1
|
Mueller KMA, Mansi S, De-Juan-Pardo EM, Mela P. Advances in melt electrowriting for cardiovascular applications. Front Bioeng Biotechnol 2024; 12:1425073. [PMID: 39355277 PMCID: PMC11442423 DOI: 10.3389/fbioe.2024.1425073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Melt electrowriting (MEW) is an electric-field-assisted additive biofabrication technique that has brought significant advancements to bioinspired scaffold design for soft tissue engineering and beyond. Owing to its targeted microfiber placement, MEW has become a powerful platform technology for the fabrication of in vitro disease models up to functional biohybrid constructs that are investigated in vivo to reach clinical translation soon. This work provides a concise overview of this rapidly evolving field by highlighting the key contributions of MEW to cardiovascular tissue engineering. Specifically, we i) pinpoint the methods to introduce microvascular networks in thick 3D constructs benefitting from (sacrificial) MEW microfibers, ii) report MEW-based concepts for small-diameter vascular grafts and stents, iii) showcase how contracting cardiac tissues can profit from the tunable structure-property relationship of MEW scaffolds, and iv) address how complete regenerative heart valves can be built on complex fiber scaffold architectures that recapitulate J-shaped tensile properties and tissue heterogeneity. Lastly, we touch on novel biomaterial advancements and discuss the technological challenges of MEW to unlock the full potential of this transformative technology.
Collapse
Affiliation(s)
- Kilian Maria Arthur Mueller
- Technical University of Munich, TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Munich Institute of Biomedical Engineering (MIBE), Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Munich, Germany
| | - Salma Mansi
- Technical University of Munich, TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Munich Institute of Biomedical Engineering (MIBE), Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Munich, Germany
| | - Elena M De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Engineering, The University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Petra Mela
- Technical University of Munich, TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Munich Institute of Biomedical Engineering (MIBE), Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Munich, Germany
| |
Collapse
|
2
|
Liu Y, Kamran R, Han X, Wang M, Li Q, Lai D, Naruse K, Takahashi K. Human heart-on-a-chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC-derived cardiomyocytes. Sci Rep 2024; 14:18063. [PMID: 39117679 PMCID: PMC11310341 DOI: 10.1038/s41598-024-68275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, research on organ-on-a-chip technology has been flourishing, particularly for drug screening and disease model development. Fibroblasts and vascular endothelial cells engage in crosstalk through paracrine signaling and direct cell-cell contact, which is essential for the normal development and function of the heart. Therefore, to faithfully recapitulate cardiac function, it is imperative to incorporate fibroblasts and vascular endothelial cells into a heart-on-a-chip model. Here, we report the development of a human heart-on-a-chip composed of induced pluripotent stem cell (iPSC)-derived cardiomyocytes, fibroblasts, and vascular endothelial cells. Vascular endothelial cells cultured on microfluidic channels responded to the flow of culture medium mimicking blood flow by orienting themselves parallel to the flow direction, akin to in vivo vascular alignment in response to blood flow. Furthermore, the flow of culture medium promoted integrity among vascular endothelial cells, as evidenced by CD31 staining and lower apparent permeability. The tri-culture condition of iPSC-derived cardiomyocytes, fibroblasts, and vascular endothelial cells resulted in higher expression of the ventricular cardiomyocyte marker IRX4 and increased contractility compared to the bi-culture condition with iPSC-derived cardiomyocytes and fibroblasts alone. Such tri-culture-derived cardiac tissues exhibited cardiac responses similar to in vivo hearts, including an increase in heart rate upon noradrenaline administration. In summary, we have achieved the development of a heart-on-a-chip composed of cardiomyocytes, fibroblasts, and vascular endothelial cells that mimics in vivo cardiac behavior.
Collapse
Affiliation(s)
- Yun Liu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan
| | - Rumaisa Kamran
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan
| | - Xiaoxia Han
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan
| | - Mengxue Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan
| | - Qiang Li
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan
| | - Daoyue Lai
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama City, 700-8558, Japan.
| |
Collapse
|
3
|
Fan B, Yang S, Wang L, Xu M. Spatially Resolved Defect Characterization and Fidelity Assessment for Complex and Arbitrary Irregular 3D Printing Based on 3D P-OCT and GCode. SENSORS (BASEL, SWITZERLAND) 2024; 24:3636. [PMID: 38894427 PMCID: PMC11175316 DOI: 10.3390/s24113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
To address the challenges associated with achieving high-fidelity printing of complex 3D bionic models, this paper proposes a method for spatially resolved defect characterization and fidelity assessment. This approach is based on 3D printer-associated optical coherence tomography (3D P-OCT) and GCode information. This method generates a defect characterization map by comparing and analyzing the target model map from GCode information and the reconstructed model map from 3D P-OCT. The defect characterization map enables the detection of defects such as material accumulation, filament breakage and under-extrusion within the print path, as well as stringing outside the print path. The defect characterization map is also used for defect visualization, fidelity assessment and filament breakage repair during secondary printing. Finally, the proposed method is validated on different bionic models, printing paths and materials. The fidelity of the multilayer HAP scaffold with gradient spacing increased from 0.8398 to 0.9048 after the repair of filament breakage defects. At the same time, the over-extrusion defects on the nostril and along the high-curvature contours of the nose model were effectively detected. In addition, the finite element analysis results verified that the 60-degree filling model is superior to the 90-degree filling model in terms of mechanical strength, which is consistent with the defect detection results. The results confirm that the proposed method based on 3D P-OCT and GCode can achieve spatially resolved defect characterization and fidelity assessment in situ, facilitating defect visualization and filament breakage repair. Ultimately, this enables high-fidelity printing, encompassing both shape and function.
Collapse
Affiliation(s)
- Bowen Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
| | - Shanshan Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| | - Ling Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (M.X.)
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou 310018, China
| |
Collapse
|
4
|
Qiu B, Wu D, Xue M, Ou L, Zheng Y, Xu F, Jin H, Gao Q, Zhuang J, Cen J, Lin B, Su YC, Chen S, Sun D. 3D Aligned Nanofiber Scaffold Fabrication with Trench-Guided Electrospinning for Cardiac Tissue Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4709-4718. [PMID: 38388349 DOI: 10.1021/acs.langmuir.3c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Constructing three-dimensional (3D) aligned nanofiber scaffolds is significant for the development of cardiac tissue engineering, which is promising in the field of drug discovery and disease mechanism study. However, the current nanofiber scaffold preparation strategy, which mainly includes manual assembly and hybrid 3D printing, faces the challenge of integrated fabrication of morphology-controllable nanofibers due to its cross-scale structural feature. In this research, a trench-guided electrospinning (ES) strategy was proposed to directly fabricate 3D aligned nanofiber scaffolds with alternative ES and a direct ink writing (DIW) process. The electric field effect of DIW poly(dimethylsiloxane) (PDMS) side walls on guiding whipping ES nanofibers was investigated to construct trench design rules. It was found that the width/height ratio of trenches greatly affected the nanofiber alignment, and the trench width/height ratio of 1.5 provided the nanofiber alignment degree over 60%. As a proof of principle, 3D nanofiber scaffolds with controllable porosity (60-80%) and alignment (30-60%) were fabricated. The effect of the scaffolds was verified by culturing human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which resulted in the uniform 3D distribution of aligned hiPSC-CMs with ∼1000 μm thickness. Therefore, this printing strategy shows great potential for the efficient engineered tissue construction.
Collapse
Affiliation(s)
- Bin Qiu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Dongyang Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yanfei Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Qiang Gao
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jian Zhuang
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jianzheng Cen
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co. Ltd., Foshan 528231, Guangdong, China
| | - Yu-Chuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
6
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Solvent-Free Production by Extrusion of Bio-Based Poly(glycerol-co-diacids) Sheets for the Development of Biocompatible and Electroconductive Elastomer Composites. Polymers (Basel) 2022; 14:polym14183829. [PMID: 36145974 PMCID: PMC9502118 DOI: 10.3390/polym14183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Faced with growing global demand for new potent, bio-based, biocompatible elastomers, the present study reports the solvent-free production of 13 pure and derived poly(glycerol-co-diacid) composite sheets exclusively using itaconic acid, sebacic acid, and 2,5-furandicarboxylic acid (FDCA) with glycerol. Herein, modified melt polycondensation and Co(II)-catalyzed polytransesterification were employed to produce all exploitable prepolymers, enabling the easy and rapid manufacturing of elastomer sheets by extrusion. Most of our samples were loaded with 4 wt% of various additives such as natural polysaccharides, synthetic polymers, and/or 25 wt% sodium chloride as porogen agents. The removal of unreacted monomers and acidic short oligomers was carried out by means of washing with NaHCO3 aqueous solution, and pH monitoring was conducted until efficient sheet surface neutralization. For each sheet, their surface morphologies were observed by Field-emission microscopy, and DSC was used to confirm their amorphous nature and the impact of the introduction of every additive. The chemical constitution of the materials was monitored by FTIR. Then, cytotoxicity tests were performed for six of our most promising candidates. Finally, we achieved the production of two different types of extrusion-made PGS elastomers loaded with 10 wt% PANI particulates and 4 wt% microcrystalline cellulose for adding potential electroconductivity and stability to the material, respectively. In a preliminary experiment, we showed the effectiveness of these materials as performant, time-dependent electric pH sensors when immersed in a persistent HCl atmosphere.
Collapse
|
9
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
10
|
Chansoria P, Asif S, Gupta N, Piedrahita J, Shirwaiker RA. Multiscale Anisotropic Tissue Biofabrication via Bulk Acoustic Patterning of Cells and Functional Additives in Hybrid Bioinks. Adv Healthc Mater 2022; 11:e2102351. [PMID: 35030290 PMCID: PMC9117510 DOI: 10.1002/adhm.202102351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Recapitulation of the microstructural organization of cellular and extracellular components found in natural tissues is an important but challenging feat for tissue engineering, which demands innovation across both process and material fronts. In this work, a highly versatile ultrasound-assisted biofabrication (UAB) approach is demonstrated that utilizes radiation forces generated by superimposing ultrasonic bulk acoustic waves to rapidly organize arrays of cells and other biomaterial additives within single and multilayered hydrogel constructs. UAB is used in conjunction with a novel hybrid bioink system, comprising of cartilage-forming cells (human adipose-derived stem cells or chondrocytes) and additives to promote cell adhesion (collagen microaggregates or polycaprolactone microfibers) encapsulated within gelatin methacryloyl (GelMA) hydrogels, to fabricate cartilaginous tissue constructs featuring bulk anisotropy. The hybrid matrices fabricated under the appropriate synergistic thermo-reversible and photocrosslinking conditions demonstrate enhanced mechanical stiffness, stretchability, strength, construct shape fidelity and aligned encapsulated cell morphology and collagen II secretion in long-term culture. Hybridization of UAB is also shown with extrusion and stereolithography printing to fabricate constructs featuring 3D perfusable channels for vasculature combined with a crisscross or circumferential organization of cells and adhesive bioadditives, which is relevant for further translation of UAB toward complex physiological-scale biomimetic tissue fabrication.
Collapse
Affiliation(s)
- Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineeringand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Suleman Asif
- Edward P. Fitts Department of Industrial and Systems Engineeringand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Nithin Gupta
- Department of Molecular Biomedical Sciencesand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciencesand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Rohan A. Shirwaiker
- Edward P. Fitts Department of Industrial and Systems EngineeringComparative Medicine InstituteJoint Department of Biomedical Engineeringand Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
11
|
Riaz R, Abbas SR, Iqbal M. Synthesis, rheological characterization, and proposed application of pre‐polyglycerol sebacate as ultrasound contrast agent based on theoretical estimation. J Appl Polym Sci 2022. [DOI: 10.1002/app.51963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramish Riaz
- Department of Industrial Biotechnology Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | | |
Collapse
|
12
|
Shi M, Bai L, Xu M, Li Z, Hu T, Hu J, Zhang Z, Yin Z, Guo B. Micropatterned conductive elastomer patch based on poly(glycerol sebacate)-graphene for cardiac tissue repair. Biofabrication 2022; 14. [PMID: 35235923 DOI: 10.1088/1758-5090/ac59f2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Preparing a micropatterned elastomer film with characteristics that can simulate the mechanical properties, anisotropy, and electroactivity of natural myocardial tissues is crucial in cardiac tissue engineering after myocardial infarction (MI). Therefore, in this study, we developed several elastomeric films with a surface micropattern based on poly (glycerol sebacate) (PGS) and graphene (Gr). These films have sufficient mechanical strength (0.6 ± 0.1-3.2 ± 0.08 MPa) to withstand heartbeats, and the micropatterned structure also satisfies the natural myocardium anisotropy in the transverse and vertical. Moreover, Gr makes these films conductive (up to 5.80 × 10-7 S/m), which is necessary for the conduction of electrical signals between cardiomyocytes and the cardiac tissue. Furthermore, they have good cytocompatibility and can promote cell proliferation in H9c2 rat cardiomyocyte cell lines. In vivo test results indicate that these films have good biocompatibility. Notably, a film with 1 wt% Gr content (PGS-Gr1) significantly affects the recovery of myocardial function in rats after MI. This film effectively decreased the infarct size and degree of myocardial fibrosis and reduced collagen deposition. Echocardiographic evaluation showed that after treatment with this film, the left ventricular internal dimension in systole and left ventricular internal dimension in diastole of rats exhibited a significant downward trend, whereas the fractional shortening and ejection fraction were significantly increased compared with the control group. These data indicate that this electroactive micropatterned anisotropic elastomer film can be applied in cardiac tissue engineering.
Collapse
Affiliation(s)
- Mengting Shi
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Lang Bai
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Zhenlong Li
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Tianli Hu
- Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710049, CHINA
| | - Juan Hu
- Xi'an Jiaotong University, Xiwu Road, Xi'an, Shaanxi, 710049, CHINA
| | - Zixi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Road, Xi'an, 710061, CHINA
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, 710061, CHINA
| | - Baolin Guo
- Xi'an Jiaotong University, Frontier Institute of Science and Technology, Xi'an, 710049, CHINA
| |
Collapse
|
13
|
Chansoria P, Etter EL, Nguyen J. Regenerating dynamic organs using biomimetic patches. Trends Biotechnol 2022; 40:338-353. [PMID: 34412924 PMCID: PMC8831394 DOI: 10.1016/j.tibtech.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The regeneration of dynamic organs remains challenging because they are intrinsically anisotropic and undergo large volumetric deformation during normal or pathological function. This hampers the durability and applicability of regenerative medicine approaches. To address the challenges of organ dynamics, a new class of patches have emerged with anisotropic and auxetic properties that mimic native tissue biomechanics and accommodate volumetric deformation. Here, we outline the critical design, materials, and processing considerations for achieving optimal patch biomechanics according to target pathology and summarize recent advances in biomimetic patches for dynamic organ regeneration. Furthermore, we discuss the challenges and opportunities which, if overcome, would open up new applications in organ regeneration and expedite the clinical translation of patch-based therapeutics.
Collapse
Affiliation(s)
- Parth Chansoria
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emma L Etter
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Basara G, Saeidi-Javash M, Ren X, Bahcecioglu G, Wyatt BC, Anasori B, Zhang Y, Zorlutuna P. Electrically conductive 3D printed Ti 3C 2T x MXene-PEG composite constructs for cardiac tissue engineering. Acta Biomater 2022; 139:179-189. [PMID: 33352299 PMCID: PMC8213874 DOI: 10.1016/j.actbio.2020.12.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023]
Abstract
Tissue engineered cardiac patches have great potential as a therapeutic treatment for myocardial infarction (MI). However, for successful integration with the native tissue and proper function of the cells comprising the patch, it is crucial for these patches to mimic the ordered structure of the native extracellular matrix and the electroconductivity of the human heart. In this study, a new composite construct that can provide both conductive and topographical cues for human induced pluripotent stem cell derived cardiomyocytes (iCMs) is developed for cardiac tissue engineering applications. The constructs are fabricated by 3D printing conductive titanium carbide (Ti3C2Tx) MXene in pre-designed patterns on polyethylene glycol (PEG) hydrogels, using aerosol jet printing, at a cell-level resolution and then seeded with iCMs and cultured for one week with no signs of cytotoxicity. The results presented in this work illustrate the vital role of 3D-printed Ti3C2Tx MXene on aligning iCMs with a significant increase in MYH7, SERCA2, and TNNT2 expressions, and with an improved synchronous beating as well as conduction velocity. This study demonstrates that 3D printed Ti3C2Tx MXene can potentially be used to create physiologically relevant cardiac patches for the treatment of MI. STATEMENT OF SIGNIFICANCE: As cardiovascular diseases and specifically myocardial infarction (MI) continue to be the leading cause of death worldwide, it is critical that new clinical interventions be developed. Tissue engineered cardiac patches have shown significant potential as clinical therapeutics to promote recovery following MI. Unfortunately, current constructs lack the ordered structure and electroconductivity of native human heart. In this study, we engineered a composite construct that can provide both conductive and topographical cues for human induced pluripotent stem cell derived cardiomyocytes. By 3D printing conductive Ti3C2Tx MXene in pre-designed patterns on polyethylene glycol hydrogels, using aerosol jet printing, at a cell-level resolution, we developed tissue engineered patches that have the potential for providing a new clinical therapeutic to combat cardiovascular disease.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mortaza Saeidi-Javash
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian C. Wyatt
- Integrated Nanosystems Development Institute and Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Babak Anasori
- Integrated Nanosystems Development Institute and Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yanliang Zhang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA,Corresponding author: Pinar Zorlutuna, , Address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556, Phone no: +1 574 631 8543, Fax no: +1 574 631 8341
| |
Collapse
|
15
|
Tarabanis C, Miranda-Nieves D, Ferrante T, Haller CA, Chaikof EL. Standardized User-Independent Confocal Microscopy Image Acquisition and Analysis for Thickness Measurements of Microscale Collagen Scaffolds. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-6. [PMID: 33785078 DOI: 10.1017/s1431927621000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to accurately and precisely measure the thickness of biomaterial constructs is critical for characterizing both specific dimensional features and related mechanical properties. However, in the absence of a standardized approach for thickness measurements, a variety of imaging modalities have been employed, which have been associated with varying limits of accuracy, particularly for ultrathin hydrated structures. Electron microscopy (EM), a commonly used modality, yields thickness values for extensively processed and nonhydrated constructs, potentially resulting in overestimated mechanical properties, including elastic modulus and ultimate tensile strength. Confocal laser scanning microscopy (CLSM) has often been used as a nondestructive imaging alternative. However, published CLSM-derived image analysis protocols use arbitrary signal intensity cutoffs and provide minimal information regarding thickness variability across imaged surfaces. To address the aforementioned limitations, we present a standardized, user-independent CLSM image acquisition and analysis approach developed as a custom ImageJ macro and validated with collagen-based scaffolds. In the process, we also quantify thickness discrepancies in collagen-based scaffolds between CLSM and EM techniques, further illustrating the need for improved strategies. Employing the same image acquisition protocol, we also demonstrate that this approach can be used to estimate the surface roughness of the same scaffolds without the use of specialized instrumentation.
Collapse
Affiliation(s)
- Constantine Tarabanis
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA02115, USA
| | - David Miranda-Nieves
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA02139, USA
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA02115, USA
- Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA02139, USA
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| |
Collapse
|
16
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020; 4:615-634. [PMID: 39650726 PMCID: PMC7617017 DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 407] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 01/20/2023]
Abstract
Natural biomolecular systems have evolved to form a rich variety of supramolecular materials and machinery fundamental to cellular function. The assembly of these structures commonly involves interactions between specific molecular building blocks, a strategy that can also be replicated in an artificial setting to prepare functional materials. The self-assembly of synthetic biomimetic peptides thus allows the exploration of chemical and sequence space beyond that used routinely by biology. In this Review, we discuss recent conceptual and experimental advances in self-assembling artificial peptidic materials. In particular, we explore how naturally occurring structures and phenomena have inspired the development of functional biomimetic materials that we can harness for potential interactions with biological systems. As our fundamental understanding of peptide self-assembly evolves, increasingly sophisticated materials and applications emerge and lead to the development of a new set of building blocks and assembly principles relevant to materials science, molecular biology, nanotechnology and precision medicine.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Tuuli A Hakala
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gonçalo J L Bernardes
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Armstrong AA, Alleyne AG, Wagoner Johnson AJ. 1D and 2D error assessment and correction for extrusion-based bioprinting using process sensing and control strategies. Biofabrication 2020; 12:045023. [PMID: 32702687 DOI: 10.1088/1758-5090/aba8ee] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bioprinting literature currently lacks: (i) process sensing tools to measure material deposition, (ii) performance metrics to evaluate system performance, and (iii) control tools to correct for and avoid material deposition errors. The lack of process sensing tools limits in vivo functionality of bioprinted parts since accurate material deposition is critical to mimicking the heterogeneous structures of native tissues. We present a process monitoring and control strategy for extrusion-based fabrication that addresses all three gaps to improve material deposition. Our strategy uses a non-contact laser displacement scanner that measures both the spatial material placement and width of the deposited material. We developed a custom image processing script that uses the laser scanner data and defined error metrics for assessing material deposition. To implement process control, the script uses the error metrics to modify control inputs for the next deposition iteration in order to correct for the errors. A key contribution is the definition of a novel method to quantitatively evaluate the accuracy of printed constructs. We implement the process monitoring and control strategy on an extrusion-printing system to evaluate system performance and demonstrate improvement in both material placement and material width.
Collapse
Affiliation(s)
- Ashley A Armstrong
- The University of Illinois at Urbana Champaign, Champaign, IL, United States of America
| | | | | |
Collapse
|
18
|
Fang Y, Zhang T, Song Y, Sun W. Assessment of various crosslinking agents on collagen/chitosan scaffolds for myocardial tissue engineering. Biomed Mater 2020; 15:045003. [PMID: 31530754 DOI: 10.1088/1748-605x/ab452d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Suitable material for scaffolds that support cell attachment, proliferation, vascularization and contraction has always been a challenge in myocardial tissue engineering. Much research effort has been focused on natural polymers including collagen, gelatin, chitosan, fibrin, alginate, etc. Among them, a collagen/chitosan composite scaffold was widely used for myocardial tissue engineering. Due to the non-proliferative and contractile characteristics of cardiomyocytes, the biocompatibility and mechanical properties of the scaffolds are extremely important for supporting intercellular connection and tissue function for myocardial tissue engineering. To the best of our knowledge, the three crosslinking agents (glutaraldehyde (GTA), genipin (GP), tripolyphosphate (TPP)) have not yet been comparatively studied in myocardial tissue engineering. Thus, the aim of this study is to compare and identify the crosslinking effect of GTA, GP and TPP for myocardial tissue engineering. The collagen/chitosan scaffolds prepared with various crosslinking agents were fabricated and evaluated for physical characteristics, biocompatibility and contractile performance. All the groups of scaffolds exhibited high porosity (>65%) and good swelling ratio suitable for myocardial tissue engineering. TPP crosslinked scaffolds showed excellent mechanical properties, with their elastic modulus (81.0 ± 8.1 kPa) in the physiological range of native myocardium (20∼100 kPa). Moreover, GP and TPP crosslinked scaffolds exhibited better biocompatibility than GTA crosslinked scaffolds, as demonstrated by the live/dead staining and proliferation assay. In addition, cardiomyocytes within TPP crosslinked scaffolds showed the highest expression of cardiac-specific marker protein and the best contractile performance. To conclude, of the three crosslinking agents, TPP was recommended as the most suitable crosslinking agent for collagen/chitosan scaffold in myocardial tissue engineering.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China. 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From Shape to Function: The Next Step in Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906423. [PMID: 32045053 PMCID: PMC7116209 DOI: 10.1002/adma.201906423] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Indexed: 05/04/2023]
Abstract
In 2013, the "biofabrication window" was introduced to reflect the processing challenge for the fields of biofabrication and bioprinting. At that time, the lack of printable materials that could serve as cell-laden bioinks, as well as the limitations of printing and assembly methods, presented a major constraint. However, recent developments have now resulted in the availability of a plethora of bioinks, new printing approaches, and the technological advancement of established techniques. Nevertheless, it remains largely unknown which materials and technical parameters are essential for the fabrication of intrinsically hierarchical cell-material constructs that truly mimic biologically functional tissue. In order to achieve this, it is urged that the field now shift its focus from materials and technologies toward the biological development of the resulting constructs. Therefore, herein, the recent material and technological advances since the introduction of the biofabrication window are briefly summarized, i.e., approaches how to generate shape, to then focus the discussion on how to acquire the biological function within this context. In particular, a vision of how biological function can evolve from the possibility to determine shape is outlined.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Ruben G Scheuring
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Juergen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
20
|
Zamboulis A, Nakiou EA, Christodoulou E, Bikiaris DN, Kontonasaki E, Liverani L, Boccaccini AR. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications. Int J Mol Sci 2019; 20:E6210. [PMID: 31835372 PMCID: PMC6940955 DOI: 10.3390/ijms20246210] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
In a century when environmental pollution is a major issue, polymers issued from bio-based monomers have gained important interest, as they are expected to be environment-friendly, and biocompatible, with non-toxic degradation products. In parallel, hyperbranched polymers have emerged as an easily accessible alternative to dendrimers with numerous potential applications. Glycerol (Gly) is a natural, low-cost, trifunctional monomer, with a production expected to grow significantly, and thus an excellent candidate for the synthesis of hyperbranched polyesters for pharmaceutical and biomedical applications. In the present article, we review the synthesis, properties, and applications of glycerol polyesters of aliphatic dicarboxylic acids (from succinic to sebacic acids) as well as the copolymers of glycerol or hyperbranched polyglycerol with poly(lactic acid) and poly(ε-caprolactone). Emphasis was given to summarize the synthetic procedures (monomer molar ratio, used catalysts, temperatures, etc.,) and their effect on the molecular weight, solubility, and thermal and mechanical properties of the prepared hyperbranched polymers. Their applications in pharmaceutical technology as drug carries and in biomedical applications focusing on regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eirini A. Nakiou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eleana Kontonasaki
- Department of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Liliana Liverani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
21
|
Kaiser NJ, Bellows JA, Kant RJ, Coulombe KLK. Digital Design and Automated Fabrication of Bespoke Collagen Microfiber Scaffolds. Tissue Eng Part C Methods 2019; 25:687-700. [PMID: 31017039 PMCID: PMC6859695 DOI: 10.1089/ten.tec.2018.0379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
A great variety of natural and synthetic polymer materials have been utilized in soft tissue engineering as extracellular matrix (ECM) materials. Natural polymers, such as collagen and fibrin hydrogels, have experienced especially broad adoption due to the high density of cell adhesion sites compared to their synthetic counterparts, ready availability, and ease of use. However, these and other hydrogels lack the structural and mechanical anisotropy that define the ECM in many tissues, such as skeletal and cardiac muscle, tendon, and cartilage. Herein, we present a facile, low-cost, and automated method of preparing collagen microfibers, organizing these fibers into precisely controlled mesh designs, and embedding these meshes in a bulk hydrogel, creating a composite biomaterial suitable for a wide variety of tissue engineering and regenerative medicine applications. With the assistance of custom software tools described herein, mesh patterns are designed by a digital graphical user interface and translated into protocols that are executed by a custom mesh collection and organization device. We demonstrate a high degree of precision and reproducibility in both fiber and mesh fabrication, evaluate single fiber mechanical properties, and provide evidence of collagen self-assembly in the microfibers under standard cell culture conditions. This work offers a powerful, flexible platform for the study of tissue engineering and cell material interactions, as well as the development of therapeutic biomaterials in the form of custom collagen microfiber patterns that will be accessible to all through the methods and techniques described here. Impact Statement Collagen microfiber meshes have immediate and broad applications in tissue engineering research and show high potential for later use in clinical therapeutics due to their compositional similarities to native extracellular matrix and tunable structural and mechanical characteristics. Physical and biological characterizations of these meshes demonstrate physiologically relevant mechanical properties, native-like collagen structure, and cytocompatibility. The methods presented herein not only describe a process through which custom collagen microfiber meshes can be fabricated but also provide the reader with detailed device plans and software tools to produce their own bespoke meshes through a precise, consistent, and automated process.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Jessica A Bellows
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| |
Collapse
|
22
|
Koivisto JT, Gering C, Karvinen J, Maria Cherian R, Belay B, Hyttinen J, Aalto-Setälä K, Kellomäki M, Parraga J. Mechanically Biomimetic Gelatin-Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20589-20602. [PMID: 31120238 PMCID: PMC6750838 DOI: 10.1021/acsami.8b22343] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/17/2019] [Indexed: 05/07/2023]
Abstract
To promote the transition of cell cultures from 2D to 3D, hydrogels are needed to biomimic the extracellular matrix (ECM). One potential material for this purpose is gellan gum (GG), a biocompatible and mechanically tunable hydrogel. However, GG alone does not provide attachment sites for cells to thrive in 3D. One option for biofunctionalization is the introduction of gelatin, a derivative of the abundant ECM protein collagen. Unfortunately, gelatin lacks cross-linking moieties, making the production of self-standing hydrogels difficult under physiological conditions. Here, we explore the functionalization of GG with gelatin at biologically relevant concentrations using semiorthogonal, cytocompatible, and facile chemistry based on hydrazone reaction. These hydrogels exhibit mechanical behavior, especially elasticity, which resembles the cardiac tissue. The use of optical projection tomography for 3D cell microscopy demonstrates good cytocompatibility and elongation of human fibroblasts (WI-38). In addition, human-induced pluripotent stem cell-derived cardiomyocytes attach to the hydrogels and recover their spontaneous beating in 24 h culture. Beating is studied using in-house-built phase contrast video analysis software, and it is comparable with the beating of control cardiomyocytes under regular culture conditions. These hydrogels provide a promising platform to transition cardiac tissue engineering and disease modeling from 2D to 3D.
Collapse
Affiliation(s)
- Janne T. Koivisto
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Christine Gering
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jennika Karvinen
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Reeja Maria Cherian
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Birhanu Belay
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Jari Hyttinen
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, BioMediTech, Faculty
of Medicine and Health Technology and Computational Biophysics
and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Heart
Hospital, Tampere University Hospital, 33520 Tampere, Finland
| | - Minna Kellomäki
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| | - Jenny Parraga
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, 33720 Tampere, Finland
| |
Collapse
|
23
|
Yang C, Wu H, Chen S, Kang G. Three-dimensional bioglass-collagen-phosphatidylserine scaffolds designed with functionally graded structure and mechanical features. ACTA ACUST UNITED AC 2019; 63:255-259. [PMID: 29648991 DOI: 10.1515/bmt-2017-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/12/2018] [Indexed: 11/15/2022]
Abstract
The development of scaffolds featuring spatiotemporal controlled release of drugs is highly desirable. The goal of this study is to construct an inhomogeneous scaffold with gradient pore structure from top layer to bottom layer. The scaffolds were prepared using bioglass (BG), phosphatidylserine (PS) and steroidal saponins (SS) loaded collagen (COL) microparticles as the main components. The resulting scaffold constructs were characterized in terms of their morphology, drug release kinetics and mechanisms, as well as macroscopic form stability and mechanical properties. Pore interconnectivity and graded distribution were demonstrated using scanning electron microscopy (SEM). Such constructs have been further shown to be advantageous for temporal and spatial control of drug release and deposition in the scaffolds, with a potential to repair bone defect more precisely and effectively. Changes in the BG content resulted in distinct macroscopic form stability and mechanical properties to scaffolds. An increase in the BG content in scaffolds led to less volume swell as well as higher ultimate strength and compressive modulus, which makes the scaffolds mechanically adjustable according to certain structures and properties of different bone defect sites. The developed scaffolds may show promise for promoting bone tissue regeneration.
Collapse
Affiliation(s)
- Chunrong Yang
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China.,Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350118, China, Phone/Fax: 086-0591-38266213
| | - Huazhong Wu
- Department of Chemistry and Chemical Engineering, University of Minjiang, Fuzhou 350118, China
| | - Shou Chen
- Shenzhen 863 Program R&D Center for Surface Technology, Shenzhen 518100, China
| | - Guangyu Kang
- Shenzhen 863 Program R&D Center for Surface Technology, Shenzhen 518100, China
| |
Collapse
|
24
|
Zamani M, Karaca E, Huang NF. Multicellular Interactions in 3D Engineered Myocardial Tissue. Front Cardiovasc Med 2018; 5:147. [PMID: 30406114 PMCID: PMC6205951 DOI: 10.3389/fcvm.2018.00147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is a leading cause of death in the US and many countries worldwide. Current cell-based clinical trials to restore cardiomyocyte (CM) health by local delivery of cells have shown only moderate benefit in improving cardiac pumping capacity. CMs have highly organized physiological structure and interact dynamically with non-CM populations, including endothelial cells and fibroblasts. Within engineered myocardial tissue, non-CM populations play an important role in CM survival and function, in part by secreting paracrine factors and cell-cell interactions. In this review, we summarize the progress of engineering myocardial tissue with pre-formed physiological multicellular organization, and present the challenges toward clinical translation.
Collapse
Affiliation(s)
- Maedeh Zamani
- School of Medicine, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Esra Karaca
- School of Medicine, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Ngan F. Huang
- School of Medicine, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
25
|
Hitscherich P, Aphale A, Gordan R, Whitaker R, Singh P, Xie LH, Patra P, Lee EJ. Electroactive graphene composite scaffolds for cardiac tissue engineering. J Biomed Mater Res A 2018; 106:2923-2933. [DOI: 10.1002/jbm.a.36481] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Pamela Hitscherich
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey
| | - Ashish Aphale
- Department of Biomedical Engineering; University of Bridgeport; Bridgeport Connecticut
| | - Richard Gordan
- Department of Cell Biology and Molecular Medicine; Rutgers New Jersey Medical School; Newark New Jersey
| | - Ricardo Whitaker
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey
| | - Prabhakar Singh
- Department of Material Science and Engineering; University of Connecticut; Hartfort Connecticut
| | - Lai-hua Xie
- Department of Cell Biology and Molecular Medicine; Rutgers New Jersey Medical School; Newark New Jersey
| | - Prabir Patra
- Department of Biomedical Engineering; University of Bridgeport; Bridgeport Connecticut
- Department of Mechanical Engineering; University of Bridgeport; Bridgeport Connecticut
| | - Eun Jung Lee
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark New Jersey
| |
Collapse
|
26
|
Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I, Humphrey EJ, Puetzer JL, Mawad D, Koutsogeorgis DC, Stuckey DJ, Terracciano CM, Harding SE, Stevens MM. Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1800618. [PMID: 29875619 PMCID: PMC5985945 DOI: 10.1002/adfm.201800618] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 05/27/2023]
Abstract
An auxetic conductive cardiac patch (AuxCP) for the treatment of myocardial infarction (MI) is introduced. The auxetic design gives the patch a negative Poisson's ratio, providing it with the ability to conform to the demanding mechanics of the heart. The conductivity allows the patch to interface with electroresponsive tissues such as the heart. Excimer laser microablation is used to micropattern a re-entrant honeycomb (bow-tie) design into a chitosan-polyaniline composite. It is shown that the bow-tie design can produce patches with a wide range in mechanical strength and anisotropy, which can be tuned to match native heart tissue. Further, the auxetic patches are conductive and cytocompatible with murine neonatal cardiomyocytes in vitro. Ex vivo studies demonstrate that the auxetic patches have no detrimental effect on the electrophysiology of both healthy and MI rat hearts and conform better to native heart movements than unpatterned patches of the same material. Finally, the AuxCP applied in a rat MI model results in no detrimental effect on cardiac function and negligible fibrotic response after two weeks in vivo. This approach represents a versatile and robust platform for cardiac biomaterial design and could therefore lead to a promising treatment for MI.
Collapse
Affiliation(s)
- Michaella Kapnisi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, W12 0NN London, UK
| | - Camille Marijon
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ London, UK; National Heart and Lung Institute, Imperial College London, W12 0NN London, UK
| | - Anne Geraldine Guex
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ London, UK; National Heart and Lung Institute, Imperial College London, W12 0NN London, UK
| | - Filippo Perbellini
- National Heart and Lung Institute, Imperial College London, W12 0NN London, UK
| | - Ifigeneia Bardi
- National Heart and Lung Institute, Imperial College London, W12 0NN London, UK
| | - Eleanor J Humphrey
- National Heart and Lung Institute, Imperial College London, W12 0NN London, UK
| | - Jennifer L Puetzer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ London, UK
| | - Damia Mawad
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ London, UK
| | | | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, WC1E 6DD London, UK
| | | | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, W12 0NN London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
27
|
Naghieh S, Karamooz-Ravari MR, Sarker MD, Karki E, Chen X. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches. J Mech Behav Biomed Mater 2018; 80:111-118. [PMID: 29414466 DOI: 10.1016/j.jmbbm.2018.01.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/15/2023]
Abstract
Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl2) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression tests were used to measure the elastic modulus of each scaffold, then a finite element model was developed and a power model used to predict scaffold mechanical behavior. Results showed that crosslinking time and volume of crosslinker both play a decisive role in modulating the mechanical properties of 3D bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, the findings of this study can be implemented to modulate the elastic modulus of scaffolds according to the intended application.
Collapse
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | - M D Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Eva Karki
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
28
|
Liu Y, Xu G, Wei J, Wu Q, Li X. Cardiomyocyte coculture on layered fibrous scaffolds assembled from micropatterned electrospun mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:500-510. [DOI: 10.1016/j.msec.2017.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
|
29
|
Ellis BW, Acun A, Can UI, Zorlutuna P. Human iPSC-derived myocardium-on-chip with capillary-like flow for personalized medicine. BIOMICROFLUIDICS 2017; 11:024105. [PMID: 28396709 PMCID: PMC5367145 DOI: 10.1063/1.4978468] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 05/04/2023]
Abstract
The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - Aylin Acun
- Bioengineering Graduate Program, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | - U Isik Can
- Aerospace and Mechanical Engineering Department, University of Notre Dame , Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
30
|
Morgan KY, Sklaviadis D, Tochka ZL, Fischer KM, Hearon K, Morgan TD, Langer R, Freed LE. Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture. ADVANCED FUNCTIONAL MATERIALS 2016; 26:5873-5883. [PMID: 27942257 PMCID: PMC5142531 DOI: 10.1002/adfm.201601146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Multi-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores was created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Pre-fabricated polymer templates were cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses showed that the primary pores guided heart cell alignment and enabled robust perfusion while the secondary pores increased heart cell retention and reduced polymer volume fraction.
Collapse
Affiliation(s)
- Kathy Ye Morgan
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Demetra Sklaviadis
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary L. Tochka
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristin M. Fischer
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keith Hearon
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas D. Morgan
- Harvard University School of Engineering & Applied Science, Cambridge, MA 02138, USA
| | - Robert Langer
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa E. Freed
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Materials Engineering Division, Draper, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Stoppel WL, Gao AE, Greaney AM, Partlow BP, Bretherton RC, Kaplan DL, Black LD. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J Biomed Mater Res A 2016; 104:3058-3072. [PMID: 27480328 DOI: 10.1002/jbm.a.35850] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
Heart failure is the leading cause of death in the United States and rapidly becoming the leading cause of death worldwide. While pharmacological treatments can reduce progression to heart failure following myocardial infarction, there still exists a need for new therapies that promote better healing postinjury for a more functional cardiac repair and methods to understand how the changes to tissue mechanical properties influence cell phenotype and function following injury. To address this need, we have optimized a silk-based hydrogel platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM hydrogels have tunable mechanical properties, as well as rate-controllable hydrogel stiffening over time. In vitro, silk-cECM scaffolds led to enhanced cardiac fibroblast (CF) cell growth and viability with culture time. cECM incorporation improved expression of integrin an focal adhesion proteins, suggesting that CFs were able to interact with the cECM in the hydrogel. Subcutaneous injection of silk hydrogels in rats demonstrated that addition of the cECM led to endogenous cell infiltration and promoted endothelial cell ingrowth after 4 weeks in vivo. This naturally derived silk fibroin platform is applicable to the development of more physiologically relevant constructs that replicate healthy and diseased tissue in vitro and has the potential to be used as an injectable therapeutic for cardiac repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3058-3072, 2016.
Collapse
Affiliation(s)
- Whitney L Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Albert E Gao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Allison M Greaney
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Ross C Bretherton
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155. .,Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, 02111.
| |
Collapse
|
32
|
Fischer KM, Morgan KY, Hearon K, Sklaviadis D, Tochka ZL, Fenton OS, Anderson DG, Langer R, Freed LE. Poly(Limonene Thioether) Scaffold for Tissue Engineering. Adv Healthc Mater 2016; 5:813-21. [PMID: 26890480 PMCID: PMC4828277 DOI: 10.1002/adhm.201500892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 01/14/2023]
Abstract
A photocurable thiol-ene network polymer, poly(limonene thioether) (PLT32o), is synthesized, characterized, fabricated into tissue engineering scaffolds, and demonstrated in vitro and in vivo. Micromolded PLT32o grids exhibit compliant, elastomeric mechanical behavior similar to grids made of poly(glycerol sebacate) (PGS), an established biomaterial. Multilayered PL32o scaffolds with regular, geometrically defined pore architectures support heart cell seeding and culture in a manner similar to multilayered PGS scaffolds. Subcutaneous implantation of multilayered PLT32o scaffolds with cultured heart cells provides long-term 3D structural support and retains the exogenous cells, whereas PGS scaffolds lose both their structural integrity and the exogenous cells over 31 d in vivo. PLT32o membrane implants retain their dry mass, whereas PGS implants lose 70 percent of their dry mass by day 31. Macrophages are initially recruited to PLT32o and PGS membrane implants but are no longer present by day 31. Facile synthesis and processing in combination with the capability to support heart cells in vitro and in vivo suggest that PLT32o can offer advantages for tissue engineering applications where prolonged in vivo maintenance of 3D structural integrity and elastomeric mechanical behavior are required.
Collapse
Affiliation(s)
- Kristin M Fischer
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kathy Ye Morgan
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Keith Hearon
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Demetra Sklaviadis
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary L Tochka
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Owen S Fenton
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Langer
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa E Freed
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Researchand Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Materials Engineering Division, Draper, Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Lakshmanan R, Krishnan UM, Sethuraman S. Multidimensional nanofibrous scaffolds of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) with improved features for cardiac tissue engineering. Nanomedicine (Lond) 2015; 10:3451-67. [DOI: 10.2217/nnm.15.143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: The aim of the study is to develop scaffolds that mimic native tissue properties for effective regeneration of the myocardium, which is affected by the gradual thinning of left ventricular tissue after an infarction. Materials & methods: Heterogenous nanofibrous scaffolds made of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) were characterized for physico-chemical properties. The biocompatibility of the scaffolds was evaluated by studying the adhesion, proliferation and differentiation of H9c2 cells. Results: The scaffolds mimic the cardiac extracellular matrix and showed enhanced tensile strength, improved cell compatibility along with the expression of cardiac marker proteins. Conclusion: Our experimental data confirmed the importance of native tissue architecture and mechanical strength for improved cell response in cardiac tissue engineering.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur – 613 401, India
| |
Collapse
|
34
|
Polak R, Bradwell GM, Gilbert JB, Danielsen S, Beppu MM, Cohen RE, Rubner MF. Optimization of amine-rich multilayer thin films for the capture and quantification of prostate-specific antigen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5479-5488. [PMID: 25909861 DOI: 10.1021/acs.langmuir.5b00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is demonstrated that poly(allylamine hydrochloride)/poly(styrenesulfonate) (PAH/SPS) multilayer films can be successfully tailored for the capture and detection of small biomolecules in dilute concentrations. Based on in vitro results, these films could be potentially applied for rapid and high-throughput diagnosis of dilute biomarkers in serum or tissue. PAH presents functional amino groups that can be further reacted with desired chemistries in order to create customizable and specific surfaces for biomolecule capture. A variety of film assembly characteristics were tested (pH, molecular weight of PAH, and ionic strength) to tune the biotinylation and swelling behavior of these films to maximize detection capabilities. The resultant optimized biotinylated PAH/SPS 9.3/9.3 system was utilized in conjunction with quantum dots (Qdots) to capture and detect a dilute biomarker for prostate cancer, prostate-specific antigen (PSA). Compared to previous work, our system presents a good sensitivity for PSA detection within the clinically relevant range of 0.4-100 ng/mL.
Collapse
Affiliation(s)
- Roberta Polak
- †School of Pharmaceutical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | - Scott Danielsen
- §Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa M Beppu
- ‡School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | |
Collapse
|
35
|
Leijten J, Chai Y, Papantoniou I, Geris L, Schrooten J, Luyten F. Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Adv Drug Deliv Rev 2015; 84:30-44. [PMID: 25451134 DOI: 10.1016/j.addr.2014.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
The development of cell based advanced therapeutic medicinal products (ATMPs) for bone repair has been expected to revolutionize the health care system for the clinical treatment of bone defects. Despite this great promise, the clinical outcomes of the few cell based ATMPs that have been translated into clinical treatments have been far from impressive. In part, the clinical outcomes have been hampered because of the simplicity of the first wave of products. In response the field has set-out and amassed a plethora of complexities to alleviate the simplicity induced limitations. Many of these potential second wave products have remained "stuck" in the development pipeline. This is due to a number of reasons including the lack of a regulatory framework that has been evolving in the last years and the shortage of enabling technologies for industrial manufacturing to deal with these novel complexities. In this review, we reflect on the current ATMPs and give special attention to novel approaches that are able to provide complexity to ATMPs in a straightforward manner. Moreover, we discuss the potential tools able to produce or predict 'goldilocks' ATMPs, which are neither too simple nor too complex.
Collapse
|
36
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
37
|
Ye X, Lu L, Kolewe ME, Hearon K, Fischer KM, Coppeta J, Freed LE. Scalable units for building cardiac tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7202-8. [PMID: 25238047 PMCID: PMC4245075 DOI: 10.1002/adma.201403074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/14/2014] [Indexed: 05/20/2023]
Abstract
Scalable units for building cardiac tissue are fabricated from biodegradable elastomeric polymers by pairwise stacking of heart-cell scaffolds with sinusoidal internal pore architectures and dedicated perfusable microvessels with rapidly degrading porous interfaces in a parallel flow configuration. This platform supports viable heart cells in vitro and, if validated in vivo, may aid in the regenerative repair of vascularized tissues.
Collapse
Affiliation(s)
- Xiaofeng Ye
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liang Lu
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin E. Kolewe
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keith Hearon
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristin M. Fischer
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan Coppeta
- Biomedical Microsystems Development and Microfabrication Design Groups, Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| | - Lisa E. Freed
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biomedical Microsystems Development and Microfabrication Design Groups, Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Taylor DA, Sampaio LC, Gobin A. Building new hearts: a review of trends in cardiac tissue engineering. Am J Transplant 2014; 14:2448-59. [PMID: 25293671 DOI: 10.1111/ajt.12939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/26/2014] [Accepted: 07/12/2014] [Indexed: 01/25/2023]
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the United States. However, few treatments for CVD provide a means to regain full cardiac function with no long-term side effects. Novel tissue-engineered products may provide a way to overcome the limitations of current CVD therapies by replacing injured myocardium with functioning tissue or by inducing more constructive forms of endogenous repair. In this review, we discuss some of the factors that should be considered in the development of tissue-engineered products, and we review the methods currently being investigated to generate more effective heart valves, cardiac patches and whole hearts.
Collapse
Affiliation(s)
- D A Taylor
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX
| | | | | |
Collapse
|
39
|
Geris L. Regenerative orthopaedics: in vitro, in vivo...in silico. INTERNATIONAL ORTHOPAEDICS 2014; 38:1771-8. [PMID: 24984594 DOI: 10.1007/s00264-014-2419-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
Abstract
In silico, defined in analogy to in vitro and in vivo as those studies that are performed on a computer, is an essential step in problem-solving and product development in classical engineering fields. The use of in silico models is now slowly easing its way into medicine. In silico models are already used in orthopaedics for the planning of complicated surgeries, personalised implant design and the analysis of gait measurements. However, these in silico models often lack the simulation of the response of the biological system over time. In silico models focusing on the response of the biological systems are in full development. This review starts with an introduction into in silico models of orthopaedic processes. Special attention is paid to the classification of models according to their spatiotemporal scale (gene/protein to population) and the information they were built on (data vs hypotheses). Subsequently, the review focuses on the in silico models used in regenerative orthopaedics research. Contributions of in silico models to an enhanced understanding and optimisation of four key elements-cells, carriers, culture and clinics-are illustrated. Finally, a number of challenges are identified, related to the computational aspects but also to the integration of in silico tools into clinical practice.
Collapse
Affiliation(s)
- Liesbet Geris
- Biomechanics Research Unit, University of Liège, Liège, Belgium,
| |
Collapse
|
40
|
Masoumi N, Howell MC, Johnson KL, Niesslein MJ, Gerber G, Engelmayr GC. Design and testing of a cyclic stretch and flexure bioreactor for evaluating engineered heart valve tissues based on poly(glycerol sebacate) scaffolds. Proc Inst Mech Eng H 2014; 228:576-586. [PMID: 24898445 DOI: 10.1177/0954411914534837] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic flexure and stretch are essential to the function of semilunar heart valves and have demonstrated utility in mechanically conditioning tissue-engineered heart valves. In this study, a cyclic stretch and flexure bioreactor was designed and tested in the context of the bioresorbable elastomer poly(glycerol sebacate). Solid poly(glycerol sebacate) membranes were subjected to cyclic stretch, and micromolded poly(glycerol sebacate) scaffolds seeded with porcine aortic valvular interstitial cells were subjected to cyclic stretch and flexure. The results demonstrated significant effects of cyclic stretch on poly(glycerol sebacate) mechanical properties, including significant decreases in effective stiffness versus controls. In valvular interstitial cell-seeded scaffolds, cyclic stretch elicited significant increases in DNA and collagen content that paralleled maintenance of effective stiffness. This work provides a basis for investigating the roles of mechanical loading in the formation of tissue-engineered heart valves based on elastomeric scaffolds.
Collapse
Affiliation(s)
- Nafiseh Masoumi
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - M Christian Howell
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - Katherine L Johnson
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - Matthew J Niesslein
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - Gene Gerber
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| | - George C Engelmayr
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
41
|
Qazi TH, Rai R, Dippold D, Roether JE, Schubert DW, Rosellini E, Barbani N, Boccaccini AR. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications. Acta Biomater 2014; 10:2434-45. [PMID: 24561709 DOI: 10.1016/j.actbio.2014.02.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/26/2014] [Accepted: 02/11/2014] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Ranjana Rai
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Dirk Dippold
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Judith E Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
42
|
Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, Xu F. Engineering cell alignment in vitro. Biotechnol Adv 2014; 32:347-65. [DOI: 10.1016/j.biotechadv.2013.11.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
|
43
|
Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Exp Cell Res 2013; 321:297-306. [PMID: 24240126 DOI: 10.1016/j.yexcr.2013.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 11/23/2022]
Abstract
Toward developing biologically sound models for the study of heart regeneration and disease, we cultured heart cells on a biodegradable, microfabricated poly(glycerol sebacate) (PGS) scaffold designed with micro-structural features and anisotropic mechanical properties to promote cardiac-like tissue architecture. Using this biomimetic system, we studied individual and combined effects of supplemental insulin-like growth factor-1 (IGF-1) and electrical stimulation (ES). On culture day 8, all tissue constructs could be paced and expressed the cardiac protein troponin-T. IGF-1 reduced apoptosis, promoted cell-to-cell connectivity, and lowered excitation threshold, an index of electrophysiological activity. ES promoted formation of tissue-like bundles oriented in parallel to the electrical field and a more than ten-fold increase in matrix metalloprotease-2 (MMP-2) gene expression. The combination of IGF-1 and ES increased 2D projection length, an index of overall contraction strength, and enhanced expression of the gap junction protein connexin-43 and sarcomere development. This culture environment, designed to combine cardiac-like scaffold architecture and biomechanics with molecular and biophysical signals, enabled functional assembly of engineered heart muscle from dissociated cells and could serve as a template for future studies on the hierarchy of various signaling domains relative to cardiac tissue development.
Collapse
|
44
|
Spring-like fibers for cardiac tissue engineering. Biomaterials 2013; 34:8599-606. [DOI: 10.1016/j.biomaterials.2013.07.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
|
45
|
A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials 2013; 34:10007-15. [PMID: 24079890 DOI: 10.1016/j.biomaterials.2013.09.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 11/21/2022]
Abstract
A biodegradable microvessel scaffold comprised of distinct parenchymal and vascular compartments separated by a permeable membrane interface was conceptualized, fabricated, cellularized, and implanted. The device was designed with perfusable microfluidic channels on the order of 100 μm to mimic small blood vessels, and high interfacial area to an adjacent parenchymal space to enable transport between the compartments. Poly(glycerol sebacate) (PGS) elastomer was used to construct the microvessel framework, and various assembly methods were evaluated to ensure robust mechanical integrity. In vitro studies demonstrated the differentiation of human skeletal muscle cells cultured in the parenchymal space, a 90% reduction in muscle cell viability due to trans-membrane transport of a myotoxic drug from the perfusate, and microvessel seeding with human endothelial cells. In vivo studies of scaffolds implanted subcutaneously and intraperitoneally, without or with exogenous cells, into nude rats demonstrated biodegradation of the membrane interface and host blood cell infiltration of the microvessels. This modular, implantable scaffold could serve as a basis for building tissue constructs of increasing scale and clinical relevance.
Collapse
|
46
|
Kolewe ME, Park H, Gray C, Ye X, Langer R, Freed LE. 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:4459-65. [PMID: 23765688 PMCID: PMC3954574 DOI: 10.1002/adma.201301016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/24/2013] [Indexed: 05/22/2023]
Abstract
Microfabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions.
Collapse
Affiliation(s)
- Martin E. Kolewe
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyoungshin Park
- Microsystems Development and Microfabrication Process Engineering Groups, Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| | - Caprice Gray
- Microsystems Development and Microfabrication Process Engineering Groups, Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| | - Xiaofeng Ye
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa E. Freed
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Microsystems Development and Microfabrication Process Engineering Groups, Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Lakshmanan R, Krishnan UM, Sethuraman S. Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration. Macromol Biosci 2013; 13:1119-34. [PMID: 23982911 DOI: 10.1002/mabi.201300223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/05/2013] [Indexed: 12/13/2022]
Abstract
The constantly expanding repository of novel polymers and stem cells has opened up new vistas in the field of cardiac tissue engineering. Successful regeneration of the complex cardiac tissue mainly centres on the appropriate scaffold material with topographical features that mimic the native environment. The integration of stem cells on these scaffolds is expected to enhance the regeneration potential. This review elaborates on the interplay of these vital factors in achieving the functional cardiac tissue. The recent advances in polymers, nanocomposites, and stem cells from different sources are highlighted. Special emphasis is laid on the clinical trials involving stem cells and the state-of-the-art materials to obtain a balanced perspective on the translational potential of this strategy.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | | | | |
Collapse
|
48
|
Wang L, Liu L, Magome N, Agladze K, Chen Y. Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities. Biofabrication 2013; 5:035013. [DOI: 10.1088/1758-5082/5/3/035013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|