1
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
2
|
Culiat C, Soni D, Malkes W, Wienhold M, Zhang LH, Henry E, Dragan M, Kar S, Angeles DM, Eaker S, Biswas R. NELL1 variant protein (NV1) modulates hyper-inflammation, Th-1 mediated immune response, and the HIF-1α hypoxia pathway to promote healing in viral-induced lung injury. Biochem Biophys Res Commun 2025; 744:151198. [PMID: 39706056 DOI: 10.1016/j.bbrc.2024.151198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Research underscores the urgent need for technological innovations to treat lung tissue damage from viral infections and the lasting impact of COVID-19. Our study demonstrates the effectiveness of recombinant human NV1 protein in promoting a pro-healing extracellular matrix that regulates homeostasis in response to excessive tissue reactions caused by infection and injury. NV1 achieves this by calibrating multiple biological mechanisms, including reducing hyperinflammatory cytokine levels (e.g., IFN-γ, TNF-α, IL-10, and IP-10), enhancing the production of proteins involved in viral inactivation and clearance through endocytosis and phagocytosis (e.g., IL-9, IL-1α), regulating pro-clotting and thrombolytic pathways (e.g., downregulates SERPINE 1 and I-TAC during Th1-mediated inflammation), maintaining cell survival under hypoxic conditions via HIF-1α regulation through the M3K5-JNK-AP-1 and TSC2-mTOR pathways, and promoting blood vessel formation. Our findings reveal NV1 as a potential therapeutic candidate for treating severe lung injuries caused by inflammatory and hypoxic conditions from viral infections and related diseases.
Collapse
Affiliation(s)
| | - Dharmendra Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Mark Wienhold
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | | | | | | | | | | | - Shannon Eaker
- NellOne Therapeutics Inc., Knoxville, TN, 37931, USA
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Ha P, Kwak JH, Zhang Y, Shi J, Tran L, Liu TP, Pan HC, Lee S, Kim JK, Chen E, Shirazi-Fard Y, Stodieck LS, Lin A, Zheng Z, Dong SN, Zhang X, Wu BM, Ting K, Soo C. Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice. NPJ Microgravity 2023; 9:75. [PMID: 37723136 PMCID: PMC10507033 DOI: 10.1038/s41526-023-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1's osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke).
Collapse
Affiliation(s)
- Pin Ha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jin Hee Kwak
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yulong Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Forsyth Institute, Cambridge, MA, 02142, USA
| | - Jiayu Shi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Luan Tran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy Pan Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsin-Chuan Pan
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Samantha Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jong Kil Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Eric Chen
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Louis S Stodieck
- BioServe Space Technologies and Aerospace Engineering Sciences, University of Colorado, Boulder, CO, 80303, USA
| | - Andy Lin
- Office of Advanced Research Computing, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhong Zheng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Stella Nuo Dong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinli Zhang
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin M Wu
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Forsyth Institute, Cambridge, MA, 02142, USA.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kang Ting
- Forsyth Institute, Cambridge, MA, 02142, USA.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Qin Q, Gomez-Salazar M, Tower RJ, Chang L, Morris CD, McCarthy EF, Ting K, Zhang X, James AW. NELL1 Regulates the Matrisome to Promote Osteosarcoma Progression. Cancer Res 2022; 82:2734-2747. [PMID: 35700263 PMCID: PMC9357190 DOI: 10.1158/0008-5472.can-22-0732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Sarcomas produce an abnormal extracellular matrix (ECM), which in turn provides instructive cues for cell growth and invasion. Neural EGF like-like molecule 1 (NELL1) is a secreted glycoprotein characterized by its nonneoplastic osteoinductive effects, yet it is highly expressed in skeletal sarcomas. Here, we show that genetic deletion of NELL1 markedly reduces invasive behavior across human osteosarcoma (OS) cell lines. NELL1 deletion resulted in reduced OS disease progression, inhibiting metastasis and improving survival in a xenograft mouse model. These observations were recapitulated with Nell1 conditional knockout in mouse models of p53/Rb-driven sarcomagenesis, which reduced tumor frequency and extended tumor-free survival. Transcriptomic and phosphoproteomic analyses demonstrated that NELL1 loss skews the expression of matricellular proteins associated with reduced FAK signaling. Culturing NELL1 knockout sarcoma cells on wild-type OS-enriched matricellular proteins reversed the phenotypic and signaling changes induced by NELL1 deficiency. In sarcoma patients, high expression of NELL1 correlated with decreased overall survival. These findings in mouse and human models suggest that NELL1 expression alters the sarcoma ECM, thereby modulating cellular invasive potential and prognosis. Disruption of NELL1 signaling may represent a novel therapeutic approach to short-circuit sarcoma disease progression. SIGNIFICANCE NELL1 modulates the sarcoma matrisome to promote tumor growth, invasion, and metastasis, identifying the matrix-associated protein as an orchestrator of cell-ECM interactions in sarcomagenesis and disease progression.
Collapse
Affiliation(s)
- Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205
| | | | - Robert J. Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205
| | - Carol D. Morris
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205
| | | | - Kang Ting
- Forsyth Institute, Cambridge, MA 02142
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,Corresponding Author: Aaron W. James, M.D., Ph.D., 720 Rutland Avenue, Room 524A, Baltimore, MD 21205, Phone: (410) 502-4143,
| |
Collapse
|
5
|
Tanjaya J, Ha P, Zhang Y, Wang C, Shah Y, Berthiaume E, Pan HC, Shi J, Kwak J, Wu B, Ting K, Zhang X, Soo C. Genetic and pharmacologic suppression of PPARγ enhances NELL-1-stimulated bone regeneration. Biomaterials 2022; 287:121609. [PMID: 35839586 PMCID: PMC10434299 DOI: 10.1016/j.biomaterials.2022.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/15/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022]
Abstract
Recent investigations into mechanisms behind the development of osteoporosis suggest that suppressing PPARγ-mediated adipogenesis can improve bone formation and bone mineral density. In this study, we investigated a co-treatment strategy to enhance bone formation by combining NELL-1, an osteogenic molecule that has been extensively studied for its potential use as a therapeutic for osteoporosis, with two methods of PPARγ suppression. First, we suppressed PPARγ genetically using lentiviral PPARγ-shRNA in immunocompromised mice for a proof of concept. Second, we used a PPARγ antagonist to suppress PPARγ pharmacologically in immunocompetent senile osteopenic mice for clinical transability. We found that the co-treatment strategy significantly increased bone formation, increased the proliferation stage cell population, decreased late apoptosis of primary mouse BMSCs, and increased osteogenic marker mRNA levels in comparison to the single agent treatment groups. The addition of PPARγ suppression to NELL-1 therapy enhanced NELL-1's effects on bone formation by upregulating anabolic processes without altering NELL-1's inhibitory effects on osteoclastic and adipogenic activities. Our findings suggest that combining PPARγ suppression with therapeutic NELL-1 may be a viable method that can be further developed as a novel strategy to reverse bone loss and decrease marrow adiposity in age-related osteoporosis.
Collapse
Affiliation(s)
- Justine Tanjaya
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Pin Ha
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yulong Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Chenchao Wang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yash Shah
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Emily Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Hsin Chuan Pan
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jiayu Shi
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jinny Kwak
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Benjamin Wu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Kang Ting
- Forsyth Institute, Harvard University, Cambridge, MA, USA, 02142.
| | - Xinli Zhang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| |
Collapse
|
6
|
Liu Y, Ju M, Wang Z, Li J, Shao C, Fu T, Jing Y, Zhao Y, Lv Z, Li G. The synergistic effect of NELL1 and adipose-derived stem cells on promoting bone formation in osteogenesis imperfecta treatment. Biomed Pharmacother 2020; 128:110235. [PMID: 32454289 DOI: 10.1016/j.biopha.2020.110235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by bone fragility and deformity. Mesenchymal stem cells (MSCs) infusion can improve bone performance mainly due to their differentiation into osteoblasts in OI therapy. The osteoinductive activity of NELL1 have benefited various bone defect and osteoporotic models by promoting bone formation. The present study investigated the efficacy of combined use of NELL1 and adipose-derived mesenchymal stem cells (ADSCs) in OI treatment. METHODS Lentiviral vector carrying mouse Nell1 gene was constructed and lentivirus were used to infect ADSCs. The osteogenic capacity of MC3T3-E1 and ADSCs stimulated by recombinant mouse NELL1 protein (rmNELL1) and Nell1 gene genetically modified ADSCs (lenti-Nell1-ADSCs) were estimated by real-time quantitative PCR. Thirty adult male OI type I mice with single Col1a1 gene knockout were randomly divided into five groups and received intravenously injected PBS, rmNELL1 (1.25 mg/Kg), ADSCs (2 × 105 cells per mice), rmNELL1 (1.25 mg/Kg) combined with ADSCs (2 × 105 cells per mice), or lenti-Nell1-ADSCs (2 × 105 cells per mice) respectively. Six wildtype (WT) mice served as positive control. Bone formation was examined after 4 weeks using micro-CT, histological and immunohistochemical methods. RESULTS Three osteoblast related genes of MC3T3-E1 and ADSCs were significantly up-regulated by rmNELL1 in vitro. Lenti-Nell1-ADSCs showed greatly enhanced osteogenic differentiation capacity. The infused lenti-Nell1-ADSCs could migrate to femur and differentiate into ALPL-positive cells. Systemic administration of rmNELL1 combined with ADSCs or lenti-Nell1-ADSCs markedly improved the femoral microstructure and promoted bone formation through increasing the ALPL and osteocalcin (OCN) expression, much better than mice that received single rmNELL1 or ADSCs. And Nell1 gene engineered ADSCs achieved slightly better outcomes than that of combinative use of rmNELL1 and ADSCs. CONCLUSIONS NELL1 and ADSCs exhibited synergistic effect on stimulating bone formation of OI mice, which might provide an alternative strategy in OI treatment. Compared with dose escalation or multiple administration of rmNELL1, lentivirus-mediated long term expression of NELL1 might be more feasible and convenient. However, further studies are needed to confirm the safety and optimize the therapeutic regime.
Collapse
Affiliation(s)
- Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Mingyan Ju
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Jiaci Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Chenyi Shao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Ting Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Zhe Lv
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
7
|
Li C, Zhang X, Zheng Z, Nguyen A, Ting K, Soo C. Nell-1 Is a Key Functional Modulator in Osteochondrogenesis and Beyond. J Dent Res 2019; 98:1458-1468. [PMID: 31610747 DOI: 10.1177/0022034519882000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neural EGFL-like 1 (Nell-1) is a well-studied osteogenic factor that has comparable osteogenic potency with the Food and Drug Administration-approved bone morphogenic protein 2 (BMP-2). In this review, which aims to summarize the advanced Nell-1 research in the past 10 y, we start with the correlation of structural and functional relevance of the Nell-1 protein with the identification of a specific receptor of Nell-1, contactin-associated protein-like 4 (Cntnap4), for osteogenesis. The indispensable role of Nell-1 in normal craniofacial and appendicular skeletal development and growth was also defined by using the newly developed tissue-specific Nell-1 knockout mouse lines in addition to the existing transgenic mouse models. With the achievements on Nell-1's osteogenic therapeutic evaluations from multiple preclinical animal models for local and systemic bone regeneration, the synergistic effect of Nell-1 with BMP-2 on osteogenesis, as well as the advantages of Nell-1 as an osteogenic protein with antiadipogenic, anti-inflammatory, and provascularized characteristics over BMP-2 in bone tissue engineering, is highlighted, which lays the groundwork for the clinical trial approval of Nell-1. At the molecular level, besides the mitogen-activated protein kinase (MAPK) signaling pathway, we emphasize the significant involvement of the Wnt/β-catenin pathway as well as the key regulatory molecules Runt-related transcription factor 2 (Runx2) in Nell-1-induced osteogenesis. In addition, the involvement of Nell-1 in chondrogenesis and its relevant pathologies have been revealed with the participation of the nuclear factor of activated T cells 1 (Nfatc1), Runx3, and Indian hedgehog (Ihh) signaling pathways, although the mechanistic insights of Nell-1's osteochondrogenic property will be continuously evolving. With this perspective, we elucidate some emerging and novel functional properties of Nell-1 in oral-dental and neural tissues that will be the frontiers of future Nell-1 studies beyond the context of bone and cartilage. As such, the therapeutic potential of Nell-1 continues to evolve and grow with continuous pursuit.
Collapse
Affiliation(s)
- C Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - X Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Z Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - A Nguyen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - K Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - C Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
9
|
Zhang J, Chen Y, Xu J, Wang J, Li C, Wang L. Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects. Regen Biomater 2018; 5:213-220. [PMID: 30094060 PMCID: PMC6077810 DOI: 10.1093/rb/rby015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
The purposes of this study were to construct a novel tissue engineered bone composed of 3D-printed bioactive glass block/chitosan nanoparticles (BD/CSn) composites loaded with Nel-like Type I molecular-1 DNA (pDNA-NELL1) and/or bone marrow mesenchymal stem cells (BMSCs), and study their osteogenic activities by repairing bone defects in rhesus monkeys. CSn with NELL1 gene plasmid and rhesus monkey BMSCs were composited with a BD scaffold to prepare the tissue-engineered bone. Four adult female rhesus monkeys with 10- to 12-years old and 5-7 kg in weight were used in animal experiments. The first and second premolar teeth from four regions of each monkey were removed to form bone defects with size of 10 × 10 × 5 mm, which were then implanted with above-mentioned tissue engineered bone. At 12 weeks after the implantation, gross observations, X-ray and micro-CT observations revealed that the new bone was extremely close to normal bone in mass, density, hardness, and structure. The bony cortex was smooth and closely connected to the surrounding normal bone. Histological observations revealed moderate inflammation in the repair area, and the new bone tissues were similar to normal ones. In conclusion, tissue engineered bone of this study exhibited good osteoconductivity for promoting the formation of new alveolar bone tissue, and NELL1 gene played a promotional role in bone regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Department of Stomatology, Foshan Woman and Children's Hospital, Foshan, Guangdong, China
| | - Yang Chen
- Department of Spinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jing Xu
- Department of Stomatology, Jiangyin People's Hospital of Southeast University, Jiangyin, Jiangsu, China
| | - Jingjing Wang
- Department of Stomatology, Foshan Woman and Children's Hospital, Foshan, Guangdong, China
| | - Chengzhang Li
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Liyan Wang
- Department of Stomatology, Foshan Woman and Children's Hospital, Foshan, Guangdong, China
| |
Collapse
|
10
|
Li C, Zheng Z, Jiang J, Jiang W, Lee K, Berthiaume EA, Chen EC, Culiat CT, Zhou YH, Zhang X, Ting K, Soo C. Neural EGFL-Like 1 Regulates Cartilage Maturation through Runt-Related Transcription Factor 3-Mediated Indian Hedgehog Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:392-403. [PMID: 29137952 PMCID: PMC5785559 DOI: 10.1016/j.ajpath.2017.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/02/2017] [Accepted: 09/26/2017] [Indexed: 02/05/2023]
Abstract
The pro-chondrogenic function of runt-related transcription factor 2 (Runx2) was previously considered to be dependent on direct binding with the promoter of Indian hedgehog (Ihh)-the major regulator of chondrocyte differentiation, proliferation, and maturation. The authors' previous studies identified neural EGFL like 1 (Nell-1) as a Runx2-responsive growth factor for chondrogenic differentiation and maturation. In this study, it was further revealed that the pro-chondrogenic activities of Nell-1 also rely on Ihh signaling, by showing: i) Nell-1 significantly elevated Ihh signal transduction; ii) Nell-1 deficiency markedly reduced Ihh activation in chondrocytes; and iii) Nell-1-stimulated chondrogenesis was significantly reduced by the specific hedgehog inhibitor cyclopamine. Importantly, the authors demonstrated that Nell-1-responsive Ihh signaling and chondrogenic differentiation extended to Runx2-/- models in vitro and in vivo. In Runx2-/- chondrocytes, Nell-1 stimulated the expression and signal transduction of Runx3, another transcription factor required for complete chondrogenic differentiation and maturation. Furthermore, knocking down Runx3 in Runx2-/- chondrocytes abolished Nell-1's stimulation of Ihh-associated molecule expression, which validates Runx3 as a major mediator of Nell-1-stimulated Ihh activation. For the first time, the Runx2→Nell-1→Runx3→Ihh signaling cascade during chondrogenic differentiation and maturation has been identified as an alternative, but critical, pathway for Runx2 to function as a pro-chondrogenic molecule via Nell-1.
Collapse
Affiliation(s)
- Chenshuang Li
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California; Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Zhong Zheng
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California
| | - Jie Jiang
- UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California
| | - Wenlu Jiang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California; State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Kevin Lee
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California
| | - Emily A Berthiaume
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Eric C Chen
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California
| | | | - Yan-Heng Zhou
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California
| | - Kang Ting
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California.
| |
Collapse
|
11
|
Effects of corticopuncture (CP) and low-level laser therapy (LLLT) on the rate of tooth movement and root resorption in rats using micro-CT evaluation. Lasers Med Sci 2017; 33:811-821. [DOI: 10.1007/s10103-017-2421-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
|
12
|
Pakvasa M, Alverdy A, Mostafa S, Wang E, Fu L, Li A, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, He TC, Ameer GA, Reid RR. Neural EGF-like protein 1 (NELL-1): Signaling crosstalk in mesenchymal stem cells and applications in regenerative medicine. Genes Dis 2017; 4:127-137. [PMID: 29276737 PMCID: PMC5737940 DOI: 10.1016/j.gendis.2017.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Bone tissue regeneration holds the potential to solve both osteoporosis and large skeletal defects, two problems associated with significant morbidity. The differentiation of mesenchymal stem cells into the osteogenic lineage requires a specific microenvironment and certain osteogenic growth factors. Neural EGF Like-Like molecule 1 (NELL-1) is a secreted glycoprotein that has proven, both in vitro and in vivo, to be a potent osteo-inductive factor. Furthermore, it has been shown to repress adipogenic differentiation and inflammation. NELL-1 can work synergistically with other osteogenic factors such as Bone Morphogenic Protein (BMP) -2 and -9, and has shown promise for use in tissue engineering and as a systemically administered drug for the treatment of osteoporosis. Here we provide a comprehensive up-to-date review on the molecular signaling cascade of NELL-1 in mesenchymal stem cells and potential applications in bone regenerative engineering.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alex Alverdy
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Sami Mostafa
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lucy Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alexander Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Leonardo Oliveira
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Russell R. Reid
- The University of Chicago, Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
13
|
James AW, Shen J, Tsuei R, Nguyen A, Khadarian K, Meyers CA, Pan HC, Li W, Kwak JH, Asatrian G, Culiat CT, Lee M, Ting K, Zhang X, Soo C. NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair. JCI Insight 2017; 2:92573. [PMID: 28614787 PMCID: PMC5470886 DOI: 10.1172/jci.insight.92573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
NELL-1 is a secreted, osteogenic protein first discovered to control ossification of the cranial skeleton. Recently, NELL-1 has been implicated in bone maintenance. However, the cellular determinants of NELL-1's bone-forming effects are still unknown. Here, recombinant human NELL-1 (rhNELL-1) implantation was examined in a clinically relevant nonhuman primate lumbar spinal fusion model. Prolonged rhNELL-1 protein release was achieved using an apatite-coated β-tricalcium phosphate carrier, resulting in a local influx of stem cell antigen-1-positive (Sca-1+) mesenchymal progenitor cells (MPCs), and complete osseous fusion across all samples (100% spinal fusion rate). Murine studies revealed that Nell-1 haploinsufficiency results in marked reductions in the numbers of Sca-1+CD45-CD31- bone marrow MPCs associated with low bone mass. Conversely, rhNELL-1 systemic administration in mice showed a marked anabolic effect accompanied by increased numbers of Sca-1+CD45-CD31- bone marrow MPCs. Mechanistically, rhNELL-1 induces Sca-1 transcription among MPCs, in a process requiring intact Wnt/β-catenin signaling. In summary, NELL-1 effectively induces bone formation across small and large animal models either via local implantation or intravenous delivery. NELL-1 induces an expansion of a bone marrow subset of MPCs with Sca-1 expression. These findings provide compelling justification for the clinical translation of a NELL-1-based therapy for local or systemic bone formation.
Collapse
Affiliation(s)
- Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Jia Shen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Rebecca Tsuei
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Alan Nguyen
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Kevork Khadarian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hsin Chuan Pan
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Weiming Li
- Department of Orthopedics, The First Clinical Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin H Kwak
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Greg Asatrian
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | | | - Min Lee
- Section of Biomaterials, School of Dentistry, UCLA, Los Angeles, California, USA
| | - Kang Ting
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Xinli Zhang
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, USA
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA.,Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
14
|
Yang X, Xu S, Chen X, He D, Ke X, Zhang L, Yang G, Liu A, Mou X, Xia W, Gou Z. Intra-bone marrow injection of trace elements co-doped calcium phosphate microparticles for the treatment of osteoporotic rat. J Biomed Mater Res A 2017; 105:1422-1432. [PMID: 28233417 DOI: 10.1002/jbm.a.36027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
| | - Sanzhong Xu
- Department of Orthopaedic Surgery; the First Affiliated hospital, School of Medicine of Zhejiang University; Hangzhou 310003 China
| | - Xiaoyi Chen
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
- Clinical Research Institute, Zhejiang Provincial People's Hospital; Hangzhou Zhejiang 310014 People's Republic of China
| | - Dongshuang He
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
| | - Xiurong Ke
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an 325200 China
| | - Lei Zhang
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an 325200 China
| | - Guojing Yang
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an 325200 China
| | - An Liu
- Department of Orthopaedic Surgery; Second Affiliated Hospital, School of Medicine, Zhejiang University; Hangzhou 310009 China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital; Hangzhou Zhejiang 310014 People's Republic of China
| | - Wei Xia
- Department of Engineering Sciences, The Ångstrom Laboratory; Uppsala University; Box 534 Uppsala 75121 Sweden
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
15
|
Karakus E, Halici Z, Albayrak A, Bayir Y, Demirci E, Aydin A, Ozturk-Karagoz B, Cadirci E, Ayan AK, Sahin A, Unal D. Effects of Administration of Amlodipine and Lacidipine on Inflammation-Induced Bone Loss in the Ovariectomized Rat. Inflammation 2016; 39:336-346. [PMID: 26412256 DOI: 10.1007/s10753-015-0254-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study was performed to evaluate the possible protective effect of two calcium channel blocker's "lacidipine (LAC) and amlodipine (AML)" on bone metabolism in an experimental ovariectomized and inflammation-induced osteoporosis rat model (OVXinf). For the purpose of this study, the rats were divided into eight groups, each containing eight rats: sham-operated control (group 1, SH), sham + inflammation (group 2, SHinf), ovariectomy (group 3, OVX), ovariectomy + inflammation (group 4, OVXinf), ovariectomy + LAC 4 mg/kg (group 5, OVX + LAC), ovariectomy + inflammation + LAC 4 mg/kg (group 6, OVXinf + LAC), ovariectomy + AML 5 mg/kg (group 7, OVX + AML), ovariectomy + inflammation + AML 5 mg/kg (group 8, OVXinf + AML). The levels of osteocalcin and osteopontin decreased in OVXinf + LAC and OVXinf + AML groups. The serum levels of TNF-α, IL-1β, and IL-6 were increased significantly in the OVXinf rats compared with the SH group. Gene expression levels of the osteogenic factor runt-related transcription factor 2 (Runx2) and type I collagen 1A1 (Col1A1) significantly decreased in the OVXinf group, when compared with the control group. AML or LAC administrations increased the levels of Runx2 and Col1A1. These results suggest that amlodipine and lacidipine may be a novel therapeutic target for radical osteoporosis treatment in hypertensive patients.
Collapse
Affiliation(s)
- Emre Karakus
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Elif Demirci
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ali Aydin
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Berna Ozturk-Karagoz
- Department of Pharmacology, Faculty of Pharmacy, Ibrahim Cecen University, Agrı, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arif Kursat Ayan
- Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ali Sahin
- Department of Nuclear Medicine, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Deniz Unal
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
16
|
Tanjaya J, Zhang Y, Lee S, Shi J, Chen E, Ang P, Zhang X, Tetradis S, Ting K, Wu B, Soo C, Kwak JH. Efficacy of Intraperitoneal Administration of PEGylated NELL-1 for Bone Formation. Biores Open Access 2016; 5:159-70. [PMID: 27354930 PMCID: PMC4921932 DOI: 10.1089/biores.2016.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Systemically delivered NEL-like molecule-1 (NELL-1), a potent pro-osteogenic protein, promotes bone formation in healthy and osteoporotic mouse models. PEGylation of NELL-1 (NELL-PEG) increases the half-life of the protein in a mouse model without compromising its osteogenic potential, thereby improving its pharmacokinetics upon systemic delivery. This study consists of a twofold approach: a biodistribution test and an in vivo osteogenic potential test. The biodistribution test compared two commonly used administration methods for drug delivery other than intravenous-intraperitoneal (IP) and subcutaneous (SC)-to examine NELL-PEG biodistribution in mice. Compared to a single-dose SC injection (1.25 mg/kg), a single-dose IP administration yielded a higher protein uptake in the targeted bone sites. When the IP injection dose was doubled to 2.5 mg/kg, the protein remained in the femurs, tibias, and vertebrae for up to 72 h. Next, based on the results of the biodistribution study, IP administration was selected to further investigate the in vivo osteogenic effects of weekly NELL-PEG injection (q7d). In vivo, the IP administered NELL-PEG group showed significantly greater bone mineral density, bone volume fraction, and trabecular bone formation in the targeted bone sites compared to the phosphate-buffered saline control. In summary, weekly NELL-PEG injection via IP administration successfully enhanced the overall bone quality. These findings demonstrate that systemic delivery of NELL-PEG via IP administration may serve as an effective osteogenic therapy for preventing and treating osteoporosis.
Collapse
Affiliation(s)
- Justine Tanjaya
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Pocheon, South Korea.; Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Jiayu Shi
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Eric Chen
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Pia Ang
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California.; Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Sotirios Tetradis
- Section of Oral and Maxillofacial Radiology, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| | - Kang Ting
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California.; Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Benjamin Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.; Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.; Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jin Hee Kwak
- Division of Growth and Development and the Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Lee S, Zhang X, Shen J, James AW, Chung CG, Hardy R, Li C, Girgius C, Zhang Y, Stoker D, Wang H, Wu BM, Peault B, Ting K, Soo C. Brief Report: Human Perivascular Stem Cells and Nel-Like Protein-1 Synergistically Enhance Spinal Fusion in Osteoporotic Rats. Stem Cells 2015; 33:3158-63. [PMID: 26173400 DOI: 10.1002/stem.2103] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
Autologous bone grafts (ABGs) are considered as the gold standard for spinal fusion. However, osteoporotic patients are poor candidates for ABGs due to limited osteogenic stem cell numbers and function of the bone microenvironment. There is a need for stem cell-based spinal fusion of proven efficacy under either osteoporotic or nonosteoporotic conditions. The purpose of this study is to determine the efficacy of human perivascular stem cells (hPSCs), a population of mesenchymal stem cells isolated from adipose tissue, in the presence and absence of NELL-1, an osteogenic protein, for spinal fusion in the osteoporosis. Osteogenic differentiation of hPSCs with and without NELL-1 was tested in vitro. The results indicated that NELL-1 significantly increased the osteogenic potential of hPSCs in both osteoporotic and nonosteoporotic donors. Next, spinal fusion was performed by implanting scaffolds with regular or high doses of hPSCs, with or without NELL-1 in ovariectomized rats (n = 41). Regular doses of hPSCs or NELL-1 achieved the fusion rates of only 20%-37.5% by manual palpation. These regular doses had previously been shown to be effective in nonosteoporotic rat spinal fusion. Remarkably, the high dose of hPSCs+NELL-1 significantly improved the fusion rates among osteoporotic rats up to approximately 83.3%. Microcomputed tomography imaging and quantification further confirmed solid bony fusion with high dose hPSCs+NELL-1. Finally, histologically, direct in situ involvement of hPSCs in ossification was shown using undecalcified samples. To conclude, hPSCs combined with NELL-1 synergistically enhances spinal fusion in osteoporotic rats and has great potential as a novel therapeutic strategy for osteoporotic patients.
Collapse
Affiliation(s)
- Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Xinli Zhang
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jia Shen
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Aaron W James
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Choon G Chung
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Reef Hardy
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Chenshuang Li
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Caroline Girgius
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - David Stoker
- Marina Plastic Surgery Associates, Marina del Rey, California, USA
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | - Benjamin M Wu
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, California, USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kang Ting
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,UCLA Division of Plastic Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| |
Collapse
|
18
|
James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS, Seim Iii HB, Wu BM, Lyons K, Adams JS, Ting K, Soo C. NELL-1 in the treatment of osteoporotic bone loss. Nat Commun 2015; 6:7362. [PMID: 26082355 PMCID: PMC4557288 DOI: 10.1038/ncomms8362] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023] Open
Abstract
NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Altogether, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.
Collapse
Affiliation(s)
- Aaron W James
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Jia Shen
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Greg Asatrian
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Raghav Goyal
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Jin H Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Lin Jiang
- Department of Neurology, Easton Center for Alzheimer's Disease Research, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | - Benjamin Bengs
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA
| | | | - A Simon Turner
- Department of Veterinary Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Howard B Seim Iii
- Department of Veterinary Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Benjamin M Wu
- Department of Bioengineering and Department of Material Sciences, University of California, Los Angeles, California 90095, USA
| | - Karen Lyons
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA
| | - John S Adams
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA
| | - Kang Ting
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California 90095, USA
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, California 90095, USA.,Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
19
|
Pharmacokinetics and osteogenic potential of PEGylated NELL-1 in vivo after systemic administration. Biomaterials 2015; 57:73-83. [PMID: 25913252 DOI: 10.1016/j.biomaterials.2015.03.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a skeletal disorder attributable to an imbalance in osteoblast and osteoclast activity. NELL-1, a secretory protein that promotes osteogenesis while suppressing osteoclastic activity, holds potential as an osteoporosis therapy. Recently, we demonstrated that PEGylation of NELL-1 significantly improves its thermostability while preserving its bioactivity in vitro. However, the effect of PEGylation on the pharmacokinetics and osteogenic potential of NELL-1 in vivo have yet to be investigated. The present study demonstrated that PEGylation of NELL-1 significantly increases the elimination half-life time of the protein from 5.5 h to 15.5 h while distributing more than 2-3 times the amount of protein to bone tissues (femur, tibia, vertebrae, calvaria) in vivo when compared to naked NELL-1. In addition, microCT and DXA analyses demonstrated that systemic NELL-PEG therapy administered every 4 or 7 days significantly increases not only femoral and lumbar BMD and percent bone volume, but also new bone formation throughout the overall skeleton after four weeks of treatment. Furthermore, immunohistochemistry revealed increased osteocalcin expression, while TRAP staining showed reduced osteoclast numbers in NELL-PEG groups. Our findings suggest that the PEGylation technique presents a viable and promising approach to further develop NELL-1 into an effective systemic therapeutic for the treatment of osteoporosis.
Collapse
|
20
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
21
|
Liu J, Chen W, Zhao Z, Xu HH. Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement. Acta Biomater 2014; 10:5128-5138. [PMID: 25220281 DOI: 10.1016/j.actbio.2014.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) are a promising source of patient-specific stem cells with great regenerative potential. There has been no report on NEL-like protein 1 (NELL1) gene modification of iPSC-MSCs. The objectives of this study were to genetically modify iPSC-MSCs with NELL1 overexpression for bone tissue engineering, and investigate the osteogenic differentiation of NELL1 gene-modified iPSC-MSCs seeded on Arg-Gly-Asp (RGD)-grafted calcium phosphate cement (CPC) scaffold. Cells were transduced with red fluorescence protein (RFP-iPSC-MSCs) or NELL1 (NELL1-iPSC-MSCs) by a lentiviral vector. Cell proliferation on RGD-grafted CPC scaffold, osteogenic differentiation and bone mineral synthesis were evaluated. RFP-iPSC-MSCs stably expressed high levels of RFP. Both the NELL1 gene and NELL1 protein levels were confirmed higher in NELL1-iPSC-MSCs than in RFP-iPSC-MSCs using RT-PCR and Western blot (P<0.05). Alkaline phosphatase activity was increased by 130% by NELL1 overexpression at 14days (P<0.05), indicating that NELL1 promoted iPSC-MSC osteogenic differentiation. When seeded on RGD-grafted CPC, NELL1-iPSC-MSCs attached and expanded similarly well to RFP-iPSC-MSCs. At 14days, the runt-related transcription factor 2 (RUNX2) gene level of NELL1-iPSC-MSCs was 2.0-fold that of RFP-iPSC-MSCs. The osteocalcin (OC) level of NELL1-iPSC-MSCs was 3.1-fold that of RFP-iPSC-MSCs (P<0.05). The collagen type I alpha 1 (COL1A1) gene level of NELL1-iPSC-MSCs was 1.7-fold that of RFP-iPSC-MSCs at 7days (P<0.05). Mineral synthesis was increased by 81% in NELL1-iPSC-MSCs at 21days. In conclusion, NELL1 overexpression greatly enhanced the osteogenic differentiation and mineral synthesis of iPSC-MSCs on RGD-grafted CPC scaffold for the first time. The novel NELL1-iPSC-MSC seeded RGD-CPC construct is promising for enhancing bone engineering.
Collapse
|
22
|
Zhang Y, Velasco O, Zhang X, Ting K, Soo C, Wu BM. Bioactivity and circulation time of PEGylated NELL-1 in mice and the potential for osteoporosis therapy. Biomaterials 2014; 35:6614-21. [PMID: 24818884 PMCID: PMC4077898 DOI: 10.1016/j.biomaterials.2014.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/16/2014] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a progressive bone disease due to low osteoblast activity and/or high osteoclast activity. NELL-1 is a potential therapy for osteoporosis because it specifically increases osteoblast differentiation. However, similar to other protein drugs, the bioavailability of NELL-1 may be limited by its in vivo half-life and rapid clearance from body. The purpose of the present study is to prolong NELL-1 circulation time in vivo by PEGylation with three monomeric PEG sizes (5, 20, 40 kDa). While linear PEG 5k yielded the most efficient PEGylation and the most thermally stable conjugate, linear PEG 20k resulted in the conjugate with the highest Mw and longest in vivo circulation. Compared to non-modified NELL-1, all three PEGylated conjugates showed enhanced thermal stability and each prolonged the in vivo circulation time significantly. Furthermore, PEGylated NELL-1 retained its osteoblastic activity without any appreciable cytotoxicity. These findings motivate further studies to evaluate the efficacy of PEGylated NELL-1 on the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Omar Velasco
- Weintraub Center for Reconstructive Biotechnology, and Dental and Craniofacial Research Institute, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinli Zhang
- Weintraub Center for Reconstructive Biotechnology, and Dental and Craniofacial Research Institute, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kang Ting
- Weintraub Center for Reconstructive Biotechnology, and Dental and Craniofacial Research Institute, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia Soo
- Weintraub Center for Reconstructive Biotechnology, and Dental and Craniofacial Research Institute, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Weintraub Center for Reconstructive Biotechnology, and Dental and Craniofacial Research Institute, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
James AW. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. SCIENTIFICA 2013; 2013:684736. [PMID: 24416618 PMCID: PMC3874981 DOI: 10.1155/2013/684736] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 05/07/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor- γ (PPAR γ ) and Runt-related transcription factor 2 (Runx2). These two transcription factors, PPAR γ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β -catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP) signaling and insulin growth factor (IGF) signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.
Collapse
Affiliation(s)
- Aaron W. James
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS A3-251, Los Angeles, CA 90077, USA
- *Aaron W. James:
| |
Collapse
|