypothesized that MB-CM can retain osteoinductive properties when combined with an osteoconductive material. We first tested different volumetric ratios of MB-CM:SmartBone® (as clinically used, osteoconductive reference material) and assessed the bone formation capacity of the resulting composites following ectopic mouse implantation. After 8 weeks, as little as 25% of MB-CM was sufficient to induce bone formation and fusion across SmartBone® granules, generating large interconnected bony structures. The same composite percentage was then further assessed in a scaled-up model, namely within an axially-vascularized, confined, ectopically prefabricated flap (0.8 cm3) in rats. The material efficiently induced the formation of new bone (31% of the cross-sectional area after 8 weeks), including bone marrow and vascular elements, throughout the flap volume. Our findings outline a strategy for efficient use of MB-CM as part of a composite material, thereby reducing the amount required to fill large spaces and enabling utilization in critically sized grafts, to address challenging clinical scenarios in bone reconstruction. STATEMENT OF SIGNIFICANCE: Most bone repair strategies rely either on osteconductive properties of ceramics and devitalized bone, or osteoinductive properties of growth factors and extracellular matrices (ECM). Here we designed a composite material made of a clinically accepted osteoconductive material and an off-the-shelf tissue engineered human cartilage ECM with strong osteoinductive properties. We showed that low amount of osteoinductive ECM potentiated host cells recruitment to form large vascularized bone structures in two different animal models, one being a challenging prefabricated bone-flap model targeting challenging clinical bone repair. Overall, this study highlights the use of a promising human off-the-shelf material for accelerated healing towards clinical applications.
Collapse
|
10
|
Burger MG, Grosso A, Briquez PS, Born GME, Lunger A, Schrenk F, Todorov A, Sacchi V, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater 2022; 149:111-125. [PMID: 35835287 DOI: 10.1016/j.actbio.2022.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022]
Abstract
Rapid vascularization of clinical-size bone grafts is an unsolved challenge in regenerative medicine. Vascular endothelial growth factor-A (VEGF) is the master regulator of angiogenesis. Its over-expression by genetically modified human osteoprogenitors has been previously evaluated to drive vascularization in osteogenic grafts, but has been observed to cause paradoxical bone loss through excessive osteoclast recruitment. However, during bone development angiogenesis and osteogenesis are physiologically coupled by VEGF expression. Here we investigated whether the mode of VEGF delivery may be a key to recapitulate its physiological function. VEGF activity requires binding to the extracellular matrix, and heterogeneous levels of expression lead to localized microenvironments of excessive dose. Therefore we hypothesized that a homogeneous distribution of matrix-associated factor in the microenvironment may enable efficient coupling of angiogenesis and bone formation. This was achieved by decorating fibrin matrices with a cross-linkable engineered version of VEGF (TG-VEGF) that is released only by enzymatic cleavage by invading cells. In ectopic grafts, both TG-VEGF and VEGF-expressing progenitors similarly improved vascularization within the first week, but efficient bone formation was possible only in the factor-decorated matrices, whereas heterogenous, cell-based VEGF expression caused significant bone loss. In critical-size orthotopic calvaria defects, TG-VEGF effectively improved early vascular invasion, osteoprogenitor survival and differentiation, as well as bone repair compared to both controls and VEGF-expressing progenitors. In conclusion, homogenous distribution of matrix-associated VEGF protein preserves the physiological coupling of angiogenesis and osteogenesis, providing an attractive and clinically applicable strategy to engineer vascularized bone. STATEMENT OF SIGNIFICANCE: The therapeutic regeneration of vascularized bone is an unsolved challenge in regenerative medicine. Stimulation of blood vessel growth by over-expression of VEGF has been associated with paradoxical bone loss, whereas angiogenesis and osteogenesis are physiologically coupled by VEGF during development. Here we found that controlling the distribution of VEGF dose in an osteogenic graft is key to recapitulate its physiological function. In fact, homogeneous decoration of fibrin matrices with engineered VEGF could improve both vascularization and bone formation in orthotopic critical-size defects, dispensing with the need for combined osteogenic factor delivery. VEGF-decorated fibrin matrices provide a readily translatable platform for engineering a controlled microenvironment for bone regeneration.
Collapse
Affiliation(s)
- Maximilian G Burger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Gordian M E Born
- Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Lunger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Flavio Schrenk
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Atanas Todorov
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland; Tissue Engineering, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Veronica Sacchi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Dirk J Schaefer
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland; Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel University Hospital, Petersgraben 4, 4031, Basel, Switzerland.
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
11
|
Abstract
Despite major research efforts to elucidate mechanisms of non-union formation, failed fracture healing remains a common complication in orthopedic surgery. Adequate vascularization has been recognized as a crucial factor for successful bone regeneration, as newly formed microvessels guarantee the supply of the callus tissue with vital oxygen, nutrients, and growth factors. Accordingly, a vast number of preclinical studies have focused on the development of vascularization strategies to stimulate fracture repair. However, recent evidence suggests that stimulation of blood vessel formation is an oversimplified approach to support bone regeneration. This review discusses the role of vascularization during bone regeneration and delineates a phenomenon, for which we coin the term “the vascularization paradox of non-union-formation”. This view is based on the results of a variety of experimental studies that suggest that the callus tissue of non-unions is indeed densely vascularized and that pro-angiogenic mediators, such as vascular endothelial growth factor, are sufficiently expressed at the facture site. By gaining further insights into the molecular and cellular basis of non-union vascularization, it may be possible to develop more optimized treatment approaches or even prevent the non-union formation in the future.
Collapse
|
12
|
Dadwal UC, de Andrade Staut C, Tewari NP, Awosanya OD, Mendenhall SK, Valuch CR, Nagaraj RU, Blosser RJ, Li J, Kacena MA. Effects of diet, BMP-2 treatment, and femoral skeletal injury on endothelial cells derived from the ipsilateral and contralateral limbs. J Orthop Res 2022; 40:439-448. [PMID: 33713476 PMCID: PMC8435543 DOI: 10.1002/jor.25033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Type 2 diabetes (T2D) results in physiological and structural changes in bone, contributing to poor fracture healing. T2D compromises microvascular performance, which can negatively impact bone regeneration as angiogenesis is required for new bone formation. We examined the effects of bone morphogenetic protein-2 (BMP-2) administered locally at the time of femoral segmental bone defect (SBD) surgery, and its angiogenic impacts on endothelial cells (ECs) isolated from the ipsilateral or contralateral tibia in T2D mice. Male C57BL/6 mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) starting at 8 weeks. After 12 weeks, the T2D phenotype in HFD mice was confirmed via glucose and insulin tolerance testing and echoMRI, and all mice underwent SBD surgery. Mice were treated with BMP-2 (5 µg) or saline at the time of surgery. Three weeks postsurgery, bone marrow ECs were isolated from ipsilateral and contralateral tibias, and proliferation, angiogenic potential, and gene expression of the cells was analyzed. BMP-2 treatment increased EC proliferation by two fold compared with saline in LFD contralateral tibia ECs, but no changes were seen in surgical tibia EC proliferation. BMP-2 treatment enhanced vessel-like structure formation in HFD mice whereas, the opposite was observed in LFD mice. Still, in BMP-2 treated LFD mice, ipsilateral tibia ECs increased expression of CD31, FLT-1, ANGPT1, and ANGPT2. These data suggest that the modulating effects of T2D and BMP-2 on the microenvironment of bone marrow ECs may differentially influence angiogenic properties at the fractured limb versus the contralateral limb.
Collapse
Affiliation(s)
- Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | | | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | | | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa Ann Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA,Richard L. Roudebush VA Medical Center, IN, USA,Corresponding Author: Melissa A. Kacena, Ph.D., Director of Basic and Translational Research, Professor of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN 46202, (317) 278-3482 – office, (317) 278-9568 – fax,
| |
Collapse
|
13
|
Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering (Basel) 2021; 8:123. [PMID: 34562945 PMCID: PMC8466376 DOI: 10.3390/bioengineering8090123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biofabrication has emerged as an attractive strategy to personalise medical care and provide new treatments for common organ damage or diseases. While it has made impactful headway in e.g., skin grafting, drug testing and cancer research purposes, its application to treat musculoskeletal tissue disorders in a clinical setting remains scarce. Albeit with several in vitro breakthroughs over the past decade, standard musculoskeletal treatments are still limited to palliative care or surgical interventions with limited long-term effects and biological functionality. To better understand this lack of translation, it is important to study connections between basic science challenges and developments with translational hurdles and evolving frameworks for this fully disruptive technology that is biofabrication. This review paper thus looks closely at the processing stage of biofabrication, specifically at the bioinks suitable for musculoskeletal tissue fabrication and their trends of usage. This includes underlying composite bioink strategies to address the shortfalls of sole biomaterials. We also review recent advances made to overcome long-standing challenges in the field of biofabrication, namely bioprinting of low-viscosity bioinks, controlled delivery of growth factors, and the fabrication of spatially graded biological and structural scaffolds to help biofabricate more clinically relevant constructs. We further explore the clinical application of biofabricated musculoskeletal structures, regulatory pathways, and challenges for clinical translation, while identifying the opportunities that currently lie closest to clinical translation. In this article, we consider the next era of biofabrication and the overarching challenges that need to be addressed to reach clinical relevance.
Collapse
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Gabriella Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| |
Collapse
|
14
|
Ma P, Chen T, Wu X, Hu Y, Huang K, Wang Y, Dai H. Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. J Mater Chem B 2021; 9:6600-6613. [PMID: 34369537 DOI: 10.1039/d1tb00768h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insufficient bioactivity of polyethylene terephthalate (PET) artificial ligaments severely weakens the ligament-bone healing in anterior cruciate ligament (ACL) reconstruction, while osteogenic modification is a prevailing method to enhance osseointegration of PET artificial ligaments. In the present study, strontium-substituted hydroxyapatite (SrHA) nanoparticles with different strontium (Sr) contents were synthesized via microwave-hydrothermal method and subsequently were coated on the surface of PET artificial ligaments. The results of XRD, FT-IR, TEM and ICP-OES revealed that the doping of Sr ions had no great influences on the phase composition, morphology and particle size of HA, but affected its chemical compositions and crystallinity. The SEM images showed that nanoparticles were successfully deposited on the surface of PET grafts, the surface hydrophilicity of which was significantly improved by the prepared coatings. The in vitro study revealed that the osteogenic activity of rat bone marrow mesenchymal stem cells (rBMSCs) was affected by varying concentrations of Sr ions in coatings and the optimal osteogenic differentiation was observed in the 2SrHA-PET group, which significantly up-regulated the expression of BMP-2, OCN, Col-I and VEGF. The enhanced osteogenic ability of the 2SrHA-PET group was further demonstrated through an in vivo study, which obviously promoted ligament-bone integration compared with that of PET and HA-PET groups, thus improving the biomechanical strength of the graft-bone complex. This study confirms that SrHA coatings can facilitate osseointegration in the repair of ligament injury in rabbits and thus offers a prospective method for ACL reconstruction by using Sr-containing biomaterial-modified PET artificial ligaments.
Collapse
Affiliation(s)
- Pan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kauffmann P, Raschke D, Tröltzsch M, Santander P, Brockmeyer P, Schliephake H. The use of rhBMP2 for augmentation of established horizontal/vertical defects may require additional use of rhVEGF to achieve significant bone regeneration: An in vivo experimental study. Clin Oral Implants Res 2021; 32:1228-1240. [PMID: 34352150 DOI: 10.1111/clr.13820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022]
Abstract
AIM To test the hypothesis that the use of rhBMP2 in established defects requires additional growth factors such as rhVEGF to accomplish effective bone repair. MATERIALS AND METHODS Horizontal/vertical defects of 2 cm length and 1 cm height were created bilaterally in the alveolar crest of the maxillae of 18 minipigs together with the extraction of all premolar teeth and one molar tooth on both sides. After 3 months of healing, defects were augmented with 0.5 g particulate PDLLA/CaCO3 composite loaded with 400 µg rhBMP2/50 µg rhVEGF165 on one side and 800 µg rhBMP2 on the other in 12 test animals, whereas defects in six control animals were sham operated and left unfilled on one side and augmented with blank carriers on the other. After 4 and 13 weeks, the animals were evaluated each for area of new bone formation (mm²) and bone density (area %). RESULTS Augmentations with carriers loaded with 800 g µrhBMP2 failed to induce significantly more bone than in the augmentations with unloaded carrier after 4 and 13 weeks (p = .1000, p = .381). Augmentations with carriers loaded with 400 µg rhBMP2 and 50 µg erhVEGF165 resulted in significantly increased bone formation after 13 weeks (p = .024) compared to blank carriers. Soft tissue in augmentations with combined rhBMP2/rhVEGF165 loading exhibited numerous microvessels compared to soft tissue in augmentations with rhBMP2. CONCLUSIONS It is concluded that effective bone regeneration in augmentations of established alveolar ridge defects may require the application of rhVEGF additionally to rhBMP2.
Collapse
Affiliation(s)
- Philipp Kauffmann
- Department for Oral & Maxillofacial Surgery, Universitätsmedizin Goettingen, Goettingen, Germany
| | - David Raschke
- Department for Oral & Maxillofacial Surgery, Universitätsmedizin Goettingen, Goettingen, Germany
| | - Markus Tröltzsch
- Private Office Ansbach, Germany & Department for Oral & Maxillofacial Surgery, Universitätsmedizin Goettingen, Goettingen, Germany
| | - Petra Santander
- Department of Orthodontics, Universitätsmedizin Göttingen, Goettingen, Germany
| | - Phillip Brockmeyer
- Department for Oral & Maxillofacial Surgery, Universitätsmedizin Goettingen, Goettingen, Germany
| | - Henning Schliephake
- Department for Oral & Maxillofacial Surgery, Universitätsmedizin Goettingen, Goettingen, Germany
| |
Collapse
|
16
|
Bhatti FUR, Dadwal UC, Valuch CR, Tewari NP, Awosanya OD, de Andrade Staut C, Sun S, Mendenhall SK, Perugini AJ, Nagaraj RU, Battina HL, Nazzal MK, Blosser RJ, Maupin KA, Childress PJ, Li J, Kacena MA. The effects of high fat diet, bone healing, and BMP-2 treatment on endothelial cell growth and function. Bone 2021; 146:115883. [PMID: 33581374 PMCID: PMC8009863 DOI: 10.1016/j.bone.2021.115883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Angiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls. Endothelial cells (ECs) were isolated from the lungs (LECs) and bone marrow (BMECs) 3 weeks post-surgery, and the fractured femurs were also examined. Our studies demonstrate that local administration of BMP-2 at the fracture site in a CSD model results in complete bone healing within 3 weeks for all HFD mice and 66.7% of LFD mice, whereas those treated with saline remain unhealed. At the fracture site, vessel parameters and adipocyte numbers were significantly increased in BMP-2 treated femurs, irrespective of diet. At distal sites, LEC and BMEC proliferation was not altered by diet or BMP-2 treatment. HFD increased the tube formation ability of both LECs and BMECs. Interestingly, BMP-2 treatment at the time of surgery reduced tube formation in LECs and humeri BMECs. However, migration of BMECs from HFD mice treated with BMP-2 was increased compared to BMECs from HFD mice treated with saline. BMP-2 treatment significantly increased the expression of CD31, FLT-1, and ANGPT2 in LECs and BMECs in LFD mice, but reduced the expression of these same genes in HFD mice. To date, this is the first study that depicts the systemic influence of fracture surgery and local BMP-2 treatment on the proliferation and angiogenic potential of ECs derived from the bone marrow and lungs.
Collapse
Affiliation(s)
- Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | | | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Kevin A Maupin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Paul J Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA; Richard L. Roudebush VA Medical Center, IN, USA.
| |
Collapse
|
17
|
Bioactive Polymeric Materials for the Advancement of Regenerative Medicine. J Funct Biomater 2021; 12:jfb12010014. [PMID: 33672492 PMCID: PMC8006220 DOI: 10.3390/jfb12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymers are widely accepted natural materials in regenerative medicine, and further development of their bioactivities and discoveries on their composition/function relationships could greatly advance the field. However, a concise insight on commonly investigated biopolymers, their current applications and outlook of their modifications for multibioactivity are scarce. This review bridges this gap for professionals and especially freshmen in the field who are also interested in modification methods not yet in commercial use. A series of polymeric materials in research and development uses are presented as well as challenges that limit their efficacy in tissue regeneration are discussed. Finally, their roles in the regeneration of select tissues including the skin, bone, cartilage, and tendon are highlighted along with modifiable biopolymer moieties for different bioactivities.
Collapse
|
18
|
Rittipakorn P, Thuaksuban N, Mai-ngam K, Charoenla S, Noppakunmongkolchai W. Bioactivity of a Novel Polycaprolactone-Hydroxyapatite Scaffold Used as a Carrier of Low Dose BMP-2: An In Vitro Study. Polymers (Basel) 2021; 13:polym13030466. [PMID: 33535638 PMCID: PMC7867198 DOI: 10.3390/polym13030466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
Scaffolds of polycaprolactone-30% hydroxyapatite (PCL-30% HA) were fabricated using melt stretching and multilayer deposition (MSMD), and the in vitro response of osteoblasts to the scaffolds was assessed. In group A, the scaffolds were immersed in 10 µg/mL bone morphogenetic protein-2 (BMP-2) solution prior to being seeded with osteoblasts, and they were cultured in the medium without BMP-2. In group B, the cell-scaffold constructs without BMP-2 were cultured in medium containing 10 µg/mL BMP-2. The results showed greater cell proliferation in group A. The upregulation of runt-related transcription factor 2 and osteocalcin genes correlated with the release of BMP-2 from the scaffolds. The PCL-30% HA MSMD scaffolds appear to be suitable for use as osteoconductive frameworks and BMP-2 carriers.
Collapse
Affiliation(s)
- Pawornwan Rittipakorn
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand;
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand;
- Correspondence: ; Tel.: +66-954592492
| | - Katanchalee Mai-ngam
- Ministry of Higher Education Science Research and Innovation (MHESRI), Ratchathewi, Bangkok 10400, Thailand; (K.M.-n.); (S.C.); (W.N.)
| | - Satrawut Charoenla
- Ministry of Higher Education Science Research and Innovation (MHESRI), Ratchathewi, Bangkok 10400, Thailand; (K.M.-n.); (S.C.); (W.N.)
| | - Warobon Noppakunmongkolchai
- Ministry of Higher Education Science Research and Innovation (MHESRI), Ratchathewi, Bangkok 10400, Thailand; (K.M.-n.); (S.C.); (W.N.)
| |
Collapse
|
19
|
Yang G, Wang F, Li Y, Hou J, Liu D. Construction of tissue engineering bone with the co‑culture system of ADSCs and VECs on partially deproteinized biologic bone in vitro: A preliminary study. Mol Med Rep 2021; 23:58. [PMID: 33215221 PMCID: PMC7706005 DOI: 10.3892/mmr.2020.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
Scaffold‑based bone tissue engineering has therapeutic potential in the regeneration of osseous defects. The present study aimed to explore the adhesion and cell viability of a co‑culture system composed of vascular endothelial cells PI‑/Annexin V+ represents early apoptotic cells, and PI+/Annexin V+ represents late apoptotic cells (VECs) and adipose‑derived stem cells (ADSCs) on partially deproteinized biologic bone (PDPBB) in vitro, and determine the optimum time period for maximum cell viability that could possibly be used for standardizing the scaffold transplant into the in vivo system. VECs and ADSCs were isolated from pregnant Sprague‑Dawley rats and confirmed by immunostaining with von Willebrand factor and CD90, respectively. PDPBB was prepared using standardized protocols involving coating partially deproteinized bone with fibronectin. PDPBB was incubated in a mono‑culture with VECs or ADSCs, or in a co‑culture with both of these cells at a ratio of 1:1. An MTT assay was used to assess the adhesion and cell viability of VECs and ADSCs on PDPBB in the three different cultures. Scanning electron microscopy was used to observe the adhesion, cell viability and morphology of the different types of cells on PDPBB. It was observed that the absorbance of each group increased gradually and peaked on the 10th day; the highest absorbance was found for the co‑cultured cells group. The difference of cell viability between each cell group was statistically significant. On the 10th day, in the co‑cultured cells group, several cells adhered on the PDPBB material and a nest‑like distribution morphology was observed. Therefore, the adhesion and cell viability of the co‑cultured cells was higher compared with the mono‑cultures of VECs or ADSCs. As cell viability was highest on the 10th day, this could be the optimal length of time for incubation and therefore could be used for in vivo experiments.
Collapse
Affiliation(s)
- Guiran Yang
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Fuke Wang
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jianfei Hou
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Dejian Liu
- Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
20
|
Dreyer CH, Kjaergaard K, Ding M, Qin L. Vascular endothelial growth factor for in vivo bone formation: A systematic review. J Orthop Translat 2020; 24:46-57. [PMID: 32642428 PMCID: PMC7334443 DOI: 10.1016/j.jot.2020.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To achieve optimal bone formation one of the most influential parameters has been mentioned to be adequate blood supply. Vascular endothelial growth factor (VEGF) is hereby of particular interest in bone regeneration, because of its primary ability to induce neovascularization and chemokine affection for endothelial cells (EC), and is considered to be the main regulator of vascular formation. However, the growth factor has yet to be implemented in a clinical setting in orthopaedic intervention surgery. We hypothesised that the development of VEGF in vivo for bone formation in the last decade had progressed towards clinical application since the latest systematic review from 2008. OBJECTIVE This systematic review recapped the last 13 years of in vivo bone regeneration using vascular endothelial growth factor (VEGF). METHOD A total of 1374 articles were identified using the PubMed search string (vegf or "vascular endothelial growth factor") and (osteogen∗ or "bone formation" or "bone regeneration"). By 3 selection phases 24 published articles were included by the criteria of being in vivo, using only VEGF for bone formation, published after 2007 and written in English. Articles in vitro, written in different languages than English and older than 2007 was excluded. The most recent systematic review on this subject was published in 2008, with the latest included study from 01 to 11-2007. All included studies were classified based on animal, type of defect, scaffold, control group, type of VEGF, release rate, dosage of VEGF, time of evaluation and results. Each study was evaluated for risk of bias by modified CAMARADES quality assessment for the use in experimental animal studies. The score was calculated by peer review journal publication, use of control group, randomisation of groups, justified VEGF dosage, blinding of results, details on animal model, sample size calculation, comply with ethics and no conflict of interest. RESULTS No clinical trials or human application studies were obtained from our search. Experimentally, 11 articles using solely VEGF for bone formation had a group or a timepoint significantly better than the corresponding control group. 18 articles revealed no significant difference of VEGF compared to the control group and 1 article reported a significant decreased bone growth using VEGF compared to control. CONCLUSION Based on these results no clinical studies have yet been performed. However, indications in the best use of VEGF from experimental studies could be made towards that the optimal release is within the first three weeks, in defect models, with the best effect before eight weeks. Future designs should incorporate this with standardised and reproducible models for verification towards clinical practice. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This systematic review aims to assess the existing literature to focus on methodologies and outcomes that can provide future knowledge regarding the solitary use of VEGF for bone regeneration in a clinical setting.
Collapse
Affiliation(s)
- Chris H. Dreyer
- Orthopaedic Research Laboratory, Department of Orthopaedics & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
- Musculoskeletal Research Laboratory, Department of Orthopaedic Surgery & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Acute Medicine, Department of Emergency Medicine, Slagelse Hospital, Slagelse, Denmark
| | - Kristian Kjaergaard
- Orthopaedic Research Laboratory, Department of Orthopaedics & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Ming Ding
- Orthopaedic Research Laboratory, Department of Orthopaedics & Traumatology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedic Surgery & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
21
|
Freeman FE, Pitacco P, van Dommelen LHA, Nulty J, Browe DC, Shin JY, Alsberg E, Kelly DJ. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. SCIENCE ADVANCES 2020; 6:eabb5093. [PMID: 32851179 PMCID: PMC7428335 DOI: 10.1126/sciadv.abb5093] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/02/2020] [Indexed: 05/16/2023]
Abstract
Therapeutic growth factor delivery typically requires supraphysiological dosages, which can cause undesirable off-target effects. The aim of this study was to 3D bioprint implants containing spatiotemporally defined patterns of growth factors optimized for coupled angiogenesis and osteogenesis. Using nanoparticle functionalized bioinks, it was possible to print implants with distinct growth factor patterns and release profiles spanning from days to weeks. The extent of angiogenesis in vivo depended on the spatial presentation of vascular endothelial growth factor (VEGF). Higher levels of vessel invasion were observed in implants containing a spatial gradient of VEGF compared to those homogenously loaded with the same total amount of protein. Printed implants containing a gradient of VEGF, coupled with spatially defined BMP-2 localization and release kinetics, accelerated large bone defect healing with little heterotopic bone formation. This demonstrates the potential of growth factor printing, a putative point of care therapy, for tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Fiona E. Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Pierluca Pitacco
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Lieke H. A. van Dommelen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jessica Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - David C. Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Jung-Youn Shin
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Departments of Biomedical Engineering, Pharmacology, Orthopaedics, and Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Dashtimoghadam E, Fahimipour F, Tongas N, Tayebi L. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Sci Rep 2020; 10:11764. [PMID: 32678204 PMCID: PMC7366644 DOI: 10.1038/s41598-020-68221-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Wound instability and poor functional vascularization in bone tissue engineering lead to lack of tissue integration and ultimate failure of engineered grafts. In order to harness the regenerative potential of growth factors and stimulate bone healing, present study aims to design multifunctional cell therapy microcarriers with the capability of sequential delivery of essential growth factors, bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). An on-chip double emulsion method was implemented to generate monodisperse VEGF encapsulated microcarriers. Bio-inspired poly(3,4-dihydroxyphenethylamine) (PDA) was then functionalized to the microcarriers surface for BMP-2 conjugation. The microcarriers were seeded with mesenchymal stem cells (MSCs) using a dynamic culture technique for cells expansion. Finally, the microcarriers were incorporated into an injectable alginate-RGD hydrogel laden with endothelial cells (ECs) for further analysis. The DNA and calcium content, as well as ALP activity of the construct were analyzed. The confocal fluorescent microscopy was employed to monitor the MSCs and tunneling structure of ECs. Eventually, the capability of developed microcarriers for bone tissue formation was examined in vivo. Microfluidic platform generated monodisperse VEGF-loaded PLGA microcarriers with size-dependent release patterns. Microcarriers generated with the on-chip technique showed more sustained VEGF release profiles compared to the conventional bulk mixing method. The PDA functionalization of microcarriers surface not only provided immobilization of BMP-2 with prolonged bioavailability, but also enhanced the attachment and proliferation of MSCs. Dynamic culturing of microcarriers showcased their great potential to boost MSCs population required for stem cell therapy of bone defects. ALP activity and calcium content analysis of MSCs-laden microcarriers loaded into injectable hydrogels revealed their capability of tunneling formation, vascular cell growth and osteogenic differentiation. The in vivo histology and real-time polymerase chain reaction analysis revealed that transplantation of MSC-laden microcarriers supports ectopic bone formation in the rat model. The presented approach to design bioactive microcarriers offer sustained sequential delivery of bone ECM chemical cues and offer an ideal stabilized 3D microenvironment for patient-specific cell therapy applications. The proposed methodology is readily expandable to integrate other cells and cytokines in a tuned spatiotemporal manner for personalized regenerative medicine.
Collapse
Affiliation(s)
| | - Farahnaz Fahimipour
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nikita Tongas
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
23
|
A multifaceted biomimetic interface to improve the longevity of orthopedic implants. Acta Biomater 2020; 110:266-279. [PMID: 32344174 DOI: 10.1016/j.actbio.2020.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 01/22/2023]
Abstract
The rise of additive manufacturing has provided a paradigm shift in the fabrication of precise, patient-specific implants that replicate the physical properties of native bone. However, eliciting an optimal biological response from such materials for rapid bone integration remains a challenge. Here we propose for the first time a one-step ion-assisted plasma polymerization process to create bio-functional 3D printed titanium (Ti) implants that offer rapid bone integration. Using selective laser melting, porous Ti implants with enhanced bone-mimicking mechanical properties were fabricated. The implants were functionalized uniformly with a highly reactive, radical-rich polymeric coating generated using a unique combination of plasma polymerization and plasma immersion ion implantation. We demonstrated the performance of such activated Ti implants with a focus on the coating's homogeneity, stability, and biological functionality. It was shown that the optimized coating was highly robust and possessed superb physico-chemical stability in a corrosive physiological solution. The plasma activated coating was cytocompatible and non-immunogenic; and through its high reactivity, it allowed for easy, one-step covalent immobilization of functional biomolecules in the absence of solvents or chemicals. The activated Ti implants bio-functionalized with bone morphogenetic protein 2 (BMP-2) showed a reduced protein desorption and a more sustained osteoblast response both in vitro and in vivo compared to implants modified through conventional physisorption of BMP-2. The versatile new approach presented here will enable the development of bio-functionalized additively manufactured implants that are patient-specific and offer improved integration with host tissue. STATEMENT OF SIGNIFICANCE: Additive manufacturing has revolutionized the fabrication of patient-specific orthopedic implants. Although such 3D printed implants can show desirable mechanical and mass transport properties, they often require surface bio-functionalities to enable control over the biological response. Surface covalent immobilization of bioactive molecules is a viable approach to achieve this. Here we report the development of additively manufactured titanium implants that precisely replicate the physical properties of native bone and are bio-functionalized in a simple, reagent-free step. Our results show that covalent attachment of bone-related growth factors through ion-assisted plasma polymerized interlayers circumvents their desorption in physiological solution and significantly improves the bone induction by the implants both in vitro and in vivo.
Collapse
|
24
|
Rothe R, Hauser S, Neuber C, Laube M, Schulze S, Rammelt S, Pietzsch J. Adjuvant Drug-Assisted Bone Healing: Advances and Challenges in Drug Delivery Approaches. Pharmaceutics 2020; 12:E428. [PMID: 32384753 PMCID: PMC7284517 DOI: 10.3390/pharmaceutics12050428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic agents such as recombinant growth factors, lipid mediators, antibiotics, antiphlogistics, and proangiogenics as well as other promising anti-resorptive and anabolic molecules contribute to improving bone healing in these disorders, especially when they are released in a targeted and controlled manner during crucial bone healing phases. In this regard, the development of smart biocompatible and biostable polymers such as implant coatings, scaffolds, or particle-based materials for drug release is crucial. Innovative chemical, physico- and biochemical approaches for controlled tailor-made degradation or the stimulus-responsive release of substances from these materials, and more, are advantageous. In this review, we discuss current developments, progress, but also pitfalls and setbacks of such approaches in supporting or controlling bone healing. The focus is on the critical evaluation of recent preclinical studies investigating different carrier systems, dual- or co-delivery systems as well as triggered- or targeted delivery systems for release of a panoply of drugs.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (S.S.); (S.R.)
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, 01307 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (R.R.); (S.H.); (C.N.); (M.L.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
25
|
Veronesi F, Maglio M, Brogini S, Fini M. In vivo studies on osteoinduction: A systematic review on animal models, implant site, and type and postimplantation investigation. J Biomed Mater Res A 2020; 108:1834-1866. [PMID: 32297695 DOI: 10.1002/jbm.a.36949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/15/2020] [Accepted: 03/28/2020] [Indexed: 11/10/2022]
Abstract
Musculoskeletal diseases involving loss of tissue usually require management with bone grafts, among which autografts are still the gold standard. To overcome autograft disadvantages, the development of new scaffolds is constantly increasing, as well as the number of in vivo studies evaluating their osteoinductivity in ectopic sites. The aim of the present systematic review is to evaluate the last 10 years of osteoinduction in vivo studies. The review is focused on: (a) which type of animal model is most suitable for osteoinduction evaluation; (b) what are the most used types of scaffolds; (c) what kind of post-explant evaluation is most used. Through three websites (www.pubmed.com, www.webofknowledge.com and www.embase.com), 77 in vivo studies were included. Fifty-eight studies were conducted in small animal models (rodents) and 19 in animals of medium or large size (rabbits, dogs, goats, sheep, and minipigs). Despite the difficulty in establishing the most suitable animal model for osteoinductivity studies, small animals (in particular mice) are the most utilized. Intramuscular implantation is more frequent than subcutis, especially in large animals, and synthetic scaffolds (especially CaP ceramics) are preferred than natural ones, also in combination with cells and growth factors. Paraffin histology and histomorphometric evaluations are usually employed for postimplantation analyses.
Collapse
Affiliation(s)
- Francesca Veronesi
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Melania Maglio
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Silvia Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Milena Fini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
26
|
Rosenberg N, Rosenberg O. Safety and efficacy of in vitro generated bone-like material for in vivo bone regeneration - a feasibility study. Heliyon 2020; 6:e03191. [PMID: 31970302 PMCID: PMC6965738 DOI: 10.1016/j.heliyon.2020.e03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/27/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Bone-like viable tissue can be generated in vitro by utilizing a combination of inorganic matrix, osteoblasts, osteogenic media and application of adequate mechanical stimulation of the cells. To pursue the proof that the in vitro generated bone-like tissue (BLT) is capable of bridging a critical bone gap in vivo without adverse effects, the in vitro cytotoxicity method (MTT) and murine in vivo model were implemented, by implanting the BLT into calvaria critical bone gap in rats. The endpoints for the evaluation of this concept were histological and radiographic data which should show the effectiveness of this method. We found that there was no cytotoxic effect of the BLT according to the MTT assay and no carcinogenic or other morbid effects of the BLT in vivo (mice experiment, n = 10) The critical gaps in BLT -implanted animals (experimental model with rats) demonstrated full bridging of the calvaria critical bone gap with vascularized woven bone (n = 3) as opposed to animals treated with vehicle material (n = 3), which maintained an open gap without any visible closure, according to gross examination, X-ray imaging and histological analysis. The newly formed bone tissue was characterized by pronounced presence of bone marrow regions and newly formed host blood vessels, a strong indication for functional osseointegration. Therefore, the in vitro generated BLT, which causes bone regeneration in critical gaps, has the translational potential to bridge bone non-union defects, without harmful systemic or cytotoxic effects. These initial feasibility results indicate a high safety profile following in vivo implantation of BLT and its potential clinical ability to be used as autologous bone graft.
Collapse
Affiliation(s)
- Nahum Rosenberg
- Faculty of Medicine, Technion - IIT, Israel.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
27
|
Ferreira FV, Souza LP, Martins TMM, Lopes JH, Mattos BD, Mariano M, Pinheiro IF, Valverde TM, Livi S, Camilli JA, Goes AM, Gouveia RF, Lona LMF, Rojas OJ. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. NANOSCALE 2019; 11:19842-19849. [PMID: 31441919 DOI: 10.1039/c9nr05383b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A major challenge exists in the preparation of scaffolds for bone regeneration, namely, achieving simultaneously bioactivity, biocompatibility, mechanical performance and simple manufacturing. Here, cellulose nanofibrils (CNF) are introduced for the preparation of scaffolds taking advantage of their biocompatibility and ability to form strong 3D porous networks from aqueous suspensions. CNF are made bioactive for bone formation through a simple and scalable strategy that achieves highly interconnected 3D networks. The resultant materials optimally combine morphological and mechanical features and facilitate hydroxyapatite formation while releasing essential ions for in vivo bone repair. The porosity and roughness of the scaffolds favor several cell functions while the ions act in the expression of genes associated with cell differentiation. Ion release is found critical to enhance the production of the bone morphogenetic protein 2 (BMP-2) from cells within the fractured area, thus accelerating the in vivo bone repair. Systemic biocompatibility indicates no negative effects on vital organs such as the liver and kidneys. The results pave the way towards a facile preparation of advanced, high performance CNF-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil and Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland. and Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - Lucas P Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Thais M M Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), 12228-900, Sao Jose dos Campos-SP, Brazil
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| | - Marcos Mariano
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Ivanei F Pinheiro
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Thalita M Valverde
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Sébastien Livi
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - José A Camilli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Alfredo M Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Rubia F Gouveia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| |
Collapse
|
28
|
Son J, Kim J, Lee K, Hwang J, Choi Y, Seo Y, Jeon H, Kang HC, Woo HM, Kang BJ, Choi J. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomater 2019; 99:469-478. [PMID: 31494292 DOI: 10.1016/j.actbio.2019.08.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
In this study, we developed aptamer-conjugated hydroxyapatite (Apt-HA) that promotes bone regeneration and angiogenesis. The 3R02 bivalent aptamer specific to vascular endothelial growth factor (VEGF) was grafted to the hydroxyapatite (HA) surface. Apt-HA was tested for its VEGF protein capture ability to determine the optimal aptamer concentration immobilized on the HA. Apt-HA showed higher VEGF protein capture ability, and faster growth of human umbilical vein endothelial cell (HUVEC) compared to a neat HA with no cytotoxic effects on human osteoblasts. To examine in vivo angiogenesis and bone regeneration, Apt-HA and HA were bilaterally implanted into rabbit tibial metaphyseal defects and analyzed after eight weeks using micro-CT, histology, and histomorphometry. Apt-HA showed significantly increased the volume of new bones, the percentage of bone, and the density of bone mineral in cortical bone. Apt-HA also exhibited the enhanced bone formation at the cortical region in a histomorphometric analysis. Finally, Apt-HA showed significantly increased blood vessel number compared to a neat HA. In summary, the engineered Apt-HA has potential as a bone graft material that may simultaneously promote bone regeneration and angiogenesis. STATEMENT OF SIGNIFICANCE: This work presents a functional hydroxyapatite bone graft using a DNA-based aptamer which overcomes the limitations of existing bone graft materials, which use bound signaling peptides. DNA aptamer immobilized hydroxyapatite enhances the in vitro proliferation of human umbilical vascular endothelial cells as well as in vivo angiogenesis and bone regeneration. DNA aptamer immobilized hydroxyapatite shows no cytotoxic effect on human osteoblasts.
Collapse
|
29
|
Ruehle MA, Li MTA, Cheng A, Krishnan L, Willett NJ, Guldberg RE. Decorin-supplemented collagen hydrogels for the co-delivery of bone morphogenetic protein-2 and microvascular fragments to a composite bone-muscle injury model with impaired vascularization. Acta Biomater 2019; 93:210-221. [PMID: 30685477 PMCID: PMC6759335 DOI: 10.1016/j.actbio.2019.01.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Traumatic musculoskeletal injuries that result in bone defects or fractures often affect both bone and the surrounding soft tissue. Clinically, these types of multi-tissue injuries have increased rates of complications and long-term disability. Vascular integrity is a key clinical indicator of injury severity, and revascularization of the injury site is a critical early step of the bone healing process. Our lab has previously established a pre-clinical model of composite bone-muscle injury that exhibits impaired bone healing; however, the vascularization response in this model had not yet been investigated. Here, the early revascularization of a bone defect following composite injury is shown to be impaired, and subsequently the therapeutic potential of combined vascularization and osteoinduction was investigated to overcome the impaired regeneration in composite injuries. A decorin (DCN)-supplemented collagen hydrogel was developed as a biomaterial delivery vehicle for the co-delivery microvascular fragments (MVF), which are multicellular segments of mature vasculature, and bone morphogenetic protein-2 (BMP-2), a potent osteoinductive growth factor. We hypothesized that collagen + DCN would increase BMP-2 retention over collagen alone due to DCN's ability to sequester TGF-ß growth factors. We further hypothesized that MVF would increase both early vascularization and subsequent BMP-2-mediated bone regeneration. Contrary to our hypothesis, BMP + MVF decreased the number of blood vessels relative to BMP alone and had no effect on bone healing. However, collagen + DCN was demonstrated to be a BMP-2 delivery vehicle capable of achieving bridging in the challenging composite defect model that is comparable to that achieved with a well-established alginate-based delivery system. STATEMENT OF SIGNIFICANCE: We have previously established a model of musculoskeletal trauma that exhibits impaired bone healing. For the first time, this work shows that the early revascularization response is also significantly, albeit modestly, impaired. A decorin-supplemented collagen hydrogel was used for the first time in vivo as a delivery vehicle for both a cell-based vascular therapeutic, MVF, and an osteoinductive growth factor, BMP-2. While MVF did not improve vascular volume or bone healing, collagen + DCN is a BMP-2 delivery vehicle capable of achieving bridging in the challenging composite defect model. Based on its support of robust angiogenesis in vitro, collagen + DCN may be extended for future use with other vascular therapeutics such as pre-formed vascular networks.
Collapse
Affiliation(s)
- Marissa A Ruehle
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Mon-Tzu Alice Li
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Albert Cheng
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nick J Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA; Department of Orthopedics, Emory University, Atlanta, GA, USA; Research Service, Atlanta VA Medical Center, Decatur, GA, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
30
|
Malhotra N. Bioreactors Design, Types, Influencing Factors and Potential Application in Dentistry. A Literature Review. Curr Stem Cell Res Ther 2019; 14:351-366. [DOI: 10.2174/1574888x14666190111105504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Objectives:A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.Methods:Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.Results:Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.Conclusions:Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.
Collapse
|
31
|
Finamore TA, Curtis TE, Tedesco JV, Grandfield K, Roeder RK. Nondestructive, longitudinal measurement of collagen scaffold degradation using computed tomography and gold nanoparticles. NANOSCALE 2019; 11:4345-4354. [PMID: 30793721 DOI: 10.1039/c9nr00313d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradable materials, such as collagen scaffolds, are used extensively in clinical medicine for tissue regeneration and/or as an implantable drug delivery vehicle. However, available methods to study biomaterial degradation are typically invasive, destructive, and/or non-volumetric. Therefore, the objective of this study was to investigate a new method for nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation. Gold nanoparticles (Au NPs) were covalently conjugated to collagen fibrils during scaffold preparation to enable contrast-enhanced imaging of collagen scaffolds. The X-ray attenuation of as-prepared scaffolds increased linearly with increased Au NP concentration such that ≥60 mM Au NPs provided sufficient contrast to measure scaffold degradation. Collagen scaffold degradation kinetics were measured to increase during in vitro enzymatic degradation in media with an increased concentration of collagenase. The scaffold degradation kinetics measured by micro-CT exhibited lower variability compared with gravimetric measurement and were validated by measurement of the release of Au NPs from the same samples by optical spectroscopy. Thus, Au NPs and CT synergistically enabled nondestructive, longitudinal, and volumetric measurement of collagen scaffold degradation.
Collapse
Affiliation(s)
- Tyler A Finamore
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA..
| | | | | | | | | |
Collapse
|
32
|
Lee E, Ko JY, Kim J, Park JW, Lee S, Im GI. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway. Biomater Sci 2019; 7:4588-4602. [DOI: 10.1039/c9bm01037h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While bone has the capability to heal itself, there is a great difficulty in reconstituting large bone defects created by heavy trauma or the resection of malignant tumors.
Collapse
Affiliation(s)
- Eugene Lee
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
- Department of Orthopaedics
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Juyoung Kim
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Jeong-Won Park
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Songhee Lee
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering
- Dongguk University
- Goyang 10326
- Republic of Korea
- Department of Orthopaedics
| |
Collapse
|
33
|
Chen R, Yu Y, Zhang W, Pan Y, Wang J, Xiao Y, Liu C. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomater 2018; 80:108-120. [PMID: 30218780 DOI: 10.1016/j.actbio.2018.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) involved therapy is of great potential for bone regeneration. However, its clinical application is restricted due to the undesirable bioactivity and relevant complications in vivo. Immobilization of recombinant BMP-2 (rhBMP-2) is an efficient strategy to mimic natural microenvironment and retain its bioactivity. Herein, we present evidences indicating that osteoinductive capacity of rhBMP-2 can be regulated via variant immobilizing approaches. Three representative superficial immobilizing models were employed to fabricate rhBMP-2-immobilized surfaces including physical adsorption (Au/rhBMP-2), covalent grafting (rhBMP-2-SAM-Au) and heparin binding (Hep-SAM-Au/rhBMP-2) (SAM: self-assembled monolayer). Loading capacity, releasing behavior, osteogenic differentiation and signaling pathways involved, as well as the cellular recognition of rhBMP-2 under various immobilization modes were systematically investigated. As a result, disparate immobilizing approaches not only have effects on loading capacity, but also lead to disparity of osteoinduction at the same dosage. Notably, heparin could reinforce the recognition between rhBMP-2 and its receptors (BMPRs) whereas weaken its binding to its antagonist Noggin. Owing to this "selective" binding feature, the favorable osteoinduction and maximum ectopic bone formation can be achieved with the heparin-binding approach. In particular, manipulation of orientation-mediated BMP-2-cell recognition efficiency may be a potential target to design more therapeutic efficient rhBMP-2 delivery system. STATEMENT OF SIGNIFICANCE: Bone morphogenetic protein-2 (BMP-2) is crucial in bone regeneration. However, its clinical application is challenged due to its shorten half-life and supra-physiological dose associated complications. In this study, three representative superficial immobilizing patterns were fabricated through physical adsorption, covalent grafting and electrostatic interaction with heparin respectively. We provided evidences indicating an dose-dependent osteoinductive capacity of immobilized BMP-2. Further, a possible mechanism of rhBMP-2-cell recognition at the interface was presented, highlighting the superior effect of heparin on rhBMP-2 bioactivity. Finally, We proposed a dual mechanism of tuning the bioactivity of immobilized rhBMP-2 through surface immobilization approaches: regulation of the saturated loading capacity and orientation-mediated rhBMP-2-cell recognition. These results provide novel insights into designing criterion of efficient delivery vehicle for rhBMP-2.
Collapse
|
34
|
Cao L, Kong X, Lin S, Zhang S, Wang J, Liu C, Jiang X. Synergistic effects of dual growth factor delivery from composite hydrogels incorporating 2-N,6-O-sulphated chitosan on bone regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1-S17. [PMID: 30231646 DOI: 10.1080/21691401.2018.1488721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A promising strategy to accelerate bone generation is to deliver a combination of certain growth factors to the integration site via a controlled spatial and temporal delivery mode. Here, a composite hydrogel incorporating poly(lactide-co-glycolide) (PLGA) microspheres was accordingly prepared to load and deliver the osteogenic rhBMP-2 and angiogenic rhVEGF165 in the required manner. In addition, 2-N,6-O-sulphated chitosan (26SCS), which is a synergetic factor of growth factors, was incorporated in the composite hydrogel as well. The system showed a similar release behaviour of the two growth factors regardless of 26SCS inclusion. RhBMP-2 loaded in PLGA microspheres showed a sustained release over a period of 2 weeks, whereas rhVEGF165 loaded in hydrogel eluted almost completely from the hydrogel over the first 16 days. Both growth factors retained their efficacy, as quantified with relevant in vitro assays. Moreover, an enhanced cell response was achieved upon the delivery of dual growth factors, compared to that obtained with a single factor. Furthermore, in the presence of 26SCS, the system revealed significantly upregulated alkaline phosphatase activity, human umbilical vein endothelial cell proliferation, sprouting, nitric oxide secretion, and angiogenic gene expression. This study highlighted that the composite hydrogel incorporated with 26SCS appears to constitute a promising approach to deliver multiple growth factors. From our findings, we could also conclude that rhBMP-2 can promote angiogenesis and that the mechanism is worthy of further study in subsequent research.
Collapse
Affiliation(s)
- Lingyan Cao
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai JiaoTong University School of Medicine , Shanghai, PR China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , PR China
| | - Xiangjun Kong
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Shuxian Lin
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai JiaoTong University School of Medicine , Shanghai, PR China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , PR China
| | - Shuang Zhang
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Jing Wang
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Changsheng Liu
- c Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China.,d Key Laboratory for Ultrafine Materials of Ministry of Education , East China University of Science and Technology , Shanghai , PR China
| | - Xinquan Jiang
- a Department of Prosthodontics , Ninth People's Hospital, Shanghai JiaoTong University School of Medicine , Shanghai, PR China.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , National Clinical Research Center of Stomatology , Shanghai , PR China
| |
Collapse
|
35
|
Du J, Xie P, Lin S, Wu Y, Zeng D, Li Y, Jiang X. Time-Phase Sequential Utilization of Adipose-Derived Mesenchymal Stem Cells on Mesoporous Bioactive Glass for Restoration of Critical Size Bone Defects. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28340-28350. [PMID: 30080385 DOI: 10.1021/acsami.8b08563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effective transportation of oxygen, nutrients, and metabolic wastes through new blood vessel networks is key to the survival of engineered constructs in large bone defects. Adipose-derived mesenchymal stem cells (ADSCs), which are regarded as excellent candidates for both bone and blood vessel engineering, are the preferred option for the restoration of massive bone defects. Therefore, we propose to induce ADSCs into osteogenic and endothelial cells differently. A modified hierarchical mesoporous bioactive glass (MBG) scaffold with an enhanced compressive strength was constructed and prevascularized by seeding with endothelial-induced ADSCs (EI-ADSCs). The prevascularized scaffolds were combined with osteogenically induced ADSCs (OI-ADSCs) to repair critical-size bone defects. To validate the angiogenesis of the prevascularized MBG scaffolds in vivo, green fluorescent protein (GFP) was used to label EI-ADSCs. The labeled EI-ADSCs were demonstrated to survive and participate in vascularization at day 7 after subcutaneous implantation in nude mice by double immunofluorescence staining of CD31 and GFP. Regarding the restoration of critical size bone defects, early angiogenesis of rat femur plug defects was evaluated by perfusion of Microfil after 3 weeks. Compared to nonvascularized MBG carrying OI-ADSCs (MBG/OI-ADSCs) and non-cell-seeded MBG scaffolds, the prevascularized MBG carrying OI-ADSCs (Pv-MBG/OI-ADSCs) showed enhanced angiogenesis on the surface and interior. Through dynamic bone formation analysis with sequential fluorescent labeling and Van Gieson's picro-fuchsin staining, we found that the Pv-MBG/OI-ADSCs exhibited the highest mineral deposition rate after surgery, which may be contributed by rapid vascular anastomosis facilitating increased survival of the seeded OI-ADSCs and by the recruitment function for bone mesenchymal stem cells. Therefore, the strategy of time-phase sequential utilization of ADSCs on MBG scaffolds is a practical design for the repair of massive bone defects.
Collapse
Affiliation(s)
- Jiahui Du
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Peng Xie
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai 200237 , China
| | - Shuxian Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Yuqiong Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Deliang Zeng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| | - Yulin Li
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology , Shanghai Jiao Tong University School of Medicine , 639 Zhizaoju Road , Shanghai 200011 , China
- National Clinical Research Center for Oral Diseases , 639 Zhizaoju Road , Shanghai 200011 , China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology , 639 Zhizaoju Road , Shanghai 200011 , China
| |
Collapse
|
36
|
Wang YH, Wu JY, Kong SC, Chiang MH, Ho ML, Yeh ML, Chen CH. Low power laser irradiation and human adipose-derived stem cell treatments promote bone regeneration in critical-sized calvarial defects in rats. PLoS One 2018; 13:e0195337. [PMID: 29621288 PMCID: PMC5886537 DOI: 10.1371/journal.pone.0195337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 01/18/2023] Open
Abstract
Both stem cell therapy and physical treatments have been shown to be beneficial in accelerating bone healing. However, the efficacy of combined treatment with stem cells and physical stimuli for large bone defects remains uncertain. The aim of this study was to evaluate the bone regeneration effects of low-power laser irradiation (LPLI) and human adipose-derived stem cell (ADSC) treatments during fracture repair using a comparative rat calvarial defect model. We evaluated the viability of human ADSCs, which were cultured on a porous PLGA scaffold using an MTS assay. The critical-sized calvarial bone defect rats were divided into 4 groups: control group, LPLI group, ADSC group, and ADSC+LPLI group. Bone formation was evaluated using micro-CT. New bone formation areas and osteogenic factor expression levels were then examined by histomorphological analysis and immunohistochemical staining. Our data showed that PLGA had no cytotoxic effect on human ADSCs. Micro-CT analyses revealed that both the LPLI and ADSC groups showed improved calvarial bone defect healing compared to the control group. In addition, the ADSC+LPLI group showed significantly increased bone volume at 16 weeks after surgery. The area of new bone formation ranked as follows: control group < LPLI group < ADSC group < ADSC+LPLI group. There were significant differences between the groups. In addition, both ADSC and ADSC+LPLI groups showed strong signals of vWF expression. ADSC and LPLI treatments improved fracture repair in critical-sized calvarial defects in rats. Importantly, the combined treatment of ADSCs and LPLI further enhances the bone healing process.
Collapse
Affiliation(s)
- Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyun-Yi Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Fresenius Kabi Taiwan Ltd, Taipei, Taiwan
| | - Su Chii Kong
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Hsuan Chiang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hsin Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Wang S, Ge Y, Ai C, Jiang J, Cai J, Sheng D, Wan F, Liu X, Hao Y, Chen J, Chen S. Enhance the biocompatibility and osseointegration of polyethylene terephthalate ligament by plasma spraying with hydroxyapatite in vitro and in vivo. Int J Nanomedicine 2018; 13:3609-3623. [PMID: 29983557 PMCID: PMC6026588 DOI: 10.2147/ijn.s162466] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study was designed to evaluate the biocompatibility and osseointegration of polyethylene terephthalate ligament after coating with hydroxyapatite (PET/HA) by using the plasma spraying technique in vitro and in vivo. METHODS In this study, PET/HA sheets were prepared by using the plasma spraying technique. The characterization, the viability of bone marrow stromal cells (BMSCs), and the mRNA expression of bone formation-related genes were evaluated in vitro. The osseointegration in vivo was investigated in the rabbit anterior cruciate ligament (ACL) reconstruction model by micro-computed tomography (micro-CT) analysis, histological evaluation, and biomechanical tests. RESULTS Scanning electron microscopy (SEM) results showed that the surface of polyethylene terephthalate (PET) becomes rough after spraying with hydroxyapatite (HA) nanoparticles, and the water contact angle was 75.4°±10.4° in the PET/HA-plasma group compared to 105.3°±10.9° in the control group (p<0.05). The cell counting kit-8 counting results showed that the number of BMSCs significantly increased in the PET/HA-plasma group (p<0.05). Reverse transcription polymerase chain reaction (RT-PCR) results showed that there was an upregulated mRNA expression of bone formation-related genes in the PET/HA-plasma group (p<0.05). Micro-CT results showed that the transactional area of tibial tunnels and femoral tunnels was smaller in the PET/HA-plasma group (p<0.05). The histological evaluation scores of the PET/HA-plasma group were significantly superior to those of the PET control group at 8 and 12 weeks (p<0.05). The biomechanical tests showed an increased maximum load to failure and stiffness in the PET/HA-plasma group compared to those in the control group at 8 and 12 weeks. CONCLUSION Both in vitro and in vivo results demonstrated in this study suggest that the biocompatibility and osseointegration of PET/HA ligament were significantly improved by increasing the proliferation of cells and upregulating the expression of bone formation-related genes. In a word, the PET/HA-plasma ligament is a promising candidate for ACL reconstruction in future.
Collapse
Affiliation(s)
- Siheng Wang
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Yunshen Ge
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Chengchong Ai
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Jia Jiang
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Jiangyu Cai
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Dandan Sheng
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Fang Wan
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Xingwang Liu
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Yuefeng Hao
- Sports Medicine Center, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China,
| | - Jun Chen
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| | - Shiyi Chen
- Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, People's Republic of China,
| |
Collapse
|
38
|
Collignon AM, Lesieur J, Vacher C, Chaussain C, Rochefort GY. Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Front Physiol 2017; 8:927. [PMID: 29184512 PMCID: PMC5694432 DOI: 10.3389/fphys.2017.00927] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.
Collapse
Affiliation(s)
- Anne-Margaux Collignon
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Julie Lesieur
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| | - Christian Vacher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Maxillofacial Surgery, Beaujon Hospital, Assistance Publique Hopitaux De Paris, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Gael Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| |
Collapse
|
39
|
Moser N, Goldstein J, Kauffmann P, Epple M, Schliephake H. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites. Clin Oral Investig 2017; 22:1223-1234. [DOI: 10.1007/s00784-017-2202-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 01/30/2023]
|
40
|
Repair of large saddle defects of the mandibular ridge using dual growth factor release-An experimental pilot study in minipigs. J Clin Periodontol 2017; 44:854-863. [DOI: 10.1111/jcpe.12739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2017] [Indexed: 01/27/2023]
|
41
|
Kasper FK, Melville J, Shum J, Wong M, Young S. Tissue Engineered Prevascularized Bone and Soft Tissue Flaps. Oral Maxillofac Surg Clin North Am 2017; 29:63-73. [DOI: 10.1016/j.coms.2016.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Cheng L, Wang T, Zhu J, Cai P. Osteoinduction of Calcium Phosphate Ceramics in Four Kinds of Animals for 1 Year: Dog, Rabbit, Rat, and Mouse. Transplant Proc 2017; 48:1309-14. [PMID: 27320611 DOI: 10.1016/j.transproceed.2015.09.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Bone grafts are in great demand. Synthetic materials have been extensively studied as substitutes for autografts. Calcium phosphate ceramics are promising synthetic bone replacement materials. Because they share chemical similarities with human bone mineral, they show excellent biocompatibility and osteoinductivity. OBJECTIVE Calcium phosphate ceramics have been used to fill bone defects in preclinical study in a variety of animals. This study aimed to investigate the osteogenesis ability of calcium phosphate ceramics in 4 kinds of animals. METHODS Φ3 × 5 mm hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) cylinders were implanted into the dorsal muscle of rats and mice, whereas Φ5 × 10 mm cylinders were implanted into the dorsal muscle of dogs and rabbits. One year after implantation, the ceramics were harvested to perform hematoxylin and eosin (HE) staining and Masson-trichrome staining. The new bone tissues were observed and the area percentage of new bone was compared in the 4 kinds of animals. RESULTS A large number of new bone and bone marrow tissues were observed in dogs, rabbits, and mice, but not in rats; and the area percentage of new bone in mice was significantly higher than that in dogs and rabbits (P < .05). Calcium phosphate ceramics have good biocompability and biological safety, and the degree of ease of osteogenesis was as follows: mouse > dog > rabbit > rat. CONCLUSION To achieve better effects for bone transplantation, mouse should be chosen as the preferred experimental model based on these advantages: economic, convenience, and osteogenesis ability.
Collapse
Affiliation(s)
- L Cheng
- Medical School (Nursing School), Chengdu University, Chengdu, China
| | - T Wang
- Medical School (Nursing School), Chengdu University, Chengdu, China
| | - J Zhu
- Medical School (Nursing School), Chengdu University, Chengdu, China
| | - P Cai
- Medical School (Nursing School), Chengdu University, Chengdu, China.
| |
Collapse
|
43
|
Synergistic Effects of Vascular Endothelial Growth Factor on Bone Morphogenetic Proteins Induced Bone Formation In Vivo: Influencing Factors and Future Research Directions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2869572. [PMID: 28070506 PMCID: PMC5187461 DOI: 10.1155/2016/2869572] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs), as key mediators in angiogenesis and osteogenesis, are used in a combined delivery manner as a novel strategy in bone tissue engineering. VEGF has the potential to enhance BMPs induced bone formation. Both gene delivery and material-based delivery systems were incorporated in previous studies to investigate the synergistic effects of VEGF and BMPs. However, their results were controversial due to variation of methods incorporated in different studies. Factors influencing the synergistic effects of VEGF on BMPs induced bone formation were identified and analyzed in this review to reduce confusion on this issue. The potential mechanisms and directions of future studies were also proposed here. Further investigating mechanisms of the synergistic effects and optimizing these influencing factors will help to generate more effective bone regeneration.
Collapse
|
44
|
Abstract
Growth factors are essential orchestrators of the normal bone fracture healing response. For non-union defects, delivery of exogenous growth factors to the injured site significantly improves healing outcomes. However, current clinical methods for scaffold-based growth factor delivery are fairly rudimentary, and there is a need for greater spatial and temporal regulation to increase their in vivo efficacy. Various approaches used to provide spatiotemporal control of growth factor delivery from bone tissue engineering scaffolds include physical entrapment, chemical binding, surface modifications, biomineralization, micro- and nanoparticle encapsulation, and genetically engineered cells. Here, we provide a brief review of these technologies, describing the fundamental mechanisms used to regulate release kinetics. Examples of their use in pre-clinical studies are discussed, and their capacities to provide tunable, growth factor delivery are compared. These advanced scaffold systems have the potential to provide safer, more effective therapies for bone regeneration than the systems currently employed in the clinic.
Collapse
|
45
|
García JR, García AJ. Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Res 2016; 6:77-95. [PMID: 26014967 DOI: 10.1007/s13346-015-0236-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
46
|
Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release 2016; 244:122-135. [PMID: 27794492 DOI: 10.1016/j.jconrel.2016.10.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/07/2023]
Abstract
Molecular signals in the form of growth factors are the main modulators of cell behavior. However, the use of growth factors in tissue engineering has several drawbacks, including their costs, difficult production, immunogenicity and short half-life. Furthermore, many of them are pleiotropic and, since a single growth factor can have different active domains, their effect is not always fully controllable. A very interesting alternative that has recently emerged is the use of biomimetic peptides. Sequences derived from the active domains of soluble or extracellular matrix proteins can be used to functionalize the biomaterials used as scaffolds for new tissue growth to either direct the attachment of cells or to be released as soluble ligands. Since these short peptides can be easily designed and cost-effectively synthesized in vitro, their use has opened up a world of new opportunities to obtain cheaper and more effective implants for regenerative medicine strategies. In this extensive review we will go through many of the most important peptides with potential interest for bone tissue engineering, not limiting to those that only mediate cell adhesion or induce the osteogenic differentiation of progenitor cells, but also focusing on those that direct angiogenesis because of its close relation with bone formation.
Collapse
Affiliation(s)
- Rick Visser
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain.
| | - Gustavo A Rico-Llanos
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| | - Hertta Pulkkinen
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jose Becerra
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| |
Collapse
|
47
|
Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries. Stem Cells Int 2016; 2016:7403890. [PMID: 27818692 PMCID: PMC5081458 DOI: 10.1155/2016/7403890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.
Collapse
|
48
|
Kim YH, Tabata Y. Enhancement of wound closure by modifying dual release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from gelatin hydrogels. J Tissue Eng Regen Med 2016; 11:2999-3013. [DOI: 10.1002/term.2202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/16/2016] [Accepted: 03/27/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yang-Hee Kim
- Department of Biomaterials, Field of Tissue Engineering; Institute for Frontier Medical Sciences; Kyoto University Kyoto Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering; Institute for Frontier Medical Sciences; Kyoto University Kyoto Japan
| |
Collapse
|
49
|
Bhattacharya I, Ghayor C, Weber FE. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review. Transfus Med Hemother 2016; 43:336-343. [PMID: 27781021 DOI: 10.1159/000447494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules.
Collapse
Affiliation(s)
- Indranil Bhattacharya
- Oral Biotechnology & Bioengineering, Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Chafik Ghayor
- Oral Biotechnology & Bioengineering, Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Franz E Weber
- Oral Biotechnology & Bioengineering, Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Tee BC, Desai KGH, Kennedy KS, Sonnichsen B, Kim DG, Fields HW, Mallery SR, Schwendeman SP, Sun Z. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors. Am J Transl Res 2016; 8:2693-2704. [PMID: 27398152 PMCID: PMC4931163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/07/2016] [Indexed: 06/06/2023]
Abstract
Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm(3)) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects.
Collapse
Affiliation(s)
- Boon Ching Tee
- Division of Biosciences, College of Dentistry, The Ohio State UniversityColumbus, Ohio, USA
| | - Kashappa Goud H Desai
- Department of Pharmaceutical Sciences and Biomedical Engineering, The Biointerfaces Institute, University of MichiganAnn Arbor, Michigan, USA
- Current Address: GlaxoSmithKlineKing of Prussia, PA 19406, USA
| | - Kelly S Kennedy
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State UniversityColumbus, Ohio, USA
| | - Brittany Sonnichsen
- Division of Oral and Maxillofacial Surgery, College of Dentistry, The Ohio State UniversityColumbus, Ohio, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State UniversityColumbus, Ohio, USA
| | - Henry W Fields
- Division of Orthodontics, College of Dentistry, The Ohio State UniversityColumbus, Ohio, USA
| | - Susan R Mallery
- Division of Oral Pathology & Radiology, College of Dentistry, The Ohio State UniversityColumbus, Ohio, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and Biomedical Engineering, The Biointerfaces Institute, University of MichiganAnn Arbor, Michigan, USA
| | - Zongyang Sun
- Division of Orthodontics, College of Dentistry, The Ohio State UniversityColumbus, Ohio, USA
| |
Collapse
|