1
|
Barasa P, Simoliunas E, Grybas A, Zilinskaite-Tamasauske R, Dasevicius D, Alksne M, Rinkunaite I, Buivydas A, Baltrukonyte E, Tamulyte R, Megur A, Verkauskas G, Baltriukiene D, Bukelskiene V. Development of multilayered artificial urethra graft for urethroplasty. J Biomed Mater Res A 2025; 113:e37796. [PMID: 39268589 DOI: 10.1002/jbm.a.37796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
To enhance the treatment of patients' urethral defects, such as strictures and hypospadias, we investigated the potential of using artificial urethral tissue. Our study aimed to generate this tissue and assess its effectiveness in a rabbit model. Two types of bioprinted grafts, based on methacrylated gelatin-silk fibroin (GelMA-SF) hydrogels, were produced: acellular, as well as loaded with autologous rabbit stem cells. Rabbit adipose stem cells (RASC) were differentiated toward smooth muscle in the GelMA-SF hydrogel, while rabbit buccal mucosa stem cells (RBMC), differentiated toward the epithelium, were seeded on its surface, forming two layers of the cell-laden tissue. The constructs were then reinforced with polycaprolactone-polylactic acid meshes to create implantable multilayered artificial urethral grafts. In vivo experiments showed that the cell-laden tissue integrated into the urethra with less fibrosis and inflammation compared to its acellular counterpart. Staining to trace the implanted cells confirmed integration into the host organism 3 months postsurgery.
Collapse
Affiliation(s)
- Povilas Barasa
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aivaras Grybas
- Urology Center, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Ramune Zilinskaite-Tamasauske
- Children's Surgery, Orthopaedic and Traumatology Centre, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Darius Dasevicius
- Centre of Pathology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Buivydas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Emilija Baltrukonyte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rimgaile Tamulyte
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Gilvydas Verkauskas
- Children's Surgery, Orthopaedic and Traumatology Centre, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Daiva Baltriukiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Kurki A, Paakinaho K, Hannula M, Hyttinen J, Miettinen S, Sartoneva R. Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production. J Tissue Eng Regen Med 2023; 2023:6404468. [PMID: 40226413 PMCID: PMC11919108 DOI: 10.1155/2023/6404468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 04/15/2025]
Abstract
Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds (scPLCLA2P) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCLA2P scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCLA2P compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.
Collapse
Affiliation(s)
- Alma Kurki
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Kaarlo Paakinaho
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
| | - Markus Hannula
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Reetta Sartoneva
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
- Department of Obstetrics and Gynaecology, The Hospital District of South Ostrobothnia, Seinäjoki, Finland
| |
Collapse
|
3
|
Liu M, Chen J, Cao N, Zhao W, Gao G, Wang Y, Fu Q. Therapies Based on Adipose-Derived Stem Cells for Lower Urinary Tract Dysfunction: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14102229. [PMID: 36297664 PMCID: PMC9609842 DOI: 10.3390/pharmaceutics14102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lower urinary tract dysfunction often requires tissue repair or replacement to restore physiological functions. Current clinical treatments involving autologous tissues or synthetic materials inevitably bring in situ complications and immune rejection. Advances in therapies using stem cells offer new insights into treating lower urinary tract dysfunction. One of the most frequently used stem cell sources is adipose tissue because of its easy access, abundant source, low risk of severe complications, and lack of ethical issues. The regenerative capabilities of adipose-derived stem cells (ASCs) in vivo are primarily orchestrated by their paracrine activities, strong regenerative potential, multi-differentiation potential, and cell–matrix interactions. Moreover, biomaterial scaffolds conjugated with ASCs result in an extremely effective tissue engineering modality for replacing or repairing diseased or damaged tissues. Thus, ASC-based therapy holds promise as having a tremendous impact on reconstructive urology of the lower urinary tract.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Nailong Cao
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| |
Collapse
|
4
|
Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J Nanobiotechnology 2022; 20:392. [PMID: 36045428 PMCID: PMC9429763 DOI: 10.1186/s12951-022-01599-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Injuries to the urethra can be caused by malformations, trauma, inflammation, or carcinoma, and reconstruction of the injured urethra is still a significant challenge in clinical urology. Implanting grafts for urethroplasty and end-to-end anastomosis are typical clinical interventions for urethral injury. However, complications and high recurrence rates remain unsatisfactory. To address this, urethral tissue engineering provides a promising modality for urethral repair. Additionally, developing tailor-made biomimetic natural and synthetic grafts is of great significance for urethral reconstruction. In this work, tailor-made biomimetic natural and synthetic grafts are divided into scaffold-free and scaffolded grafts according to their structures, and the influence of different graft structures on urethral reconstruction is discussed. In addition, future development and potential clinical application strategies of future urethral reconstruction grafts are predicted.
Collapse
Affiliation(s)
- Qinyuan Tan
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, People's Republic Of China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Ming Zhang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Weijie Yang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Yazhao Hong
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Street, Nanjing, 210029, People's Republic Of China.
| | - Xiaoqing Wang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China.
| |
Collapse
|
5
|
Abstract
Tissue engineering could play a major role in the setting of urinary diversion. Several conditions cause the functional or anatomic loss of urinary bladder, requiring reconstructive procedures on the urinary tract. Three main approaches are possible: (i) incontinent cutaneous diversion, such as ureterocutaneostomy, colonic or ileal conduit, (ii) continent pouch created using different segments of the gastrointestinal system and a cutaneous stoma, and (iii) orthotopic urinary diversion with an intestinal segment with spherical configuration and anastomosis to the urethra (neobladder, orthotopic bladder substitution). However, urinary diversions are associated with numerous complications, such as mucus production, electrolyte imbalances and increased malignant transformation potential. In this context, tissue engineering would have the fundamental role of creating a suitable material for urinary diversion, avoiding the use of bowel segments, and reducing complications. Materials used for the purpose of urinary substitution are biological in case of acellular tissue matrices and naturally derived materials, or artificial in case of synthetic polymers. However, only limited success has been achieved so far. The aim of this review is to present the ideal properties of a urinary tissue engineered scaffold and to examine the results achieved so far. The most promising studies have been highlighted in order to guide the choice of scaffolds and cells type for further evolutions.
Collapse
|
6
|
Abbas TO, Elawad A, Pullattayil S. AK, Pennisi CP. Quality of Reporting in Preclinical Urethral Tissue Engineering Studies: A Systematic Review to Assess Adherence to the ARRIVE Guidelines. Animals (Basel) 2021; 11:2456. [PMID: 34438913 PMCID: PMC8388767 DOI: 10.3390/ani11082456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Preclinical research within the area of urethral tissue engineering has not yet been successfully translated into an efficient therapeutic option for patients. This gap could be attributed, in part, to inadequate design and reporting of the studies employing laboratory animals. In this study, a systematic review was conducted to investigate the quality of reporting in preclinical studies utilizing tissue engineering approaches for urethral repair. The scope was on studies performed in rabbits, published between January 2014 and March 2020. Quality assessment of the data was conducted according to the Animal Research: Reporting of in Vivo Experiments (ARRIVE) guidelines by the scoring of a 38-item checklist in different categories. A total of 28 articles that fulfilled the eligibility criteria were included in the study. The range of ARRIVE score was from 0 to 100, taking into consideration having reported the item in question or not. The mean checklist score was 53%. The items that attained the highest scores included the number of animals utilized, the size of control and experimental groups, and the definition of experimental outcomes. The least frequently reported items included the data regarding the experimental procedure, housing and husbandry, determination and justification of the number of animals, and reporting of adverse events. Surprisingly, full disclosure about ethical guidelines and animal protocol approval was missing in 54% of the studies. No paper stated the sample size estimation. Overall, our study found that a large number of studies display inadequate reporting of fundamental information and that the quality of reporting improved marginally over the study period. We encourage a comprehensive implementation of the ARRIVE guidelines in animal studies exploring tissue engineering for urethral repair, not only to facilitate effective translation of preclinical research findings into clinical therapies, but also to ensure compliance with ethical principles and to minimize unnecessary animal studies.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Regenerative Medicine Research Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar;
- College of Medicine, Qatar University, Doha 2713, Qatar
- Weill Cornell Medicine Qatar, Doha 24144, Qatar
| | - Abubakr Elawad
- Pediatric Urology Section, Sidra Medicine, Doha 26999, Qatar;
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Research Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| |
Collapse
|
7
|
Genitourinary Tissue Engineering: Reconstruction and Research Models. Bioengineering (Basel) 2021; 8:bioengineering8070099. [PMID: 34356206 PMCID: PMC8301202 DOI: 10.3390/bioengineering8070099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue engineering is an emerging field of research that initially aimed to produce 3D tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural origin, seeded or not with cells. At the same time, more and more studies have indicated the low clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic surfaces or using animal models that are too different from humans. New models are needed to mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest. The urethra and vagina can be sites suffering from many pathologies without currently adequate treatment options. Due to the specific organisation of the human urethral/bladder and vaginal epithelium, current research models remain poorly representative. In this review, the anatomy, the current pathologies, and the treatments will be described before focusing on producing tissues and research models using tissue engineering. An emphasis is made on the self-assembly approach, which allows tissue production without the need for biomaterials.
Collapse
|
8
|
Shih KW, Chen WC, Chang CH, Tai TE, Wu JC, Huang AC, Liu MC. Non-Muscular Invasive Bladder Cancer: Re-envisioning Therapeutic Journey from Traditional to Regenerative Interventions. Aging Dis 2021; 12:868-885. [PMID: 34094648 PMCID: PMC8139208 DOI: 10.14336/ad.2020.1109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Non-muscular invasive bladder cancer (NMIBC) is one of the most common cancer and major cause of economical and health burden in developed countries. Progression of NMIBC has been characterized as low-grade (Ta) and high grade (carcinoma in situ and T1). The current surgical intervention for NMIBC includes transurethral resection of bladder tumor; however, its recurrence still remains a challenge. The BCG-based immunotherapy is much effective against low-grade NMIBC. BCG increases the influx of T cells at bladder cancer site and inhibits proliferation of bladder cancer cells. The chemotherapy is another traditional approach to address NMIBC by supplementing BCG. Notwithstanding, these current therapeutic measures possess limited efficacy in controlling NMIBC, and do not provide comprehensive long-term relief. Hence, biomaterials and scaffolds seem an effective medium to deliver therapeutic agents for restructuring bladder post-treatment. The regenerative therapies such as stem cells and PRP have also been explored for possible solution to NMIBC. Based on above-mentioned approaches, we have comprehensively analyzed therapeutic journey from traditional to regenerative interventions for the treatment of NMIBC.
Collapse
Affiliation(s)
- Kuan-Wei Shih
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Wei-Chieh Chen
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hsin Chang
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,4Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11031, Taiwan
| | - Ting-En Tai
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jeng-Cheng Wu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,5Department of Education, Taipei Medical University Hospital, Taipei 11031, Taiwan.,6Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Andy C Huang
- 8Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei,11221, Taiwan.,9Department of Urology, Department of Surgery, Taipei City Hospital Ren-Ai Branch, Taipei 10629, Taiwan
| | - Ming-Che Liu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,7Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.,10School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Rashidbenam Z, Jasman MH, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Rani RA, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Fabrication of Adipose-Derived Stem Cell-Based Self-Assembled Scaffold under Hypoxia and Mechanical Stimulation for Urethral Tissue Engineering. Int J Mol Sci 2021; 22:ijms22073350. [PMID: 33805910 PMCID: PMC8036589 DOI: 10.3390/ijms22073350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Long urethral strictures are often treated with autologous genital skin and buccal mucosa grafts; however, risk of hair ingrowth and donor site morbidity, restrict their application. To overcome this, we introduced a tissue-engineered human urethra comprising adipose-derived stem cell (ASC)-based self-assembled scaffold, human urothelial cells (UCs) and smooth muscle cells (SMCs). ASCs were cultured with ascorbic acid to stimulate extracellular matrix (ECM) production. The scaffold (ECM) was stained with collagen type-I antibody and the thickness was measured under a confocal microscope. Results showed that the thickest scaffold (28.06 ± 0.59 μm) was achieved with 3 × 104 cells/cm2 seeding density, 100 μg/mL ascorbic acid concentration under hypoxic and dynamic culture condition. The biocompatibility assessment showed that UCs and SMCs seeded on the scaffold could proliferate and maintain the expression of their markers (CK7, CK20, UPIa, and UPII) and (α-SMA, MHC and Smootheline), respectively, after 14 days of in vitro culture. ECM gene expression analysis showed that the ASC and dermal fibroblast-based scaffolds (control) were comparable. The ASC-based scaffold can be handled and removed from the plate. This suggests that multiple layers of scaffold can be stacked to form the urothelium (seeded with UCs), submucosal layer (ASCs only), and smooth muscle layer (seeded with SMCs) and has the potential to be developed into a fully functional human urethra for urethral reconstructive surgeries.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohd Hafidzul Jasman
- Clinical Skills Learning and Simulation Unit, Department of Medical Education, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Guan Hee Tan
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Eng Hong Goh
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Xeng Inn Fam
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Christopher Chee Kong Ho
- School of Medicine, Taylor’s University, No. 1 Jalan Taylor’s, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia;
| | - Zulkifli Md Zainuddin
- Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (G.H.T.); (E.H.G.); (X.I.F.); (Z.M.Z.)
| | - Reynu Rajan
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Rizal Abdul Rani
- Arthoplasty Unit, Department of Orthopaedics and Traumatology Surgery, Universiti Kebangsaan Malaysia Medical Centre, 9th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fatimah Mohd Nor
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, 8th Floor, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (F.M.N.); (F.H.I.)
| | - Mohamad Aznan Shuhaili
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Nik Ritza Kosai
- Minimally Invasive Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (R.R.); (M.A.S.); (N.R.K.)
| | - Farrah Hani Imran
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, 8th Floor, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (F.M.N.); (F.H.I.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +6012-313-9179
| |
Collapse
|
10
|
Wan X, Zheng D, Yao H, Fu S, Wei Z, Wang Z, Xie M. An extracellular matrix-mimicking, bilayered, heterogeneous, porous, nanofibrous scaffold for anterior urethroplasty in a rabbit model. ACTA ACUST UNITED AC 2020; 15:065008. [PMID: 32580173 DOI: 10.1088/1748-605x/ab9fd0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anterior urethral reconstruction is still a challenging clinical task, and tissue engineering technology offers new options for anterior urethroplasty. In this work, we evaluated an extracellular matrix (ECM) mimicking scaffold for anterior urethral reconstruction in a New Zealand white rabbit model. After the creation of a urethral defect, the ECM-mimicking scaffold was applied in six rabbits, and small intestinal submucosa (SIS) was used in three rabbits. The outcomes of urethrography and histological analysis were evaluated six months postoperatively. A larger urethral diameter was observed in the ECM-mimicking scaffolds (3.01 ± 0.12 mm) than in the SIS grafts (0.95 ± 0.07 mm). Urethral fistulae and stenosis were observed in the SIS grafts. Urothelial and smooth muscle cells were observed in all rabbits, but the ECM-mimicking scaffold showed better performance. The ECM-mimicking scaffold may be an effective clinical treatment option for congenital and acquired urethral pathologies.
Collapse
Affiliation(s)
- Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, People's Republic of China. These authors have contributed equally
| | | | | | | | | | | | | |
Collapse
|
11
|
Culenova M, Ziaran S, Danisovic L. Cells Involved in Urethral Tissue Engineering: Systematic Review. Cell Transplant 2019; 28:1106-1115. [PMID: 31237144 PMCID: PMC6767881 DOI: 10.1177/0963689719854363] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
The urethra is part of the lower urinary tract and its main role is urine voiding. Its complex histological structure makes urethral tissue prone to various injuries with complicated healing processes that often lead to scar formation. Urethral stricture disease can affect both men and women. The occurrence of this pathology is more common in men and thus are previous research has been mainly oriented on male urethra reconstruction. However, commonly used surgical techniques show unsatisfactory results because of complications. The new and progressively developing field of tissue engineering offers promising solutions, which could be applied in the urethral regeneration of both men´s and women´s urethras. The presented systematic review article offers an overview of the cells that have been used in urethral tissue engineering so far. Urine-derived stem cells show a great perspective in respect to urethral tissue engineering. They can be easily harvested and are a promising autologous cell source for the needs of tissue engineering techniques. The presented review also shows the importance of mechanical stimuli application on maturating tissue. Sufficient vascularization and elimination of stricture formation present the biggest challenges not only in customary surgical management but also in tissue-engineering approaches.
Collapse
Affiliation(s)
- Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of
Medicine, Comenius University, Slovakia
| | | | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of
Medicine, Comenius University, Slovakia
- Regenmed Ltd., Slovakia
| |
Collapse
|
12
|
Rashidbenam Z, Jasman MH, Hafez P, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Overview of Urethral Reconstruction by Tissue Engineering: Current Strategies, Clinical Status and Future Direction. Tissue Eng Regen Med 2019; 16:365-384. [PMID: 31413941 DOI: 10.1007/s13770-019-00193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering. METHODs Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database. RESULTS Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering. CONCLUSION Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohd Hafidzul Jasman
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Pezhman Hafez
- 3Faculty of Medicine and Health Science, UCSI University, No. 1 Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Guan Hee Tan
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Eng Hong Goh
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Xeng Inn Fam
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Christopher Chee Kong Ho
- 4School of Medicine, Taylor's University, No. 1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan Malaysia
| | - Zulkifli Md Zainuddin
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Reynu Rajan
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Fatimah Mohd Nor
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohamad Aznan Shuhaili
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Farrah Hani Imran
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Abbas TO, Yalcin HC, Pennisi CP. From Acellular Matrices to Smart Polymers: Degradable Scaffolds that are Transforming the Shape of Urethral Tissue Engineering. Int J Mol Sci 2019; 20:E1763. [PMID: 30974769 PMCID: PMC6479944 DOI: 10.3390/ijms20071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Several congenital and acquired conditions may result in severe narrowing of the urethra in men, which represent an ongoing surgical challenge and a significant burden on both health and quality of life. In the field of urethral reconstruction, tissue engineering has emerged as a promising alternative to overcome some of the limitations associated with autologous tissue grafts. In this direction, preclinical as well as clinical studies, have shown that degradable scaffolds are able to restore the normal urethral architecture, supporting neo-vascularization and stratification of the tissue. While a wide variety of degradable biomaterials are under scrutiny, such as decellularized matrices, natural, and synthetic polymers, the search for scaffold materials that could fulfill the clinical performance requirements continues. In this article, we discuss the design requirements of the scaffold that appear to be crucial to better resemble the structural, physical, and biological properties of the native urethra and are expected to support an adequate recovery of the urethral function. In this context, we review the biological performance of the degradable polymers currently applied for urethral reconstruction and outline the perspectives on novel functional polymers, which could find application in the design of customized urethral constructs.
Collapse
Affiliation(s)
- Tariq O Abbas
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
- Pediatric Surgery Department, Hamad General Hospital, 3050 Doha, Qatar.
- College of Medicine, Qatar University, 2713 Doha, Qatar.
- Surgery Department, Weill Cornell Medicine⁻Qatar, 24144 Doha, Qatar.
| | | | - Cristian P Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
14
|
Liu W, Cao N, Fan S, Zhang H, Shao H, Song L, Cao C, Huang J, Zhang Y. Angiogenesis Potential of Bladder Acellular Matrix Hydrogel by Compounding Endothelial Cells. ACS APPLIED BIO MATERIALS 2019; 2:1158-1167. [DOI: 10.1021/acsabm.8b00760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenjing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Nailong Cao
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P. R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P. R. China
- Shanghai Eastern
Institute of Urologic Reconstruction, Shanghai 200233, P. R. China
| | - Chengbo Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
- School of Chemistry and Chemical Engineering, YanTai University, YanTai 264005, P. R. China
| | - Jianwen Huang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, P. R. China
- Shanghai Eastern
Institute of Urologic Reconstruction, Shanghai 200233, P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
15
|
Tong J, Mou S, Xiong L, Wang Z, Wang R, Weigand A, Yuan Q, Horch RE, Sun J, Yang J. Adipose-derived mesenchymal stem cells formed acinar-like structure when stimulated with breast epithelial cells in three-dimensional culture. PLoS One 2018; 13:e0204077. [PMID: 30335754 PMCID: PMC6193614 DOI: 10.1371/journal.pone.0204077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023] Open
Abstract
Lipotransfer has been applied in breast augmentation surgery for several years and the resident adipose-derived stem cells (ASCs) play an important role in enhancing fat graft survival. However, the interaction between ASCs and mammary epithelium is not fully understood. Many studies have shown that ASCs have a tumor-supportive effect in breast cancer. To the best of our knowledge, this is the first study on the effect of mammary epithelial cells on the human ASCs in 3D culture. ASCs were cultivated on matrigel in the conditioned medium (CM) prepared from a human breast epithelial cell line (HBL-100). The ASCs formed KRT18-positive acini-like structures after stimulation with breast epithelial cells. The expression of epithelial genes (CDH1 and KRT18) was up-regulated while the expression of mesenchymal specific genes (CDH2 and VIM) was down-regulated as determined by qRT-PCR. The stemness marker (CD29) and angiogenic factors (CD31 and VEGF) were also down-regulated as examined by immunofluorescence. In addition, the CM obtained from HBL-100 enhanced the migration and inhibited the adipogenic differentiation of ASCs. These results demonstrate that ASCs have the ability to transform into epithelial-like cells when cultured with mammary epithelial cells. Given these observations, we infer that ASCs have a positive effect on lipotransfer, not only due to their ability to secrete growth factors, but also due to their direct participation in the formation of new breast tissue.
Collapse
Affiliation(s)
- Jing Tong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Mou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongrong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen‐Nuernberg, FAU, Germany
| | - Quan Yuan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen‐Nuernberg, FAU, Germany
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JY); (JS)
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JY); (JS)
| |
Collapse
|
16
|
Tang H, Jia W, Hou X, Zhao Y, Huan Y, Chen W, Yu W, Ou Zhu MM, Ye G, Chen B, Dai J. Collagen scaffolds tethered with bFGF promote corpus spongiosum regeneration in a beagle model. Biomed Mater 2018; 13:031001. [DOI: 10.1088/1748-605x/aa9f01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Abbas TO, Mahdi E, Hasan A, AlAnsari A, Pennisi CP. Current Status of Tissue Engineering in the Management of Severe Hypospadias. Front Pediatr 2018; 5:283. [PMID: 29404308 PMCID: PMC5786532 DOI: 10.3389/fped.2017.00283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/13/2017] [Indexed: 01/29/2023] Open
Abstract
Hypospadias, characterized by misplacement of the urinary meatus in the lower side of the penis, is a frequent birth defect in male children. Because of the huge variation in the anatomic presentation of hypospadias, no single urethroplasty procedure is suitable for all situations. Hence, many surgical techniques have emerged to address the shortage of tissues required to bridge the gap in the urethra particularly in the severe forms of hypospadias. However, the rate of postoperative complications of currently available surgical procedures reaches up to one-fourth of the patients having severe hypospadias. Moreover, these urethroplasty techniques are technically demanding and require considerable surgical experience. These limitations have fueled the development of novel tissue engineering techniques that aim to simplify the surgical procedures and to reduce the rate of complications. Several types of biomaterials have been considered for urethral repair, including synthetic and natural polymers, which in some cases have been seeded with cells prior to implantation. These methods have been tested in preclinical and clinical studies, with variable degrees of success. This review describes the different urethral tissue engineering methodologies, with focus on the approaches used for the treatment of hypospadias. At present, despite many significant advances, the search for a suitable tissue engineering approach for use in routine clinical applications continues.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Pediatric Surgery and Urology, Hamad General Hospital, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Elsadig Mahdi
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | | | - Cristian Pablo Pennisi
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
18
|
Fan G, Xu Z, Hu X, Li M, Zhou J, Zeng Y, Xie Y. miR-33a hinders the differentiation of adipose mesenchymal stem cells towards urothelial cells in an inductive condition by targeting β‑catenin and TGFR. Mol Med Rep 2017; 17:2341-2348. [PMID: 29207162 PMCID: PMC5783476 DOI: 10.3892/mmr.2017.8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022] Open
Abstract
Tissue engineering technology offers an appealing approach for tissue reconstruction of the urothelium. Adipose-derived mesenchymal stem cells (ADSCs) represent an abundant source for tissue engineering applications. However, ASCs primarily possess mesoderm lineage differentiation potential. It is difficult to induce differentiation of ASCs towards urothelial cells that are derived from the endoderm, although a recent findings have reported that a conditioned medium may drive ADSCs towards differentiation into the urothelium phenotype. In the present study, human ADSCs were isolated from abdominal adipose tissues and incubated in this conditioned medium for indicated time periods. Western blotting showed that protein expression levels of urothelial specific marks, including CK7, CK20 and UPIII, were increased after seven days' incubation, but immunofluorescence microscopy determined that cells with CK7 and UPIII staining were scarce, which suggested a low-efficiency for the differentiation. Prolonging the incubation time did not further increase CK20 and UPIII expression. Furthermore, miR-33a expression was increased with ADSC differentiation. Using synthetic miRNAs to mimic or inhibit the action of miR-33a revealed that miR-33a hinders the differentiation of ADSCs towards urothelial cells. Furthermore, luciferase reporter assay confirmed that β-catenin and transforming growth factor-β receptor (TGFR) are targets of miR-33a. Inhibition of miR-33a expression increased β-catenin and TGFR expression and improved the efficiency of ADSCs towards differentiation into the urothelium phenotype. The present novel finding suggests that miR-33 may be an important target in tissue engineering and regenerative medicine for urothelium repair.
Collapse
Affiliation(s)
- Gang Fan
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiang Hu
- School of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Mingfeng Li
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Zhou
- Department of Urology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Yong Zeng
- Department of Clinical Translational Research Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Xie
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya Medical College, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
19
|
Žiaran S, Galambošová M, Danišovič L. Tissue engineering of urethra: Systematic review of recent literature. Exp Biol Med (Maywood) 2017; 242:1772-1785. [PMID: 28893083 PMCID: PMC5714144 DOI: 10.1177/1535370217731289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this article was to perform a systematic review of the recent literature on urethral tissue engineering. A total of 31 articles describing the use of tissue engineering for urethra reconstruction were included. The obtained results were discussed in three groups: cells, scaffolds, and clinical results of urethral reconstructions using these components. Stem cells of different origin were used in many experimental studies, but only autologous urothelial cells, fibroblasts, and keratinocytes were applied in clinical trials. Natural and synthetic scaffolds were studied in the context of urethral tissue engineering. The main advantage of synthetic ones is the fact that they can be obtained in unlimited amount and modified by different techniques, but scaffolds of natural origin normally contain chemical groups and bioactive proteins which increase the cell attachment and may promote the cell proliferation and differentiation. The most promising are smart scaffolds delivering different bioactive molecules or those that can be tubularized. In two clinical trials, only onlay-fashioned transplants were used for urethral reconstruction. However, the very promising results were obtained from animal studies where tubularized scaffolds, both non-seeded and cell-seeded, were applied. Impact statement The main goal of this article was to perform a systematic review of the recent literature on urethral tissue engineering. It summarizes the most recent information about cells, seeded or non-seeded scaffolds and clinical application with respect to regeneration of urethra.
Collapse
Affiliation(s)
- Stanislav Žiaran
- Department of Urology, Faculty of Medicine,
Comenius University in Bratislava, Bratislava 833 05, Slovak Republic
| | - Martina Galambošová
- Institute of Medical Biology, Genetics and
Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava 811
08, Slovak Republic
| | - L'uboš Danišovič
- Institute of Medical Biology, Genetics and
Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava 811
08, Slovak Republic
- Regenmed Ltd, Bratislava 811 02, Slovak
Republic
| |
Collapse
|
20
|
Zhou S, Yang R, Zou Q, Zhang K, Yin T, Zhao W, Shapter JG, Gao G, Fu Q. Fabrication of Tissue-Engineered Bionic Urethra Using Cell Sheet Technology and Labeling By Ultrasmall Superparamagnetic Iron Oxide for Full-Thickness Urethral Reconstruction. Theranostics 2017; 7:2509-2523. [PMID: 28744331 PMCID: PMC5525753 DOI: 10.7150/thno.18833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 01/18/2023] Open
Abstract
Urethral strictures remain a reconstructive challenge, due to less than satisfactory outcomes and high incidence of stricture recurrence. An “ideal” urethral reconstruction should establish similar architecture and function as the original urethral wall. We fabricated a novel tissue-engineered bionic urethras using cell sheet technology and report their viability in a canine model. Small amounts of oral and adipose tissues were harvested, and adipose-derived stem cells, oral mucosal epithelial cells, and oral mucosal fibroblasts were isolated and used to prepare cell sheets. The cell sheets were hierarchically tubularized to form 3-layer tissue-engineered urethras and labeled by ultrasmall super-paramagnetic iron oxide (USPIO). The constructed tissue-engineered urethras were transplanted subcutaneously for 3 weeks to promote the revascularization and biomechanical strength of the implant. Then, 2 cm length of the tubularized penile urethra was replaced by tissue-engineered bionic urethra. At 3 months of urethral replacement, USPIO-labeled tissue-engineered bionic urethra can be effectively detected by MRI at the transplant site. Histologically, the retrieved bionic urethras still displayed 3 layers, including an epithelial layer, a fibrous layer, and a myoblast layer. Three weeks after subcutaneous transplantation, immunofluorescence analysis showed the density of blood vessels in bionic urethra was significantly increased following the initial establishment of the constructs and was further up-regulated at 3 months after urethral replacement and was close to normal level in urethral tissue. Our study is the first to experimentally demonstrate 3-layer tissue-engineered urethras can be established using cell sheet technology and can promote the regeneration of structural and functional urethras similar to normal urethra.
Collapse
|
21
|
Zou Q, Fu Q. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian J Urol 2017; 5:57-68. [PMID: 29736367 PMCID: PMC5934513 DOI: 10.1016/j.ajur.2017.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
Collapse
Affiliation(s)
- Qingsong Zou
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Xue JD, Gao J, Fu Q, Feng C, Xie H. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: A systematic review and meta-analysis. Exp Biol Med (Maywood) 2016; 241:1416-28. [PMID: 27022134 DOI: 10.1177/1535370216640148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/22/2016] [Indexed: 11/16/2022] Open
Abstract
We systematically reviewed published preclinical studies to evaluate the effectiveness of cell-seeded tissue engineering approach for urethral reconstruction in an animal model. The outcomes were summarized by success factors in the animal experiments, which evaluate the possibility and feasibility of a clinical application in the future. Preclinical studies of tissue engineering approaches for urethral reconstruction were identified through a systematic search in PubMed, Embase, and Biosis Previews (web of science SP) databases for studies published from 1 January 1980 to 23 November 2014. Primary studies were included if urethral reconstruction was performed using a tissue-engineered biomaterial in any animal species (with the experiment group being a cell-seeded scaffold and the control group being a cell-free scaffold) with histology and urethrography as the outcome measure. A total of 15 preclinical studies were included in our meta-analysis. The histology and urethrography outcome between the experimental and control groups were considered to be the most clinically relevant. Through this systematic approach, our outcomes suggested that applying the cell-seeded biomaterial in creating a neo-urethra was stable and effective. And multi-type cells including epithelial cells as well as smooth muscle cells or fibroblasts seemed to be a better strategy. Stem cells, especially after epithelial differentiation, could be a promising choice for future researches.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing Gao
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chao Feng
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hong Xie
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
23
|
Development of a cell-seeded modified small intestinal submucosa for urethroplasty. Heliyon 2016; 2:e00087. [PMID: 27441265 PMCID: PMC4946073 DOI: 10.1016/j.heliyon.2016.e00087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 03/01/2016] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To explore the feasibility of a modified 3D porous small intestinal submucosa (SIS) scaffold seeded with urothelial cells (UC) for surgical reconstruction in a rabbit model. MATERIAL AND METHODS Eighteen New England white male rabbits were divided into three groups and a 0.8 × 1.5 cm(2) section of the anterior urethral mucosa was removed from each animal. Ventral onlay urethroplasty was performed with a 1.0 × 1.7 cm(2) SIS scaffold that was either cell-seeded and treated with 5% peracetic acid (PAA) (n = 6), or cell-seeded and untreated (n = 6), or unseeded and treated with 5% PAA (n = 6). Animals were sacrificed at 6 months post-repair and retrograde urethrography and histological analyses performed. RESULTS In animals implanted with cell-seeded and PAA treated SIS scaffolds, urethrography showed wide-caliber urethra without any signs of stricture or fistulae, and histological analyses confirmed a complete urethral structure. In contrast, ulceration and fistula occurred in the reconstructed urethra of animals implanted with cell-seeded but untreated SIS scaffolds, and evident stricture was present in the unseeded, PAA treated group. Histological analyses demonstrated less urothelial coverage and smooth muscle in the cell-seeded and untreated SIS scaffold group, and serious fibrosis formation occurred in the unseeded, treated group. CONCLUSIONS A modified 3D porous SIS scaffold seeded with UC and treated with PAA produces better urethroplasty results than cell-seeded untreated SIS scaffolds, or unseeded PAA treated SIS scaffolds.
Collapse
|
24
|
Qi N, Li WJ, Tian H. A systematic review of animal and clinical studies on the use of scaffolds for urethral repair. ACTA ACUST UNITED AC 2016; 36:111-117. [PMID: 26838750 DOI: 10.1007/s11596-016-1551-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/29/2015] [Indexed: 12/26/2022]
Abstract
Replacing urethral tissue with functional scaffolds has been one of the challenging problems in the field of urethra reconstruction or repair over the last several decades. Various scaffold materials have been used in animal studies, but clinical studies on use of scaffolds for urethral repair are scarce. The aim of this study was to review recent animal and clinical studies on the use of different scaffolds for urethral repair, and to evaluate these scaffolds based on the evidence from these studies. PubMed and OVID databases were searched to identify relevant studies, in conjunction with further manual search. Studies that met the inclusion criteria were systematically evaluated. Of 555 identified studies, 38 were included for analysis. It was found that in both animal and clinical studies, scaffolds seeded with cells were used for repair of large segmental defects of the urethra, such as in tubular urethroplasty. When the defect area was small, cell-free scaffolds were more likely to be applied. A lot of pre-clinical and limited clinical evidence showed that natural or artificial materials could be used as scaffolds for urethral repair. Urinary tissue engineering is still in the immature stage, and the safety, efficacy, cost-effectiveness of the scaffolds are needed for further study.
Collapse
Affiliation(s)
- Na Qi
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Jiao Li
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Tian
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Meng L, Liao W, Yang S, Xiong Y, Song C, Liu L. Tissue-engineered tubular substitutions for urinary diversion in a rabbit model. Exp Biol Med (Maywood) 2015; 241:147-56. [PMID: 26286106 DOI: 10.1177/1535370215600101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/15/2015] [Indexed: 12/13/2022] Open
Abstract
Clinically, autologous gastrointestinal segments are traditionally used for urinary diversion. However, this procedure often causes many serious complications. Tissue engineering may provide an alternative treatment method in urinary diversion. This research aims to produce tissue-engineered tubular substitutions by using homologous adipose-derived stem cells, smooth muscle cells, and bladder acellular matrix in developing urinary diversion in a rabbit model. Adipose-derived stem cells and smooth muscle cells of rabbit were obtained and cultured in vitro. These cultured adipose-derived stem cells and smooth muscle cells were seeded onto the two sides of the bladder acellular matrix and then incubated for seven days. The cell-seeded matrix was used to build tissue-engineered tubular substitutions, which were then implanted and wrapped into the omentum in vivo for two weeks to promote angiogenesis. In the experimental group, the bladder of 20 rabbits was totally resected, and the above tissue-engineered tubular substitutions were used for urinary diversion. In the control group, bladder acellular matrix tubular substitutions with unseeded cells were implanted into the omentum and were used as urinary diversion on another five rabbits with the same process. The implants were harvested, and histological examination was conducted at 2, 4, 8, and 16 weeks after operation. Intravenous urography assessment was performed at 16 weeks postoperatively. All the rabbits were alive in the experimental group until they were sacrificed. Histological analysis of the construct displayed the presence of multilayer urothelial cells on the luminal side and organized smooth muscle tissue on the other side, and different diameters of neovascularization were clearly identified in the substitutions obtained. No leakage, stricture, or obstructions were noted with intravenous urography assessment. All the animals in the control group died within two weeks, and urine leakage, scar formation, and inflammation were detected through autopsy. This study demonstrates the feasibility of tissue-engineered tubular substitutions constructed using homologous adipose-derived stem cells, smooth muscle cells, and bladder acellular matrix for urinary diversion in a rabbit model.
Collapse
Affiliation(s)
- Lingchao Meng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Yunhe Xiong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Lingqi Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| |
Collapse
|
26
|
Tissue engineered scaffolds for an effective healing and regeneration: reviewing orthotopic studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398069. [PMID: 25250319 PMCID: PMC4163448 DOI: 10.1155/2014/398069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Abstract
It is commonly stated that tissue engineering is the most promising approach to treat or replace failing tissues/organs. For this aim, a specific strategy should be planned including proper selection of biomaterials, fabrication techniques, cell lines, and signaling cues. A great effort has been pursued to develop suitable scaffolds for the restoration of a variety of tissues and a huge number of protocols ranging from in vitro to in vivo studies, the latter further differentiating into several procedures depending on the type of implantation (i.e., subcutaneous or orthotopic) and the model adopted (i.e., animal or human), have been developed. All together, the published reports demonstrate that the proposed tissue engineering approaches spread toward multiple directions. The critical review of this scenario might suggest, at the same time, that a limited number of studies gave a real improvement to the field, especially referring to in vivo investigations. In this regard, the present paper aims to review the results of in vivo tissue engineering experimentations, focusing on the role of the scaffold and its specificity with respect to the tissue to be regenerated, in order to verify whether an extracellular matrix-like device, as usually stated, could promote an expected positive outcome.
Collapse
|