1
|
Zhen L, Quiroga E, Creason SA, Chen N, Sapre TR, Snyder JM, Lindhartsen SL, Fountaine BS, Barbour MC, Faisal S, Aliseda A, Johnson BW, Himmelfarb J, Ratner BD. Synthetic vascular graft that heals and regenerates. Biomaterials 2025; 320:123206. [PMID: 40058247 DOI: 10.1016/j.biomaterials.2025.123206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
Millions of synthetic vascular grafts (sVG) are needed annually to address vascular diseases (a leading cause of death in humans) and kidney failure (as vascular access). However, in 70+ years since the first sVG in humans, we still do not have sVGs that fully endothelialize (the "holy grail" for truly successful grafts). The lack of healthy endothelium is believed to be a main cause for thrombosis, stenosis, and infection (the major reasons for graft failure). The immune-mediated foreign body response to traditional sVG materials encapsulates the materials in fibrotic scar suppressing vascularized healing. Here, we describe the first sVG optimized for vessel wall vascularization via uniform, spherical 40 μm pores. This sVG induced unprecedented rapid healing of luminal endothelium in a demanding and clinically relevant sheep model, probably by attracting and modulating macrophages and foreign body giant cells towards diverse, pro-healing phenotypes. Both this sVG and the control (PTFE grafts) remained 100 % patent during the implantation period. This advancement has broad implications beyond sVGs in tissue engineering and biocompatibility.
Collapse
Affiliation(s)
- Le Zhen
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA
| | - Elina Quiroga
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Surgery, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sharon A Creason
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA
| | - Ningjing Chen
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Tanmay R Sapre
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Michael C Barbour
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Syed Faisal
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Brian W Johnson
- Histology and Imaging Core, University of Washington, Seattle, WA, USA
| | - Jonathan Himmelfarb
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; Department of Medicine, Division of Nephrology, University of Washington, Seattle, WA, USA; Kidney Research Institute, Seattle, WA, 98104, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Kidney Disease Innovation at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Buddy D Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA; Center for Dialysis Innovation (CDI), University of Washington, Seattle, WA, USA; University of Washington Engineered Biomaterials (UWEB21), University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Wang T, Liao S, Lu P, He Z, Cheng S, Wang T, Cheng Z, An Y, Wang M, Shu C. Improved porosity promotes reendothelialization and smooth muscle remodeling in decellularized tissue-engineered vascular grafts. Mater Today Bio 2025; 30:101402. [PMID: 39790489 PMCID: PMC11714392 DOI: 10.1016/j.mtbio.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Decellularized tissue-engineered vascular grafts (dTEVGs) exhibit superior biocompatibility, anti-infection properties and repair potential, contributing to better patency and making them a more ideal choice for arteriovenous grafts (AVGs) in hemodialysis compared to chemically synthesized grafts. However, the unsatisfactory reendothelialization and smooth muscle remodeling of current dTEVGs limit their advantages. In this study, we investigated the use of elastase to improve the porosity of elastic fiber layers in dTEVGs, aiming to promote cell infiltration and achieve superior reendothelialization and smooth muscle remodeling. Our findings revealed that elastase treatment induced scattered cracks and holes in the elastic fiber layers of dTEVGs. Porous dTEVGs demonstrated increased cell infiltration in rat subcutaneous tissue. In the rat AVG models, mildly elastase-treated dTEVGs significantly improved cell infiltration and graft remodeling, including adequate smooth muscle cell (SMC) repopulation, impressive reendothelization and regeneration of the extracellular matrix, without stenosis, dilation or disintegration of the grafts. This study demonstrates that porous dTEVGs promote reendothelization, smooth muscle remodeling and extracellular matrix regeneration while retaining a stable graft structure, enhancing durability and puncture resistance in hemodialysis.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Sheng Liao
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Zhenyu He
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Siyuan Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Tianjian Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Zibo Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Yangyang An
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Mo Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
3
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
4
|
Zia S, Djalali-Cuevas A, Pflaum M, Hegermann J, Dipresa D, Kalozoumis P, Kouvaka A, Burgwitz K, Andriopoulou S, Repanas A, Will F, Grote K, Schrimpf C, Toumpaniari S, Mueller M, Glasmacher B, Haverich A, Morticelli L, Korossis S. Development of a dual-component infection-resistant arterial replacement for small-caliber reconstructions: A proof-of-concept study. Front Bioeng Biotechnol 2023; 11:957458. [PMID: 36741762 PMCID: PMC9889865 DOI: 10.3389/fbioe.2023.957458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.
Collapse
Affiliation(s)
- Sonia Zia
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Adrian Djalali-Cuevas
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Michael Pflaum
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Panagiotis Kalozoumis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Artemis Kouvaka
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Karin Burgwitz
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sofia Andriopoulou
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Alexandros Repanas
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Fabian Will
- LLS ROWIAK LaserLabSolutions GmbH, Hannover, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sotiria Toumpaniari
- Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Marc Mueller
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Lucrezia Morticelli
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany,Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom,*Correspondence: Sotirios Korossis,
| |
Collapse
|
5
|
Wolfe JT, Shradhanjali A, Tefft BJ. Strategies for improving endothelial cell adhesion to blood-contacting medical devices. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1067-1092. [PMID: 34693761 DOI: 10.1089/ten.teb.2021.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelium is a critical mediator of homeostasis on blood-contacting surfaces in the body, serving as a selective barrier to regulate processes such as clotting, immune cell adhesion, and cellular response to fluid shear stress. Implantable cardiovascular devices including stents, vascular grafts, heart valves, and left ventricular assist devices are in direct contact with circulating blood and carry a high risk for platelet activation and thrombosis without a stable endothelial cell (EC) monolayer. Development of a healthy endothelium on the blood-contacting surface of these devices would help ameliorate risks associated with thrombus formation and eliminate the need for long-term anti-platelet or anti-coagulation therapy. Although ECs have been seeded onto or recruited to these blood-contacting surfaces, most ECs are lost upon exposure to shear stress due to circulating blood. Many investigators have attempted to generate a stable EC monolayer by improving EC adhesion using surface modifications, material coatings, nanofiber topology, and modifications to the cells. Despite some success with enhanced EC retention in vitro and in animal models, no studies to date have proven efficacious for routinely creating a stable endothelium in the clinical setting. This review summarizes past and present techniques directed at improving the adhesion of ECs to blood-contacting devices.
Collapse
Affiliation(s)
- Jayne Taylor Wolfe
- Medical College of Wisconsin, 5506, Biomedical Engineering, 8701 Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226-0509;
| | - Akankshya Shradhanjali
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| | - Brandon J Tefft
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| |
Collapse
|
6
|
Lopera Higuita M, Lopera Giraldo JF, Sarrafian TL, Griffiths LG. Tissue engineered bovine saphenous vein extracellular matrix scaffolds produced via antigen removal achieve high in vivo patency rates. Acta Biomater 2021; 134:144-159. [PMID: 34192567 DOI: 10.1016/j.actbio.2021.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Diseases of small diameter blood vessels encompass the largest portion of cardiovascular diseases, with over 4.2 million people undergoing autologous vascular grafting every year. However, approximately one third of patients are ineligible for autologous vascular grafting due to lack of suitable donor vasculature. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissue have potential to serve as ideal biomaterials for production of off-the-shelf vascular grafts capable of eliminating the need for autologous vessel harvest. A modified antigen removal (AR) tissue process, employing aminosulfabetaine-16 (ASB-16) was used to create off-the-shelf small diameter (< 3 mm) vascular graft from bovine saphenous vein ECM scaffolds with significantly reduced antigenic content, while retaining native vascular ECM protein structure and function. Elimination of native tissue antigen content conferred graft-specific adaptive immune avoidance, while retention of native ECM protein macromolecular structure resulted in pro-regenerative cellular infiltration, ECM turnover and innate immune self-recognition in a rabbit subpannicular model. Finally, retention of the delicate vascular basement membrane protein integrity conferred endothelial cell repopulation and 100% patency rate in a rabbit jugular interposition model, comparable only to Autograft implants. Alternatively, the lack of these important basement membrane proteins in otherwise identical scaffolds yielded a patency rate of only 20%. We conclude that acellular antigen removed bovine saphenous vein ECM scaffolds have potential to serve as ideal off-the-shelf small diameter vascular scaffolds with high in vivo patency rates due to their low antigen content, retained native tissue basement membrane integrity and preserved native ECM structure, composition and functional properties. STATEMENT OF SIGNIFICANCE: The use of autologous vessels for the treatment of small diameter vascular diseases is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use for the treatment of small diameter vessel diseases can potentially increase the success rate of autologous vascular grafting by eliminating complications related to the use of autologous vessel and increased availability. This manuscript demonstrates the potential of non-antigenic extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissue as off-the-shelf vascular grafts for the treatment of small diameter vascular diseases.
Collapse
Affiliation(s)
| | - Juan F Lopera Giraldo
- Department of Plastic Surgery, Clínica Las Américas, Antioquia, Dg. 75B ##2A-80/140, Medellín, Colombia
| | - Tiffany L Sarrafian
- Department of Thoracic Surgery, Mayo Clinic, 200 1st St SW, Rochester MN, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Heng JW, Yazid MD, Abdul Rahman MR, Sulaiman N. Coatings in Decellularized Vascular Scaffolds for the Establishment of a Functional Endothelium: A Scoping Review of Vascular Graft Refinement. Front Cardiovasc Med 2021; 8:677588. [PMID: 34395554 PMCID: PMC8358320 DOI: 10.3389/fcvm.2021.677588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Developments in tissue engineering techniques have allowed for the creation of biocompatible, non-immunogenic alternative vascular grafts through the decellularization of existing tissues. With an ever-growing number of patients requiring life-saving vascular bypass grafting surgeries, the production of functional small diameter decellularized vascular scaffolds has never been more important. However, current implementations of small diameter decellularized vascular grafts face numerous clinical challenges attributed to premature graft failure as a consequence of common failure mechanisms such as acute thrombogenesis and intimal hyperplasia resulting from insufficient endothelial coverage on the graft lumen. This review summarizes some of the surface modifying coating agents currently used to improve the re-endothelialization efficiency and endothelial cell persistence in decellularized vascular scaffolds that could be applied in producing a better patency small diameter vascular graft. A comprehensive search yielding 192 publications was conducted in the PubMed, Scopus, Web of Science, and Ovid electronic databases. Careful screening and removal of unrelated publications and duplicate entries resulted in a total of 16 publications, which were discussed in this review. Selected publications demonstrate that the utilization of surface coating agents can induce endothelial cell adhesion, migration, and proliferation therefore leads to increased re-endothelialization efficiency. Unfortunately, the large variance in methodologies complicates comparison of coating effects between studies. Thus far, coating decellularized tissue gave encouraging results. These developments in re-endothelialization could be incorporated in the fabrication of functional, off-the-shelf alternative small diameter vascular scaffolds.
Collapse
Affiliation(s)
- Jun Wei Heng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Tan J, Zhang QY, Huang LP, Huang K, Xie HQ. Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomater Sci 2021; 9:4803-4820. [PMID: 34018503 DOI: 10.1039/d1bm00470k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response of the host towards a decellularized scaffold is complex. Not only can a number of immune cells influence this process, but also the characteristics, preparation and modification of the decellularized scaffold can significantly impact this reaction. Such factors can, together or alone, trigger immune cells to polarize towards either a pro-healing or pro-inflammatory direction. In this article, we have comprehensively reviewed factors which may influence the immune response of the host towards a decellularized scaffold, including the source of the biomaterial, biophysical properties or modifications of the scaffolds with bioactive peptides, drugs and cytokines. Furthermore, the underlying mechanism has also been recapitulated.
Collapse
Affiliation(s)
- Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Li-Ping Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
9
|
Ilanlou S, Khakbiz M, Amoabediny G, Mohammadi J. Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts. Tissue Cell 2019; 60:25-32. [DOI: 10.1016/j.tice.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
|
10
|
Yilmaz-Bayraktar S, Schwieger J, Scheper V, Lenarz T, Böer U, Kreienmeyer M, Torrente M, Doll T. Decellularized equine carotid artery layers as matrix for regenerated neurites of spiral ganglion neurons. Int J Artif Organs 2019; 43:332-342. [PMID: 31434531 PMCID: PMC7221869 DOI: 10.1177/0391398819868481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Today’s best solution in compensating for sensorineural hearing loss is the cochlear implant, which electrically stimulates the spiral ganglion neurons in the inner ear. An optimum hearing impression is not ensured due to, among other reasons, a remaining anatomical gap between the spiral ganglion neurons and the implant electrodes. The gap could be bridged via pharmacologically triggered neurite growth toward the electrodes if biomaterials for neurite guidance could be provided. For this, we investigated the suitability of decellularized tissue. We compared three different layers (tunica adventitia, tunica media, and tunica intima) of decellularized equine carotid arteries in a preliminary approach. Rat spiral ganglia explants were cultured on decellularized equine carotid artery layers and neurite sprouting was assessed quantitatively. Generally, neurite outgrowth was possible and it was most prominent on the intima (in average 83 neurites per spiral ganglia explants, followed by the adventitia (62 neurites) and the lowest growth on the media (20 neurites). Thus, decellularized equine carotid arteries showed promising effects on neurite regeneration and can be developed further as efficient biomaterials for neural implants in hearing research.
Collapse
Affiliation(s)
- Suheda Yilmaz-Bayraktar
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Jana Schwieger
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Cluster of Excellence Hearing4All, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Cluster of Excellence Hearing4All, Hannover, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Michaela Kreienmeyer
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Mariela Torrente
- Department of Otolaryngology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Theodor Doll
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
11
|
Lau S, Klingenberg M, Mrugalla A, Helms F, Sedding D, Haverich A, Wilhelmi M, Böer U. Biochemical Myogenic Differentiation of Adipogenic Stem Cells Is Donor Dependent and Requires Sound Characterization. Tissue Eng Part A 2019; 25:936-948. [PMID: 30648499 DOI: 10.1089/ten.tea.2018.0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT We here showed that even under optimized conditions for biochemical differentiation of adipose-derived stem cells (with respect to a pronounced marker protein expression for a reasonable period of time) it was not possible to obtain functional smooth muscle cells from all donors. Moreover, an underestimated role may play the effect of the scaffold material on smooth muscle cell functionality. Both aspects are crucial for the successful tissue engineering of the vascular medial layer combining autologous cells with a suitable scaffold material and thus should be thoroughly addressed in each individualized therapeutic approach.
Collapse
Affiliation(s)
- Skadi Lau
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anna Mrugalla
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Florian Helms
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Daniel Sedding
- 3Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- 1Lower Saxony Centre of Biotechnology Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,2Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
13
|
Ramaswamy AK, Vorp DA, Weinbaum JS. Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Front Cardiovasc Med 2019; 6:74. [PMID: 31214600 PMCID: PMC6554335 DOI: 10.3389/fcvm.2019.00074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical properties-these will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer needed-proper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cells-all are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cells-proper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering.
Collapse
Affiliation(s)
- Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Sphingosine-1-phosphate in Endothelial Cell Recellularization Improves Patency and Endothelialization of Decellularized Vascular Grafts In Vivo. Int J Mol Sci 2019; 20:ijms20071641. [PMID: 30987025 PMCID: PMC6480112 DOI: 10.3390/ijms20071641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background: S1P has been shown to improve the endothelialization of decellularized vascular grafts in vitro. Here, we evaluated the potential of tissue-engineered vascular grafts (TEVGs) constructed by ECs and S1P on decellularized vascular scaffolds in a rat model. Methods: Rat aorta was decellularized mainly by 0.1% SDS and characterized by histology. Rat ECs, were seeded onto decellularized scaffolds, and the viability of the ECs was evaluated by biochemical assays. Then, we investigated the in vivo patency rate and endothelialization for five groups of decellularized vascular grafts (each n = 6) in a rat abdominal aorta model for 14 days. The five groups included (1) rat allogenic aorta (RAA); (2) decellularized RAA (DRAA); (3) DRAA with S1P (DRAA/S1P); (4) DRAA with EC recellularization (DRAA/EC); and (5) DRAA with S1P and EC recellularization (DRAA/EC/S1P). Results: In vitro, ECs were identified by the uptake of Dil-Ac-LDL. S1P enhanced the expression of syndecan-1 on ECs and supported the proliferation of ECs on decellularized vascular grafts. In vivo, RAA and DRAA/EC/S1P both had 100% patency without thrombus formation within 14 days. Better endothelialization, more wall structure maintenance and less inflammation were noted in the DRAA/EC/S1P group. In contrast, there was thrombus formation in the DRAA, DRAA/S1P and DRAA/EC groups. Conclusion: S1P could inhibit thrombus formation to improve the patency rate of EC-covered decellularized vascular grafts in vivo and may play an important role in the construction of TEVGs.
Collapse
|
15
|
Aper T, Wilhelmi M, Boer U, Lau S, Benecke N, Hilfiker A, Haverich A. Dehydration improves biomechanical strength of bioartificial vascular graft material and allows its long-term storage. Innov Surg Sci 2018; 3:215-224. [PMID: 31579785 PMCID: PMC6604580 DOI: 10.1515/iss-2018-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/18/2018] [Indexed: 02/01/2023] Open
Abstract
Introduction We have recently reported about a novel technique for the generation of bioartificial vascular grafts based on the use of a compacted fibrin matrix. In this study, we evaluated the effects of a dehydration process on the biomechanical properties of compacted fibrin tubes and whether it allows for their long-term storage. Materials and methods Fibrin was precipitated from fresh frozen plasma by means of cryoprecipitation and simultaneously with a thrombin solution applied in a high-speed rotating casting mold. Subsequent dehydration of the fibrin tubes (29/38) was performed in dry air with a dilator inside the tube to prevent the collapse of the lumen. Dehydrated fibrin tubes were stored for six (n=9) and 12 months (n=10) at room temperature. Comparative analysis was done on initially generated and dehydrated fibrin tubes before and after storage to evaluate the effects of the dehydration process and storage on the biomechanical properties and structure of the tubes. Results Thirty-eight fibrin tubes were generated by high-speed rotation-molding from 142±3 mg fibrinogen with an inner diameter of 5.8±0.1 mm and a length of 100 mm. A centrifugal force of nearly 900×g compacted applied fibrin, while fluid was pressed out of the matrix and drained from the mold via holes resulting in a 16-fold compaction of the fibrin matrix. Dehydration was characterized by shrinkage of the tubes to a diameter of 3.2±0.2 mm, while the length remained at 100 mm equivalent to a further two-fold compaction. The biomechanical strength of the dehydrated fibrin tubes significantly increased to values comparable to that of native ovine carotid arteries and maintained during the first 6 months of storage. After 12 months of storage, only five of 10 tubes were intact, and only one showed maintained biomechanical strength. Discussion Compaction of a fibrin matrix in high-speed rotation-moulding and subsequent dehydration enables for the construction of small-caliber fibrin grafts. Over and above, the dehydration process allows their storage and stockpiling as a prerequisite for clinical use.
Collapse
Affiliation(s)
- Thomas Aper
- Department of Vascular and Endovascular Surgery, Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Department of Vascular and Endovascular Surgery, Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Boer
- Department of Vascular and Endovascular Surgery, Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Skadi Lau
- Department of Vascular and Endovascular Surgery, Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Nils Benecke
- Department of Vascular and Endovascular Surgery, Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Department of Vascular and Endovascular Surgery, Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Vascular and Endovascular Surgery, Division for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci 2018; 19:ijms19072101. [PMID: 30029536 PMCID: PMC6073319 DOI: 10.3390/ijms19072101] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Due to poor vessel quality in patients with cardiovascular diseases, there has been an increased demand for small-diameter tissue-engineered blood vessels that can be used as replacement grafts in bypass surgery. Decellularization techniques to minimize cellular inflammation have been applied in tissue engineering research for the development of small-diameter vascular grafts. The biocompatibility of allogenic or xenogenic decellularized matrices has been evaluated in vitro and in vivo. Both short-term and long-term preclinical studies are crucial for evaluation of the in vivo performance of decellularized vascular grafts. This review offers insight into the various preclinical studies that have been performed using decellularized vascular grafts. Different strategies, such as surface-modified, recellularized, or hybrid vascular grafts, used to improve neoendothelialization and vascular wall remodeling, are also highlighted. This review provides information on the current status and the future development of decellularized vascular grafts.
Collapse
|
17
|
Morris AH, Stamer DK, Kunkemoeller B, Chang J, Xing H, Kyriakides TR. Decellularized materials derived from TSP2-KO mice promote enhanced neovascularization and integration in diabetic wounds. Biomaterials 2018; 169:61-71. [PMID: 29631168 DOI: 10.1016/j.biomaterials.2018.03.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
Abstract
Decellularized biologic scaffolds are gaining popularity over synthetic biomaterials as naturally derived materials capable of promoting improved healing. Nevertheless, the most widely used biologic material - acellular dermal matrix (ADM) - exhibits slow repopulation and remodeling, which prevents integration. Additionally, engineering control of these materials is limited because they require a natural source for their production. In the current report, we demonstrate the feasibility of using genetically engineered animals to create decellularized biologic scaffolds with favorable extracellular matrix (ECM) properties. Specifically, we utilized skin from thrombospondin (TSP)-2 KO mice to derive various decellularized products. Scanning electron microscopy and mechanical testing showed that TSP-2 KO ADM exhibited an altered structure and a reduction in elastic modulus and ultimate tensile strength, respectively. When a powdered form of KO ADM was implanted subcutaneously, it was able to promote enhanced vascularization over WT. Additionally, when implanted subcutaneously, intact slabs of KO ADM were populated by higher number of host cells when compared to WT. In vitro studies confirmed the promigratory properties of KO ADM. Specifically, degradation products released by pepsin digestion of KO ADM induced greater cell migration than WT. Moreover, cell-derived ECM from TSP-2 null fibroblasts was more permissive to fibroblast migration. Finally, ADMs were implanted in a diabetic wound model to examine their ability to accelerate wound healing. KO ADM exhibited enhanced remodeling and vascular maturation, indicative of efficient integration. Overall, we demonstrate that genetic manipulation enables engineered ECM-based materials with increased regenerative potential.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States
| | - Danielle K Stamer
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States
| | - Britta Kunkemoeller
- Department of Pathology, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States
| | - Julie Chang
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven CT 06511, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven CT 06511, United States.
| |
Collapse
|
18
|
Jeinsen N, Mägel L, Jonigk D, Klingenberg M, Haverich A, Wilhelmi M, Böer U. Biocompatibility of Intensified Decellularized Equine Carotid Arteries in a Rat Subcutaneous Implantation Model and in a Human In Vitro Model. Tissue Eng Part A 2017; 24:310-321. [PMID: 28530164 DOI: 10.1089/ten.tea.2016.0542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Limited biocompatibility of decellularized scaffolds is an ongoing challenge in tissue engineering. We recently demonstrated that intensified detergent-based decellularization of equine carotid artery (dEACintens) removed residual cellular molecules from the scaffold more efficiently than a conventional decellularization (dEACcon), although this approach did not eliminate its immunogenicity entirely. CCN1 has been shown to improve biocompatibility of dEACcon in a sheep model. In this study, we tested the biocompatibility of dEACintens and dEACcon with or without CCN1 coating after subcutaneous implantation in rats for up to 12 weeks. Explants were assessed by conventional histopathology and immunostaining for infiltrating M2 macrophages. Moreover, human macrophages derived from monocytes (MDM) or THP-1 cells (THP-derived macrophages [TDM]) were seeded onto dEACcon and dEACintens, and activation was assessed either by cytokine expression or matrix metalloprotease 2 and 7 staining. dEACintens showed a significantly reduced inflammatory infiltration (52%; p < 0.0001), as well as an earlier and denser neovascularization (1.4-fold, p < 0.0001) independent of CCN1 coating, which, however, reduced fibrosis exclusively with dEACintens (26-53%; p < 0.05). Human MDM seeded for 48 h onto dEACintens showed higher transcript levels for anti-inflammatory IL-10 (2.3-fold), proinflammatory TNFα (2.2-fold), and macrophage/monocyte recruiting MIP1α (3.5-fold; all p < 0.05) and MCP (2.7-fold; p < 0.01), whereas 1.92-fold more TDM on dEACintens showed staining for MMP2 (p > 0.001). Thus, although being advantageous in regard to fibrosis, CCN1 coating of dEACintens does not appear to be necessary for further improving dEACintens excellent biocompatibility in rats. In humans, the unspecific cellular immune response toward dEACintens seemed to be more complex, but generally comparable to the mild acute inflammatory tissue reaction with high remodeling activity as observed after rat subcutaneous implantation.
Collapse
Affiliation(s)
- Niklas Jeinsen
- 1 Lower Saxony Centre of Biotechnology, Implant Research and Development (NIFE), Hannover Medical School , Hannover, Germany
| | - Lavinia Mägel
- 2 Institute of Pathology , Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- 2 Institute of Pathology , Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- 1 Lower Saxony Centre of Biotechnology, Implant Research and Development (NIFE), Hannover Medical School , Hannover, Germany .,3 Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | - Axel Haverich
- 1 Lower Saxony Centre of Biotechnology, Implant Research and Development (NIFE), Hannover Medical School , Hannover, Germany .,3 Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | - Mathias Wilhelmi
- 1 Lower Saxony Centre of Biotechnology, Implant Research and Development (NIFE), Hannover Medical School , Hannover, Germany .,3 Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | - Ulrike Böer
- 1 Lower Saxony Centre of Biotechnology, Implant Research and Development (NIFE), Hannover Medical School , Hannover, Germany .,3 Division for Cardiothoracic-, Transplantation- and Vascular Surgery, Hannover Medical School , Hannover, Germany
| |
Collapse
|
19
|
Improving in vivo outcomes of decellularized vascular grafts via incorporation of a novel extracellular matrix. Biomaterials 2017; 141:63-73. [PMID: 28667900 DOI: 10.1016/j.biomaterials.2017.06.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/30/2022]
Abstract
Each year, hundreds of thousands coronary bypass procedures are performed in the US, yet there currently exists no off-the-shelf alternative to autologous vessel transplant. In the present study, we investigated the use of mouse thrombospondin-2 knockout (TSP2 KO) cells, which secrete a non-thrombogenic and pro-migratory extracellular matrix (TSP2 KO ECM), to modify small diameter vascular grafts. To accomplish this, we first optimized the incorporation of TSP2 KO ECM on decellularized rat aortas. Because MMP levels are known to be elevated in TSP2 KO cell culture, it was necessary to probe the effect of the modification process on the graft's mechanical properties. However, no differences were found in suture retention, Young's modulus, or ultimate tensile strength between modified and unmodified grafts. Platelet studies were then performed to determine the time point at which the TSP2 KO ECM sufficiently reduced thrombogenicity. Finally, grafts modified by either TSP2 KO or WT cells or unmodified grafts, were implanted in an abdominal aortic interposition model in rats. After 4 weeks, grafts with incorporated TSP2 KO ECM showed improved endothelial and mural cell recruitment, and a decreased failure rate compared to control grafts. Therefore, our studies show that TSP2 KO ECM could enable the production of off-the-shelf vascular grafts while promoting reconstruction of native vessels.
Collapse
|
20
|
Sawyer AJ, Kyriakides TR. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization. Adv Drug Deliv Rev 2016; 97:56-68. [PMID: 26763408 DOI: 10.1016/j.addr.2015.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases.
Collapse
|
21
|
Böer U, Hurtado-Aguilar LG, Klingenberg M, Lau S, Jockenhoevel S, Haverich A, Wilhelmi M. Effect of Intensified Decellularization of Equine Carotid Arteries on Scaffold Biomechanics and Cytotoxicity. Ann Biomed Eng 2015; 43:2630-41. [PMID: 25921001 DOI: 10.1007/s10439-015-1328-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/20/2015] [Indexed: 12/26/2022]
Abstract
Decellularized equine carotid arteries (dEAC) are suggested to represent an alternative for alloplastic vascular grafts in haemodialysis patients to achieve vascular access. Recently it was shown that intensified detergent treatment completely removed cellular components from dEAC and thereby significantly reduced matrix immunogenicity. However, detergents may also affect matrix composition and stability and render scaffolds cytotoxic. Therefore, intensively decellularized carotids (int-dEAC) were now evaluated for their biomechanical characteristics (suture retention strength, burst pressure and circumferential compliance at arterial and venous systolic and diastolic pressure), matrix components (collagen and glycosaminoglycan content) and indirect and direct cytotoxicity (WST-8 assay and endothelial cell seeding) and compared with native (n-EAC) and conventionally decellularized carotids (con-dEAC). Both decellularization protocols comparably reduced matrix compliance (venous pressure compliance: 32.2 and 27.4% of n-EAC; p < 0.01 and arterial pressure compliance: 26.8 and 23.7% of n-EAC, p < 0.01) but had no effect on suture retention strength and burst pressure. Matrix characterization revealed unchanged collagen contents but a 39.0% (con-dEAC) and 26.4% (int-dEAC, p < 0.01) reduction of glycosaminoglycans, respectively. Cytotoxicity was not observed in either dEAC matrix which was also displayed by an intact endothelial lining after seeding. Thus, even intensified decellularization generates matrix scaffolds highly suitable for vascular tissue engineering purposes, e.g., the generation of haemodialysis shunts.
Collapse
Affiliation(s)
- Ulrike Böer
- GMP-Model Laboratory for Tissue Engineering, Feodor-Lynen-Str. 31, 30625, Hannover, Germany.
- Division for Cardiac-, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Luis G Hurtado-Aguilar
- Department of Tissue Engineering and Textile Implants, AME - Institute of Applied Medical Engineering, Helmholtz Institute, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Melanie Klingenberg
- GMP-Model Laboratory for Tissue Engineering, Feodor-Lynen-Str. 31, 30625, Hannover, Germany
- Division for Cardiac-, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Skadi Lau
- GMP-Model Laboratory for Tissue Engineering, Feodor-Lynen-Str. 31, 30625, Hannover, Germany
- Division for Cardiac-, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering and Textile Implants, AME - Institute of Applied Medical Engineering, Helmholtz Institute, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Axel Haverich
- GMP-Model Laboratory for Tissue Engineering, Feodor-Lynen-Str. 31, 30625, Hannover, Germany
- Division for Cardiac-, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mathias Wilhelmi
- GMP-Model Laboratory for Tissue Engineering, Feodor-Lynen-Str. 31, 30625, Hannover, Germany
- Division for Cardiac-, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
22
|
The Immune Response to Crosslinked Tissue is Reduced in Decellularized Xenogeneic and Absent in Decellularized Allogeneic Heart Valves. Int J Artif Organs 2015; 38:199-209. [DOI: 10.5301/ijao.5000395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 11/20/2022]
Abstract
Background The degeneration and failure of xenogeneic heart valves, such as the Matrix P Plus valve (MP-V) consisting of decellularized porcine valves (dec-pV) and equine glutaraldehyde-fixed conduits (ga-eC) have been linked to tissue immunogenicity accompanied by antibody formation. In contrast, decellularized allograft valves (dec-aV) are well-tolerated. Here, we determined tissue-specific antibody levels in patients after implantation of MP-V or dec-aV and related them to valve failure or time period after implantation. Methods and Results Specific antibodies toward whole tissue-homogenates or alphaGal were determined retrospectively by ELISA analyses from patients who received MP-V with an uneventful course of 56.1 ± 5.1 months (n = 15), or with valve failure after 25.3 ± 14.6 months (n = 3), dec-aV for various times from 4 to 46 months (n = 14, uneventful) and from healthy controls (n = 4). All explanted valves were assessed histopathologically. MP-V induced antibodies toward both tissue components with significantly higher levels toward ga-eC than toward dec-pV (68.7 and 26.65 μg/ml IgG). In patients with valve failure, levels were not significantly higher and were related to inflammatory tissue infiltration. Anti-Gal antibodies in MP-V patients were significantly increased in both, the uneventful and the failure group. In contrast, in dec-aV patients only a slight tissue-specific antibody formation was observed after 4 months (6.24 μg/ml) that normalized to control levels after 1 year. Conclusions The strong humoral immune response to glutaraldehyde-fixed tissues is reduced in decellularized xenogeneic valves and almost absent in decellularized allogeneic tissue up to 4.5 years after implantation.
Collapse
|
23
|
Lau S, Schrimpf C, Klingenberg M, Helfritz F, Aper T, Haverich A, Wilhelmi M, Böer U. Evaluation of autologous tissue sources for the isolation of endothelial cells and adipose tissue-derived mesenchymal stem cells to pre-vascularize tissue-engineered vascular grafts. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/bnm-2015-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractCurrently used synthetic vascular grafts bear a high infection risk due to insufficient microvascularization of the graft wall disabling the infiltration of immune cells. Tissue-engineered grafts with a functional pre-vascularization thus would be desirable. However, autologous tissue sources for capillary forming cells need to be evaluated. Here, peripheral blood outgrowth endothelial cells (PB-OEC) from 17 healthy donors and pericyte-like mesenchymal stem cells derived from adipose tissue (ASC) of 17 patients scheduled for visceral surgery were characterized and investigated regarding their ability to form capillary-like networks in plasma-derived fibrin gels. To obtain proliferating PB-OEC with endothelial cell-specific properties (CD31-, VE-cadherin-expression, ac-LDL uptake and three-dimensional (3D)-tube formation in fibrin gels) both enrichment of CD34
Collapse
|
24
|
Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398069. [PMID: 25250319 PMCID: PMC4163448 DOI: 10.1155/2014/398069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Abstract
It is commonly stated that tissue engineering is the most promising approach to treat or replace failing tissues/organs. For this aim, a specific strategy should be planned including proper selection of biomaterials, fabrication techniques, cell lines, and signaling cues. A great effort has been pursued to develop suitable scaffolds for the restoration of a variety of tissues and a huge number of protocols ranging from in vitro to in vivo studies, the latter further differentiating into several procedures depending on the type of implantation (i.e., subcutaneous or orthotopic) and the model adopted (i.e., animal or human), have been developed. All together, the published reports demonstrate that the proposed tissue engineering approaches spread toward multiple directions. The critical review of this scenario might suggest, at the same time, that a limited number of studies gave a real improvement to the field, especially referring to in vivo investigations. In this regard, the present paper aims to review the results of in vivo tissue engineering experimentations, focusing on the role of the scaffold and its specificity with respect to the tissue to be regenerated, in order to verify whether an extracellular matrix-like device, as usually stated, could promote an expected positive outcome.
Collapse
|
25
|
Immunogenicity of intensively decellularized equine carotid arteries is conferred by the extracellular matrix protein collagen type VI. PLoS One 2014; 9:e105964. [PMID: 25157402 PMCID: PMC4144968 DOI: 10.1371/journal.pone.0105964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
The limited biocompatibility of decellularized scaffolds is an ongoing challenge in tissue engineering. Here, we demonstrate the residual immunogenicity of an extensively decellularized equine carotid artery (dEACintens) and identify the involved immunogenic components. EAC were submitted to an elaborated intensified decellularization protocol with SDS/sodium desoxycholate for 72 h using increased processing volumes (dEACintens), and compared to dEACord prepared by an ordinary protocol (40 h, normal volumes). Matrix integrity was checked via correlative volumetric visualization which revealed only minor structural changes in the arterial wall. In dEACintens, a substantial depletion of cellular components was obvious for smooth muscle actin (100%), MHC I complexes (97.8%), alphaGal epitops (98.4% and 91.3%) and for DNA (final concentration of 0.34±0.16 ng/mg tissue). However, dEACintens still evoked antibody formation in mice after immunization with dEACintens extracts, although to a lower extent than dEACord. Mouse plasma antibodies recognized a 140 kDa band which was revealed to contain collagen VI alpha1 and alpha2 chains via mass spectrometry of both 2D electrophoretically separated and immunoprecipitated proteins. Thus, even the complete removal of cellular proteins did not yield non-immunogenic dEAC as the extracellular matrix still conferred immunogenicity by collagen VI. However, as lower antibody levels were achieved by the intensified decellularization protocol, this seems to be a promising basis for further development.
Collapse
|
26
|
Morris AH, Kyriakides TR. Matricellular proteins and biomaterials. Matrix Biol 2014; 37:183-91. [PMID: 24657843 DOI: 10.1016/j.matbio.2014.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 01/05/2023]
Abstract
Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Pathology, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.
| |
Collapse
|