1
|
Wang Y, Lee BH, Yang Z, Ho TJ, Ci H, Jackson B, Punshon T, Wang B, Levy J, Ho SP. Chewing-Activated TRPV4/PIEZO1- HIF-1α-Zn Axes in a Rat Periodontal Complex. J Dent Res 2025; 104:398-407. [PMID: 39876056 PMCID: PMC11909774 DOI: 10.1177/00220345241294001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (MFN2), cell senescence indicator (p16), and oxygen status marker hypoxia-inducible factor-1α (HIF-1α) in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo. Four-week-old male Sprague-Dawley rats were fed hard (n = 3) or soft (n = 3) foods for 4 wk (in vivo). Significant changes in alveolar socket and root shapes with decreased periodontal ligament space and increased cementum volume fraction were observed in maxillae on reduced loads (soft food). Reduced loads impaired distally localized compression-stimulated PIEZO1 and mesially localized tension-stimulated TRPV4, decreased mitochondrial function (MFN2), and increased cell senescence in mesial and distal periodontal regions. The switch in HIF-1α from hard food-distal to soft food-mesial indicated a plausible effect of shear-regulated blood and oxygen flows in the periodontal complex. Blunting or activating TRPV4 or PIEZO1 MS-ion channels by channel-specific antagonists or agonists in human periodontal ligament fibroblast cultures (in vitro) indicated a positive correlation between zinc levels and zinc transporters but not with MS-ion channel expressions. The effects of reduced chewing loads in vivo were analogous to TRPV4 and PIEZO1 antagonists in vitro. Study results collectively illustrated that tension-induced TRPV4 and compression-induced PIEZO1 activations are necessary for cell metabolism. An increased hypoxic state with reduced functional loads can be a conducive environment for cementum growth. From a practical standpoint, dose rate-controlled loads can modulate tension and compression-specific MS-ion channel activation, cellular zinc, and HIF-1α transcription. These mechanobiochemical events indicate the plausible catalytic role of biometal zinc in mineralization, periodontal maintenance, and dentoalveolar joint function.
Collapse
Affiliation(s)
- Y Wang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - B H Lee
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Z Yang
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - T J Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - H Ci
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - B Jackson
- Deparment of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - T Punshon
- Deparment of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - B Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian, China
| | - J Levy
- Department of Pathology and Computational Biomedicine, Cedars Sinai, Los Angeles, CA, USA
| | - S P Ho
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA
- Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
2
|
Liang L, Wang L, Liao Z, Ma L, Wang P, Zhao J, Wu J, Yang H. High-yield nanovesicles extruded from dental follicle stem cells promote the regeneration of periodontal tissues as an alternative of exosomes. J Clin Periodontol 2024; 51:1395-1407. [PMID: 38951121 DOI: 10.1111/jcpe.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
AIM To identify an optimized strategy for the large-scale production of nanovesicles (NVs) that preserve the biological properties of exosomes (EXOs) for use in periodontal regeneration. MATERIALS AND METHODS NVs from dental follicle stem cells (DFSCs) were prepared through extrusion, and EXOs from DFSCs were isolated. The yield of both extruded NVs (eNVs) and EXOs were quantified through protein concentration and particle number analyses. Their pro-migration, pro-proliferation and pro-osteogenesis capacities were compared subsequently in vitro. Additionally, proteomics analysis was conducted. To further evaluate the periodontal regeneration potential of eNVs and EXOs, they were incorporated into collagen sponges and transplanted into periodontal defects in rats. In vivo imaging and H&E staining were utilized to verify their biodistribution and safety. Micro-Computed Tomography analysis and histological staining were performed to examine the regeneration of periodontal tissues. RESULTS The yield of eNVs was nearly 40 times higher than that of EXOs. Interestingly, in vitro experiments indicated that the pro-migration and pro-proliferation abilities of eNVs were superior, and the pro-osteogenesis potential was comparable to EXOs. More importantly, eNVs exhibited periodontal regenerative potential similar to that of EXOs. CONCLUSIONS Extrusion has proven to be an efficient method for generating numerous eNVs with the potential to replace EXOs in periodontal regeneration.
Collapse
Affiliation(s)
- Lu Liang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Limeiting Wang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Zhenhui Liao
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Liya Ma
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Pinwen Wang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Junjie Zhao
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Jinyan Wu
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
- Department of Endodontics, Kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
3
|
Bologna-Molina R, Schuch L, Niklander SE. Comprehensive insights into the understanding of hypoxia in ameloblastoma. Histol Histopathol 2024; 39:983-989. [PMID: 38362601 DOI: 10.14670/hh-18-718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Hypoxia is characterized by a disparity between supply and demand of oxygen. The association between hypoxia and head and neck tumors is a topic of significant interest. Tumors frequently encounter areas with inadequate oxygen supply, resulting in a hypoxic microenvironment. Ameloblastoma is one of the most common benign odontogenic tumors of the maxillofacial region. It is a slow-growing but locally invasive tumor with a high recurrence rate. The literature has demonstrated the correlation between hypoxia and ameloblastoma, revealing a discernible link between the heightened expression of hypoxic markers in low oxygen conditions. This association is intricately tied to the tumoral potential for invasion, progression, and malignant transformation. Hypoxia profoundly influences the molecular and cellular landscape within ameloblastic lesions. The present review sheds light on the mechanisms, implications, and emerging perspectives in understanding this intriguing association to clarify the dynamic relationship between hypoxia and ameloblastoma.
Collapse
Affiliation(s)
- Ronell Bologna-Molina
- Diagnostic in Oral Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de la República, Uruguay.
- Research Department, School of Dentistry, Universidad Juarez del Estado de Durango, Mexico
| | - Lauren Schuch
- Diagnostic in Oral Pathology and Oral Medicine Department, Faculty of Dentistry, Universidad de la República, Uruguay
| | - Sven Eric Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
4
|
Liu M, Yang Q, Zuo H, Zhang X, Mishina Y, Chen Z, Yang J. Dynamic patterns of histone lactylation during early tooth development in mice. J Mol Histol 2023; 54:665-673. [PMID: 37787911 DOI: 10.1007/s10735-023-10154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Histone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor. The results showed that pan-Kla exhibited temporo-spatial patterns in both dental epithelium and mesenchyme cells during development. Notably, pan-Kla was identified in primary enamel knot (PEK), stratum intermedium (SI), stellate reticulum (SR), dental follicle cells, odontoblasts, ameloblasts, proliferating cells in dental mesenchyme, as well as osteoblasts around the tooth germ. More importantly, pan-Kla was also identified to be co-localized with neurofilament during tooth development, suggesting histone lysine lactylation may be involved in neural invasion during tooth development. These findings suggest that histone lysine lactylation may play important roles in regulating tooth development.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Xinye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, MI, 48109, USA
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China.
| |
Collapse
|
5
|
da Silva Figueira R, Mustafa Gomes Muniz FW, Costa LC, Silva de Moura M, Moura LDFADD, Mello de Oliveira B, Lima CCB, Rösing CK, de Lima MDDM. Association between genetic factors and molar-incisor hypomineralisation or hypomineralised second primary molar: A systematic review. Arch Oral Biol 2023; 152:105716. [PMID: 37210809 DOI: 10.1016/j.archoralbio.2023.105716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
OBJECTIVE To determine the association between genetic factors and molar-incisor hypomineralisation (MIH) and/or hypomineralised second primary molars by means of a systematic review. DESIGN A search was performed in Medline-PubMed, Scopus, Embase and Web of Science databases; manual search and search in gray literature were also performed. Selection of articles was performed independently by two researchers. A third examiner was involved in cases of disagreement. Data extraction was performed using an Excel® spreadsheet and independent analysis was performed for each outcome. RESULTS Sixteen studies were included. There was an association between MIH and genetic variants related to amelogenesis, immune response, xenobiotic detoxification and other genes. Moreover, interactions between amelogenesis and immune response genes, and SNPs in the aquaporin gene and vitamin D receptors were associated with MIH. Greater agreement of MIH was found in pairs of monozygotic twins than dizygotic twins. The heritability of MIH was 20 %. Hypomineralised second primary molars was associated with SNPs in the hypoxia-related HIF-1 gene and methylation in genes related to amelogenesis. CONCLUSION With very low or low certainty of evidence, an association was observed between MIH and SNPs in genes associated with amelogenesis, immune response, xenobiotic detox and ion transport. Interactions between genes related to amelogenesis and immune response as well as aquaporin genes were associated to MIH. With very low certainty of evidence, hypomineralised second primary molars was associated to a hypoxia-related gene and to methylation in genes related to amelogenesis. Moreover, higher agreement of MIH in pairs of monozygotic twins than dizygotic twins was observed.
Collapse
Affiliation(s)
| | | | - Lara Carvalho Costa
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcoeli Silva de Moura
- Department of Pathology and Dental Clinic, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Bibiana Mello de Oliveira
- Post Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
6
|
Ebadi M, Miresmaeili A, Shojaei S, Farhadi S, Rajabi S. Isolation and characterization of apical papilla cells from root end of human third molar and their differentiation into cementoblast cells: an in vitro study. Biol Proced Online 2023; 25:2. [PMID: 36690939 PMCID: PMC9869574 DOI: 10.1186/s12575-023-00190-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Periodontal regeneration, treatment of periodontal-related diseases and improving the function of implants are global therapeutic challenges. The differentiation of human stem cells from apical papilla into cementoblasts may provide a strategy for periodontitis treatment. This study aimed to evaluate the differentiation of primary human stem cells apical papilla (hSCAPs) to cementoblast cells. MATERIAL AND METHODS SCAPs cells were isolated from human third molar and then incubated for 21 days in a differentiation microenvironment. Alkaline phosphatase (ALP) and Alizarin red S staining assays were performed to evaluate the calcium deposition and formation of hydroxyapatite in the cultured hSCAPs microenvironment. Real-time polymerase chain reaction (RT-PCR) assay was performed for cementum protein 1 (CEMP1), collagen type I (COL1), F-Spondin (SPON1), osteocalcin (OCN), and osteopontin (OPN) as specific markers of cementoblasts and their progenitors. RESULTS ALP phosphatase activity in day 21 of treatment demonstrated a significant increase in ALP compared to the control. Alizarin red S staining assay showed that the differentiated hSCAPs offered a great amount of calcium deposition nodules compared to the control. The increased expression level of CEMP1, OCN, OPN, COL1 and Spon1 was observed in days 7, 14 and 21 compared to the control, while greatest expression level was observed in day 21. CONCLUSION In conclusion, the differentiation microenviroment is convenient and useful for promoting the differentiation of hSCAPs into cementoblast.
Collapse
Affiliation(s)
- Morvarid Ebadi
- grid.411463.50000 0001 0706 2472Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amirfarhang Miresmaeili
- grid.411950.80000 0004 0611 9280Orthodontic Department of Hamadan University of Medical Sciences and Hamadan Dental Research Centre, Hamadan, Iran
| | - Shahrokh Shojaei
- grid.411463.50000 0001 0706 2472Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran ,grid.411463.50000 0001 0706 2472Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sareh Farhadi
- grid.411463.50000 0001 0706 2472Department of Oral & Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sarah Rajabi
- grid.419336.a0000 0004 0612 4397Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
7
|
Kimura S, Takeshita N, Oyanagi T, Seki D, Jiang W, Hidaka K, Fukumoto S, Takahashi I, Takano-Yamamoto T. HIF-2α Inhibits Ameloblast Differentiation via Hey2 in Tooth Development. J Dent Res 2022; 101:1637-1644. [PMID: 35912776 DOI: 10.1177/00220345221111971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enamel is the highly mineralized outer layer of teeth; the cells responsible for enamel formation are ameloblasts. Local hypoxia and hypoxia inducible factor (HIF) in embryonic tissues are important to promote normal organogenesis. However, hypoxic state in tooth germs and the roles of HIF in ameloblast differentiation have not been understood. The aim of this study is to clarify the role of HIF in ameloblast differentiation during tooth germ development. We found that tooth germs were under hypoxia and HIF-1α and HIF-2α were expressed in tooth germs in embryonic mice. Then, we used HIF inhibitors to evaluate the function of HIF during tooth germ development. The HIF-2α inhibitor significantly decreased the size of tooth germs in organ culture, while the HIF-1α inhibitor did not apparently affect the size of tooth germs. The HIF-2α inhibitor enhanced the expression of amelogenin, a marker of ameloblast differentiation, in the tooth germs in organ culture and rat dental epithelial SF2 cells. Moreover, we found that the HIF-2α inhibitor-stimulating amelogenin expression was regulated by hes-related family basic helix-loop-helix transcription factor with YRPW motif 2(Hey2) in SF2 cells. These findings suggest that the HIF-2α-Hey2 axis plays an important role in ameloblast differentiation during tooth germ development.
Collapse
Affiliation(s)
- S Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - N Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - T Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - D Seki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - W Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - K Hidaka
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - S Fukumoto
- Division of Pediatric Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Section of Oral Medicine for Children, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - I Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - T Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Deng R, Xie Y, Chan U, Xu T, Huang Y. Biomaterials and biotechnology for periodontal tissue regeneration: Recent advances and perspectives. J Dent Res Dent Clin Dent Prospects 2022; 16:1-10. [PMID: 35936933 PMCID: PMC9339747 DOI: 10.34172/joddd.2022.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontal tissues are organized in a complex three-dimensional (3D) architecture, including the alveolar bone, cementum, and a highly aligned periodontal ligament (PDL). Regeneration is difficult due to the complex structure of these tissues. Currently, materials are developing rapidly, among which synthetic polymers and hydrogels have extensive applications. Moreover, techniques have made a spurt of progress. By applying guided tissue regeneration (GTR) to hydrogels and cell sheets and using 3D printing, a scaffold with an elaborate biomimetic structure can be constructed to guide the orientation of fibers. The incorporation of cells and biotic factors improves regeneration. Nevertheless, the current studies lack long-term effect tracking, clinical research, and in-depth mechanistic research. In summary, periodontal tissue engineering still has considerable room for development. The development of materials and techniques and an in-depth study of the mechanism will provide an impetus for periodontal regeneration.
Collapse
Affiliation(s)
- Rong Deng
- School of Stomatology, Jinan University, Guangdong, China
| | - Yuzheng Xie
- School of Stomatology, Jinan University, Guangdong, China
| | - Unman Chan
- School of Stomatology, Jinan University, Guangdong, China
| | - Tao Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangdong, China
| |
Collapse
|
9
|
Embedded Human Periodontal Ligament Stem Cells Spheroids Enhance Cementogenic Differentiation via Plasminogen Activator Inhibitor 1. Int J Mol Sci 2022; 23:ijms23042340. [PMID: 35216454 PMCID: PMC8878532 DOI: 10.3390/ijms23042340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
Spheroids reproduce the tissue structure that is found in vivo more accurately than classic two-dimensional (2D) monolayer cultures. We cultured human periodontal ligament stem cells (HPLSCs) as spheroids that were embedded in collagen gel to examine whether their cementogenic differentiation could be enhanced by treatment with recombinant human plasminogen activator inhibitor-1 (rhPAI-1). The upregulated expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP), established cementoblast markers, was observed in the 2D monolayer HPLSCs that were treated with rhPAI-1 for 3 weeks compared with that in the control and osteogenic-induction medium groups. In the embedded HPLSC spheroids, rhPAI-1 treatment induced interplay between the spheroids and collagenous extracellular matrix (ECM), indicating that disaggregated HPLSCs migrated and spread into the surrounding ECM 72 h after three-dimensional (3D) culture. Western blot and immunocytochemistry analyses showed that the CEMP1 expression levels were significantly upregulated in the rhPAI-1-treated embedded HPLSC spheroids compared with all the 2D monolayer HPLSCs groups and the 3D spheroid groups. Therefore, 3D collagen-embedded spheroid culture in combination with rhPAI-1 treatment may be useful for facilitating cementogenic differentiation of HPLSCs.
Collapse
|
10
|
Takedachi M, Yamamoto S, Kawasaki K, Shimomura J, Murata M, Morimoto C, Hirai A, Kawakami K, Bhongsatiern P, Iwayama T, Sawada K, Yamada S, Murakami S. Reciprocal role of PLAP-1 in HIF-1α-mediated responses to hypoxia. J Periodontal Res 2022; 57:470-478. [PMID: 35138637 DOI: 10.1111/jre.12976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/29/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the mutual regulation of hypoxia-inducible factor (HIF)-1α activity and periodontal ligament-associated protein-1 (PLAP-1) expression in human periodontal ligament cells (HPDLs). BACKGROUND Cellular responses to hypoxia regulate various biological events (e.g., inflammation and tissue regeneration) through activation of HIF-1α. PLAP-1, an extracellular matrix protein preferentially expressed in the periodontal ligament, plays important roles in the functions of HPDLs. Although PLAP-1 expression has been demonstrated in hypoxic regions, the involvement of PLAP-1 in responses to hypoxia has not been revealed. METHODS HPDLs were cultured under normoxic (20% O2 ) or hypoxic (1% O2 ) conditions with or without deferoxamine mesylate (chemical hypoxia inducer) or chetomin (HIF signaling inhibitor). Expression levels of PLAP-1 and HIF-1α were examined by real-time reverse transcription-polymerase chain reaction and western blot analysis. Luciferase reporter assays of HIF-1α activity were performed using 293T cells stably transfected with a hypoxia response element (HRE)-containing luciferase vector in the presence or absence of recombinant PLAP-1 or PLAP-1 gene transfection. RESULTS Cultivation under hypoxic conditions elevated the gene and protein expression levels of PLAP-1 in HPDLs. Deferoxamine mesylate treatment also enhanced PLAP-1 expression in HPDLs. Hypoxia-induced PLAP-1 expression was significantly suppressed in the presence of chetomin. PLAP-1-suppressed HPDLs showed increased HIF-1α accumulation in the nucleus during culture under hypoxic conditions, but not in the presence of recombinant PLAP-1. In the presence of recombinant PLAP-1, hypoxia-induced HRE activity of 293T cells was significantly suppressed in a dose-dependent manner. Transfection of the PLAP-1 gene resulted in a significant reduction of HRE activity during culture under hypoxic conditions. CONCLUSION PLAP-1 expression is upregulated under hypoxic conditions through HIF-1α activation. Moreover, hypoxia-induced PLAP-1 expression regulates HIF-1α signaling.
Collapse
Affiliation(s)
- Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satomi Yamamoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Asae Hirai
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Phan Bhongsatiern
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
11
|
Okić-Đorđević I, Obradović H, Kukolj T, Petrović A, Mojsilović S, Bugarski D, Jauković A. Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy. World J Stem Cells 2021; 13:1863-1880. [PMID: 35069987 PMCID: PMC8727232 DOI: 10.4252/wjsc.v13.i12.1863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.
Collapse
Affiliation(s)
- Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Anđelija Petrović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
12
|
Modulated cementogenic genes upregulation in human buccal fat pad-derived stem cells by strontium-ranelate. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Morimoto C, Takedachi M, Kawasaki K, Shimomura J, Murata M, Hirai A, Kawakami K, Sawada K, Iwayama T, Murakami S. Hypoxia stimulates collagen hydroxylation in gingival fibroblasts and periodontal ligament cells. J Periodontol 2021; 92:1635-1645. [PMID: 33660864 DOI: 10.1002/jper.20-0670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cellular responses to hypoxia regulate various biological events, including angiogenesis and extracellular matrix metabolism. Collagen is a major component of the extracellular matrix in periodontal tissues and its coordinated production is essential for tissue homeostasis. In this study, we investigated the effects of hypoxia on collagen production in human gingival fibroblasts (HGFs) and human periodontal ligament cells (HPDLs). METHODS HGFs and HPDLs were cultured under either normoxic (20% O2 ) or hypoxic (1% O2 ) conditions. Nuclear expression of hypoxia-inducible factor-1α (HIF-1α) was determined by western blotting. Peri-cellular expression of type I collagen was examined by immunocytochemistry analysis. Synthesis of type I collagen was evaluated by measuring the concentration of procollagen type I C-peptide (PIP) in culture supernatant using enzyme-linked immunosorbent assay. Expression of collagen hydroxylase enzymes prolyl 4-hydroxylase alpha polypeptide 1 (P4HA1) and 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was determined by RT-qPCR and western blotting. The roles of these enzymes were analyzed using siRNA transfection. RESULTS Cultivation under hypoxic conditions stimulated type I collagen production via HIF-1α in both cell types. Interestingly, hypoxic conditions did not affect collagen 1a1 or 1a2 gene expression but upregulated that of P4HA1 and PLOD2. Additionally, suppressing P4HA1 significantly decreased the levels of hypoxia-induced procollagen type I C-peptide, a product of stable triple helical collagen, in the supernatant. In contrast, PLOD2 suppression decreased cross-linked collagen expression in the pericellular region. CONCLUSION Our results suggest that hypoxia activates collagen synthesis in HGFs and HPDLs by upregulating hydroxylases P4HA1 and PLOD2 in an HIF-1α-dependent manner.
Collapse
Affiliation(s)
- Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Asae Hirai
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
14
|
El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, Regeneration, and Repair of Natural Tooth Structure: Influences on the Future of Restorative Dentistry Practice. ACS Biomater Sci Eng 2019; 5:4899-4919. [PMID: 33455239 DOI: 10.1021/acsbiomaterials.9b00591] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, the principal strategy for the treatment of carious defects involves cavity preparations followed by the restoration of natural tooth structure with a synthetic material of inferior biomechanical and esthetic qualities and with questionable long-term clinical reliability of the interfacial bonds. Consequently, prevention and minimally invasive dentistry are considered basic approaches for the preservation of sound tooth structure. Moreover, conventional periodontal therapies do not always ensure predictable outcomes or completely restore the integrity of the periodontal ligament complex that has been lost due to periodontitis. Much effort and comprehensive research have been undertaken to mimic the natural development and biomineralization of teeth to regenerate and repair natural hard dental tissues and restore the integrity of the periodontium. Regeneration of the dentin-pulp tissue has faced several challenges, starting with the basic concerns of clinical applicability. Recent technologies and multidisciplinary approaches in tissue engineering and nanotechnology, as well as the use of modern strategies for stem cell recruitment, synthesis of effective biodegradable scaffolds, molecular signaling, gene therapy, and 3D bioprinting, have resulted in impressive outcomes that may revolutionize the practice of restorative dentistry. This Review covers the current approaches and technologies for remineralization, regeneration, and repair of natural tooth structure.
Collapse
Affiliation(s)
- Moataz El Gezawi
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Uta Christine Wölfle
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rasha Haridy
- Department of Clinical Dental Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.,Department of Conservative Dentistry, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| | - Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), University Hospital, LMU Munich, 80336 Munich, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital, LMU Munich, 80337 Munich, Germany.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Dalia Kaisarly
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany.,Biomaterials Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11553, Egypt
| |
Collapse
|
15
|
Shi R, Yang H, Lin X, Cao Y, Zhang C, Fan Z, Hou B. Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions. Stem Cell Res Ther 2019; 10:89. [PMID: 30867055 PMCID: PMC6417198 DOI: 10.1186/s13287-019-1192-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human dental pulp stem cell (DPSC)-mediated regenerative endodontics is a promising therapy for damaged teeth; however, the hypoxic environment in root canals can affect tissue regeneration. In this study, we investigate the characteristics and possible regulatory mechanisms of DPSC function under hypoxic conditions. METHODS Human DPSCs were cultured under normoxia (20% O2) and hypoxia (3% O2). DPSC proliferation and osteo/odontogenic differentiation potential were assessed by Cell Counting Kit-8 (CCK8) assay, carboxyfluorescein succinimidyl ester (CFSE) assay, alkaline phosphatase (ALP) activity, Alizarin red staining, real-time RT-PCR assays, and western blot analysis. Microarray and bioinformatic analyses were performed to investigate the differences in the mRNA, lncRNA, and miRNA expression profiles of DPSCs. RESULTS DPSCs exhibited a more powerful proliferation ability and lower osteo/odontogenic differentiation potential in hypoxic conditions. A total of 60 mRNAs (25 upregulated and 35 downregulated), 47 lncRNAs (20 upregulated and 27 downregulated), and 14 miRNAs (7 upregulated and 7 downregulated) in DPSCs were differentially expressed in the hypoxia group compared with the normoxia group. Bioinformatic analysis identified that 7 mRNAs (GRPR, ERO1L, ANPEP, EPHX1, PGD, ANGPT1, and NQO1) and 5 lncRNAs (AF085958, AX750575, uc002czn.2, RP3-413H6.2, and six-twelve leukemia (STL)) may be associated with DPSCs during hypoxia according to CNC network analysis, while 28 mRNAs (including GYS1, PRKACB, and NQO1) and 13 miRNAs (including hsa-miR-3916 and hsa-miR-192-5p) may be involved according to miRNA target gene network analysis. The depletion of one candidate lncRNA, STL, inhibited the osteo/odontogenic differentiation potentials of DPSCs. CONCLUSIONS Our results revealed that hypoxia could enhance the proliferation ability and impair the osteo/odontogenic differentiation potential of DPSCs in vitro. Furthermore, our results identified candidate coding and noncoding RNAs that could be potential targets for improving DPSC function in regenerative endodontics and lead to a better understanding of the mechanisms of hypoxia's effects on DPSCs.
Collapse
Affiliation(s)
- Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Lin
- Department of Implant Dentistry, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| | - Benxiang Hou
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Wnt3a promotes differentiation of human bone marrow-derived mesenchymal stem cells into cementoblast-like cells. In Vitro Cell Dev Biol Anim 2018; 54:468-476. [DOI: 10.1007/s11626-018-0265-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022]
|
17
|
Sugimoto K, Matsuura T, Nakazono A, Igawa K, Yamada S, Hayashi Y. Effects of hypoxia inducible factors on pluripotency in human i
PS
cells. Microsc Res Tech 2018; 81:749-754. [DOI: 10.1002/jemt.23032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Kouji Sugimoto
- Department of CariologyNagasaki University Graduate School of Biomedical Sciences, Sakamoto 1‐7‐1Nagasaki 852‐8588 Japan
| | - Takashi Matsuura
- Department of CariologyNagasaki University Graduate School of Biomedical Sciences, Sakamoto 1‐7‐1Nagasaki 852‐8588 Japan
| | - Ayako Nakazono
- Department of CariologyNagasaki University Graduate School of Biomedical Sciences, Sakamoto 1‐7‐1Nagasaki 852‐8588 Japan
| | - Kazunari Igawa
- Department of CariologyNagasaki University Graduate School of Biomedical Sciences, Sakamoto 1‐7‐1Nagasaki 852‐8588 Japan
| | - Shizuka Yamada
- Department of CariologyNagasaki University Graduate School of Biomedical Sciences, Sakamoto 1‐7‐1Nagasaki 852‐8588 Japan
| | - Yoshihiko Hayashi
- Department of CariologyNagasaki University Graduate School of Biomedical Sciences, Sakamoto 1‐7‐1Nagasaki 852‐8588 Japan
| |
Collapse
|
18
|
Müller AS, Janjić K, Lilaj B, Edelmayer M, Agis H. Hypoxia-based strategies for regenerative dentistry—Views from the different dental fields. Arch Oral Biol 2017; 81:121-130. [DOI: 10.1016/j.archoralbio.2017.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
|
19
|
Takedachi M, Iyama M, Sawada K, Mori K, Yamamoto S, Morimoto C, Yanagita M, Murakami S. Hypoxia-inducible factor-1α inhibits interleukin-6 and -8 production in gingival epithelial cells during hypoxia. J Periodontal Res 2016; 52:127-134. [DOI: 10.1111/jre.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2016] [Indexed: 12/21/2022]
Affiliation(s)
- M. Takedachi
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - M. Iyama
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - K. Sawada
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - K. Mori
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - S. Yamamoto
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - C. Morimoto
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - M. Yanagita
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| | - S. Murakami
- Department of Periodontology; Osaka University Graduate School of Dentistry; Osaka Japan
| |
Collapse
|