1
|
Sousa P, Moreira A, Lopes B, Sousa AC, Coelho A, Rêma A, Balça M, Atayde L, Mendonça C, da Silva LP, Costa C, Marques AP, Amorim I, Alvites R, Batista F, Mata F, Transmontano J, Maurício AC. Honey, Gellan Gum, and Hyaluronic Acid as Therapeutic Approaches for Skin Regeneration. Biomedicines 2025; 13:508. [PMID: 40002923 PMCID: PMC11853393 DOI: 10.3390/biomedicines13020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Chronic wounds pose a significant health concern, with their prevalence increasing due to various etiologies. The global aging population further contributes to this rise, placing a substantial burden on healthcare systems in developed countries. This work aimed to develop new therapeutic options in the form of creams and dressings based on honey, gellan gum, and hyaluronic acid for preventing and treating chronic wounds across all stages. Methods: To address this, after the formulations were developed, in vitro cytocompatibility was determined. To confirm biocompatibility, an ovine wound model was used: full-thickness excisional wounds were treated with three formulations, namely gellan gum and honey sponges (GG-HNY), gellan gum, honey and hyaluronic acid sponges (GG-HA-HNY) and a honey-based cream (cream FB002). Daily assessments, including visual evaluation and wound scoring, were conducted for 30 days. Following the study period, tissues were collected for histological analyses. Results: The macroscopic examination revealed that all therapeutic groups facilitated lesion closure. Lesion size reduction, granulation tissue disappearance, and scar tissue development were consistent across all groups, with the group receiving cream demonstrating an advanced stage of healing. All groups achieved substantial wound closure by day 30, with no significant differences. Histopathological analysis following ISO standards revealed that GG-HA-HNY had the lowest ISO score, indicating minimal reactivity and inflammation, which corroborated the cytocompatibility. Conclusions: Combining these insights with previous findings enhances our understanding of wound regeneration dynamics and contributes to refining therapeutic strategies for chronic wounds. The formulations were designed to balance therapeutic efficacy with cost-effectiveness, leveraging low-cost raw materials and straightforward production methods.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alicia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Balça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Carla Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Lucília P. da Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
- ICVS/3B’s—PT Government Associated Laboratory, 4805-017 Guimarães, Portugal
| | - Cristiana Costa
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
- ICVS/3B’s—PT Government Associated Laboratory, 4805-017 Guimarães, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
- ICVS/3B’s—PT Government Associated Laboratory, 4805-017 Guimarães, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Filipa Batista
- Finao Biotech Lda, Campus Politécnico 10, BioBIP, 7300-555 Portalegre, Portugal; (F.B.); (F.M.); (J.T.)
| | - Filipa Mata
- Finao Biotech Lda, Campus Politécnico 10, BioBIP, 7300-555 Portalegre, Portugal; (F.B.); (F.M.); (J.T.)
| | - João Transmontano
- Finao Biotech Lda, Campus Politécnico 10, BioBIP, 7300-555 Portalegre, Portugal; (F.B.); (F.M.); (J.T.)
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (P.S.); (A.M.); (B.L.); (A.C.S.); (A.C.); (A.R.); (M.B.); (L.A.); (C.M.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (L.P.d.S.); (C.C.); (A.P.M.)
| |
Collapse
|
2
|
Alheib O, da Silva LP, Mesquita KA, da Silva Morais A, Pirraco RP, Reis RL, Correlo VM. Human adipose-derived mesenchymal stem cells laden in gellan gum spongy-like hydrogels for volumetric muscle loss treatment. Biomed Mater 2023; 18:065005. [PMID: 37604159 DOI: 10.1088/1748-605x/acf25b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery. METHODS in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs). RESULTS in vitro, hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31+vessels) and neoinnervation (β-III tubulin+bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density ofα-SA+and MYH7+cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels ofα-SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM. CONCLUSIONS taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
Collapse
Affiliation(s)
- Omar Alheib
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucilia P da Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katia A Mesquita
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Dodi G, Sabau RE, Crețu BEB, Gardikiotis I. Exploring the Antioxidant Potential of Gellan and Guar Gums in Wound Healing. Pharmaceutics 2023; 15:2152. [PMID: 37631366 PMCID: PMC10458899 DOI: 10.3390/pharmaceutics15082152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
It is acknowledged that the presence of antioxidants boosts the wound-healing process. Many biopolymers have been explored over the years for their antioxidant potential in wound healing, but limited research has been performed on gum structures and their derivatives. This review aims to evaluate whether the antioxidant properties of gellan and guar gums and wound healing co-exist. PubMed was the primary platform used to explore published reports on the antioxidant wound-healing interconnection, wound dressings based on gellan and guar gum, as well as the latest review papers on guar gum. The literature search disclosed that some wound-healing supports based on gellan gum hold considerable antioxidant properties, as evident from the results obtained using different antioxidant assays. It has emerged that the antioxidant properties of guar gum are overlooked in the wound-healing field, in most cases, even if this feature improves the healing outcome. This review paper is the first that examines guar gum vehicles throughout the wound-healing process. Further research is needed to design and evaluate customized wound dressings that can scavenge excess reactive oxygen species, especially in clinical practice.
Collapse
Affiliation(s)
- Gianina Dodi
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania;
| | - Rosina E. Sabau
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania;
| | - Bianca E.-B. Crețu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania;
| |
Collapse
|
4
|
Moreira HR, Rodrigues DB, Freitas-Ribeiro S, da Silva LP, Morais ADS, Jarnalo M, Horta R, Reis RL, Pirraco RP, Marques AP. Spongy-like hydrogels prevascularization with the adipose tissue vascular fraction delays cutaneous wound healing by sustaining inflammatory cell influx. Mater Today Bio 2022; 17:100496. [PMID: 36420053 PMCID: PMC9677215 DOI: 10.1016/j.mtbio.2022.100496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
In vitro prevascularization is one of the most explored approaches to foster engineered tissue vascularization. We previously demonstrated a benefit in tissue neovascularization by using integrin-specific biomaterials prevascularized by stromal vascular fraction (SVF) cells, which triggered vasculogenesis in the absence of extrinsic growth factors. SVF cells are also associated to biological processes important in cutaneous wound healing. Thus, we aimed to investigate whether in vitro construct prevascularization with SVF accelerates the healing cascade by fostering early vascularization vis-à-vis SVF seeding prior to implantation. Prevascularized constructs delayed re-epithelization of full-thickness mice wounds compared to both non-prevascularized and control (no SVF) groups. Our results suggest this delay is due to a persistent inflammation as indicated by a significantly lower M2(CD163+)/M1(CD86+) macrophage subtype ratio. Moreover, a slower transition from the inflammatory to the proliferative phase of the healing was confirmed by reduced extracellular matrix deposition and increased presence of thick collagen fibers from early time-points, suggesting the prevalence of fiber crosslinking in relation to neodeposition. Overall, while prevascularization potentiates inflammatory cell influx, which negatively impacts the cutaneous wound healing cascade, an effective wound healing was guaranteed in non-prevascularized SVF cell-containing spongy-like hydrogels confirming that the SVF can have enhanced efficacy.
Collapse
Affiliation(s)
- Helena R. Moreira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Daniel B. Rodrigues
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Lucília P. da Silva
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Alain da S. Morais
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, And Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, And Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| |
Collapse
|
5
|
Gellan Gum Is a Suitable Biomaterial for Manual and Bioprinted Setup of Long-Term Stable, Functional 3D-Adipose Tissue Models. Gels 2022; 8:gels8070420. [PMID: 35877505 PMCID: PMC9315477 DOI: 10.3390/gels8070420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023] Open
Abstract
Due to its wide-ranging endocrine functions, adipose tissue influences the whole body’s metabolism. Engineering long-term stable and functional human adipose tissue is still challenging due to the limited availability of suitable biomaterials and adequate cell maturation. We used gellan gum (GG) to create manual and bioprinted adipose tissue models because of its similarities to the native extracellular matrix and its easily tunable properties. Gellan gum itself was neither toxic nor monocyte activating. The resulting hydrogels exhibited suitable viscoelastic properties for soft tissues and were stable for 98 days in vitro. Encapsulated human primary adipose-derived stem cells (ASCs) were adipogenically differentiated for 14 days and matured for an additional 84 days. Live-dead staining showed that encapsulated cells stayed viable until day 98, while intracellular lipid staining showed an increase over time and a differentiation rate of 76% between days 28 and 56. After 4 weeks of culture, adipocytes had a univacuolar morphology, expressed perilipin A, and secreted up to 73% more leptin. After bioprinting establishment, we demonstrated that the cells in printed hydrogels had high cell viability and exhibited an adipogenic phenotype and function. In summary, GG-based adipose tissue models show long-term stability and allow ASCs maturation into functional, univacuolar adipocytes.
Collapse
|
6
|
Alheib O, da Silva LP, Youn YH, Kwon IK, Reis RL, Correlo VM. 3D bioprinting of gellan gum-based hydrogels tethered with laminin-derived peptides for improved cellular behavior. J Biomed Mater Res A 2022; 110:1655-1668. [PMID: 35678701 DOI: 10.1002/jbm.a.37415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022]
Abstract
The treatment of skeletal muscle defects is still a topic of noteworthy concern since surgical intervention is not capable of recovering muscle function. Herein, we propose myoblasts laden in laminin-inspired biofunctionalized gellan gum hydrogels as promising tissue-engineered skeletal muscle surrogates. Gellan gum-based hydrogels were developed by combining native gellan gum (GG) and GG tethered with laminin-derived peptides (CIKVAVS (V), KNRLTIELEVRTC (T) or RKRLQVQLSIRTC (Q)), using different polymer content (0.75%-1.875%). Hydrogels were characterized in terms of compressive modulus, molecules trafficking, and C2C12 adhesion. Hydrogels with higher polymeric content (1.125%-1.875%) showed higher stiffness whereas hydrogels with lower polymer content (0.75%-1.125%) showed higher fluorescein isothiocyanate-dextran molecules diffusion. Cell spreading was achieved regardless of the laminin-derived peptide but preferred in hydrogels with higher polymer content (1.125%-1.875%). Taken together, hydrogels with 1.125% of polymer content were selected for printability analysis. GG-based inks showed a non-newtonian, shear-thinning, and thixotropic behavior suitable for printing. Accordingly, all inks were printable, but inks tethered with T and Q peptides presented some signs of clogging. Cell viability was affected after printing but increased after 7 days of culture. After 7 days, cells were spreading but not showing significant signs of cell-cell communications. Therefore, cell density was increased, thus, myocytes loaded in V-tethered GG-based inks showed higher cell-cell communication, spreading morphology, and alignment 7, 14 days post-printing. Overall, myoblasts laden in laminin-inspired biofunctionalized GG-based hydrogels are a promising skeletal muscle surrogate with the potential to be used as in vitro model or explored for further in vivo applications.
Collapse
Affiliation(s)
- Omar Alheib
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Lucilia P da Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Yun Hee Youn
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal.,Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal.,Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
7
|
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels 2022; 8:gels8040216. [PMID: 35448118 PMCID: PMC9026461 DOI: 10.3390/gels8040216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogel materials have great application value in biomedical engineering. Among them, photocrosslinked hydrogels have attracted much attention due to their variety and simple convenient preparation methods. Here, we provide a systematic review of the biomedical-engineering applications of photocrosslinked hydrogels. First, we introduce the types of photocrosslinked hydrogel monomers, and the methods for preparation of photocrosslinked hydrogels with different morphologies are summarized. Subsequently, various biomedical applications of photocrosslinked hydrogels are reviewed. Finally, some shortcomings and development directions for photocrosslinked hydrogels are considered and proposed. This paper is designed to give researchers in related fields a systematic understanding of photocrosslinked hydrogels and provide inspiration to seek new development directions for studies of photocrosslinked hydrogels or related materials.
Collapse
Affiliation(s)
- Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Correspondence: (W.H.); (Q.L.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (W.H.); (Q.L.)
| |
Collapse
|
8
|
Chen M, Yu P, Xing J, Wang Y, Ren K, Zhou G, Luo J, Xie J, Li J. Gellan gum modified hyaluronic acid hydrogel as viscosupplement with lubrication maintenance and enzymatic resistance. J Mater Chem B 2022; 10:4479-4490. [PMID: 35613532 DOI: 10.1039/d2tb00421f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoarthritis (OA) is a common disease caused by damage to articular cartilage and underlying bone tissues. Early OA can be treated by intra-articular injection of viscosupplements to restore the lost...
Collapse
Affiliation(s)
- Meilin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jiaqi Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yutong Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
9
|
Hussain Z, Jamal Ahmed D, Mohammed Alkabra R, Thu HE, Khan S, Sohail M, Sarfraz RM, Ramli NA. Hyaluronic acid based nanomedicines as promising wound healers for acute-to-chronic wounds: a review of recent updates and emerging trends. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Dalya Jamal Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Ranim Mohammed Alkabra
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Hnin Ei Thu
- Innoscience Ressearch Sdn, Subang Jaya, Malaysia
- Research and Innovation Department, Lincoln University College, Petaling Jaya, Malaysia
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, TX, USA
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | | - Nor Amlizan Ramli
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
10
|
Bounds K, Colmer-Hamood JA, Myntti M, Jeter RM, Hamood AN. The influence of a biofilm-dispersing wound gel on the wound healing process. Int Wound J 2021; 19:553-572. [PMID: 34263993 PMCID: PMC8874046 DOI: 10.1111/iwj.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Topical antimicrobials that reduce the bacterial bioburden within a chronically‐infected wound may have helpful or harmful effects on the healing process. We used murine models of full‐thickness skin wounds to determine the effects of the novel biofilm‐dispersing wound gel (BDWG) and its gel base on the healing of uninfected wounds. The rate of wound closure over 19 days was comparable among the BDWG‐treated (BT) wounds and the controls. Compared with the controls, histology of the BT wounds showed formation of a stable blood clot at day 1, more neovascularisation and reepithelialisation at day 3, and more organised healing at day 7. Fluorescence‐activated cell sorting analysis showed a lower percentage of neutrophils in wounded tissues of the BT group at days 1 and 3, and significantly more M2 macrophages at day 3. Levels of proinflammatory cytokines and chemokines were increased over the uninjured baseline within the wounds of all treatment groups but the levels were significantly lower in the BT group at day 1, modulating the inflammatory response. Our results suggest that BDWG does not interfere with the wound healing process and may enhance it by lowering inflammation and allowing transition to the proliferative stage of wound healing by day 3.
Collapse
Affiliation(s)
- Kayla Bounds
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Jane A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Matthew Myntti
- Research and Development, Next Science LLC, Jacksonville, Florida, USA
| | - Randall M Jeter
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.,Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
11
|
Moreira HR, Raftery RM, da Silva LP, Cerqueira MT, Reis RL, Marques AP, O'Brien FJ. In vitro vascularization of tissue engineered constructs by non-viral delivery of pro-angiogenic genes. Biomater Sci 2021; 9:2067-2081. [PMID: 33475111 DOI: 10.1039/d0bm01560a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascularization is still one of the major challenges in tissue engineering. In the context of tissue regeneration, the formation of capillary-like structures is often triggered by the addition of growth factors which are associated with high cost, bolus release and short half-life. As an alternative to growth factors, we hypothesized that delivering genes-encoding angiogenic growth factors to cells in a scaffold microenvironment would lead to a controlled release of angiogenic proteins promoting vascularization, simultaneously offering structural support for new matrix deposition. Two non-viral vectors, chitosan (Ch) and polyethyleneimine (PEI), were tested to deliver plasmids encoding for vascular endothelial growth factor (pVEGF) and fibroblast growth factor-2 (pFGF2) to human dermal fibroblasts (hDFbs). hDFbs were successfully transfected with both Ch and PEI, without compromising the metabolic activity. Despite low transfection efficiency, superior VEGF and FGF-2 transgene expression was attained when pVEGF was delivered with PEI and when pFGF2 was delivered with Ch, impacting the formation of capillary-like structures by primary human dermal microvascular endothelial cells (hDMECs). Moreover, in a 3D microenvironment, when PEI-pVEGF and Ch-FGF2 were delivered to hDFbs, cells produced functional pro-angiogenic proteins which induced faster formation of capillary-like structures that were retained in vitro for longer time in a Matrigel assay. The dual combination of the plasmids resulted in a downregulation of the production of VEGF and an upregulation of FGF-2. The number of capillary-like segments obtained with this system was inferior to the delivery of plasmids individually but superior to what was observed with the non-transfected cells. This work confirmed that cell-laden scaffolds containing transfected cells offer a novel, selective and alternative approach to impact the vascularization during tissue regeneration. Moreover, this work provides a new platform for pathophysiology studies, models of disease, culture systems and drug screening.
Collapse
Affiliation(s)
- Helena R Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
12
|
Costa de Oliveira Souza CM, de Souza CF, Mogharbel BF, Irioda AC, Cavichiolo Franco CR, Sierakowski MR, Athayde Teixeira de Carvalho K. Nanostructured Cellulose-Gellan-Xyloglucan-Lysozyme Dressing Seeded with Mesenchymal Stem Cells for Deep Second-Degree Burn Treatment. Int J Nanomedicine 2021; 16:833-850. [PMID: 33584096 PMCID: PMC7875079 DOI: 10.2147/ijn.s289868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In deep burns, wound contraction and hypertrophic scar formation can generate functional derangement and debilitation of the affected part. In order to improve the quality of healing in deep second-degree burns, we developed a new treatment in a preclinical model using nanostructured membranes seeded with mesenchymal stem cells (MSCs). METHODS Membranes were obtained by reconstitution of bacterial cellulose (reconstituted membrane [RM]) and produced by a dry-cast process, then RM was incorporated with 10% tamarind xyloglucan plus gellan gum 1:1 and 10% lysozyme (RMGT-LZ) and with 10% gellan gum and 10% lysozyme (RMG-LZ). Membrane hydrophobic/hydrophilic characteristics were investigated by static/dynamic contact-angle measurements. They were cultivated with MSCs, and cell adhesion, proliferation, and migration capacity was analyzed with MTT assays. Morphological and topographic characteristics were analyzed by scanning electron microscopy. MSC patterns in flow cytometry and differentiation into adipocytes and osteocytes were checked. In vivo assays used RMG-LZ and RMGT-LZ (with and without MSCs) in Rattus norvegicus rats submitted to burn protocol, and histological sections and collagen deposits were analyzed and immunocytochemistry assay performed. RESULTS In vitro results demonstrated carboxyl and amine groups made the membranes moderately hydrophobic and xyloglucan inclusion decreased wettability, favoring MSC adhesion, proliferation, and differentiation. In vivo, we obtained 40% and 60% reduction in acute/chronic inflammatory infiltrates, 96% decrease in injury area, increased vascular proliferation and collagen deposition, and complete epithelialization after 30 days. MSCs were detected in burned tissue, confirming they had homed and proliferated in vivo. CONCLUSION Nanostructured cellulose-gellan-xyloglucan-lysozyme dressings, especially when seeded with MSCs, improved deep second-degree burn regeneration.
Collapse
Affiliation(s)
- Carolina Maria Costa de Oliveira Souza
- Stem Cell Research Laboratory, Cell Therapy and Biotechnology in Regenerative Medicine Department, Pequeno Príncipe Faculties and the Pelé Pequeno Príncipe Research Institute, Curitiba, Paraná, Brazil
| | - Clayton Fernandes de Souza
- Chemistry Undergraduate Program, School of Education and Humanities, Pontifícia Universidade Católica Do Paraná, Curitiba, Paraná, Brazil
- BioPol, Chemistry Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Bassam Felipe Mogharbel
- Stem Cell Research Laboratory, Cell Therapy and Biotechnology in Regenerative Medicine Department, Pequeno Príncipe Faculties and the Pelé Pequeno Príncipe Research Institute, Curitiba, Paraná, Brazil
| | - Ana Carolina Irioda
- Stem Cell Research Laboratory, Cell Therapy and Biotechnology in Regenerative Medicine Department, Pequeno Príncipe Faculties and the Pelé Pequeno Príncipe Research Institute, Curitiba, Paraná, Brazil
| | | | | | - Katherine Athayde Teixeira de Carvalho
- Stem Cell Research Laboratory, Cell Therapy and Biotechnology in Regenerative Medicine Department, Pequeno Príncipe Faculties and the Pelé Pequeno Príncipe Research Institute, Curitiba, Paraná, Brazil
| |
Collapse
|
13
|
Vuornos K, Huhtala H, Kääriäinen M, Kuismanen K, Hupa L, Kellomäki M, Miettinen S. Bioactive glass ions for
in vitro
osteogenesis and microvascularization in gellan gum‐collagen hydrogels. J Biomed Mater Res B Appl Biomater 2020; 108:1332-1342. [DOI: 10.1002/jbm.b.34482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Kaisa Vuornos
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health TechnologyTampere University Tampere Finland
- Research, Development and Innovation CentreTampere University Hospital Tampere Finland
| | - Heini Huhtala
- Faculty of Social SciencesTampere University Tampere Finland
| | - Minna Kääriäinen
- Department of Plastic and Reconstructive SurgeryTampere University Hospital Tampere Finland
| | - Kirsi Kuismanen
- Department of Obstetrics and GynecologyTampere University Hospital Tampere Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centreåbo Akademi University åbo Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Medicine and Health TechnologyTampere University Tampere Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Health TechnologyTampere University Tampere Finland
- Research, Development and Innovation CentreTampere University Hospital Tampere Finland
| |
Collapse
|
14
|
Moreira HR, da Silva LP, Reis RL, Marques AP. Tailoring Gellan Gum Spongy-Like Hydrogels' Microstructure by Controlling Freezing Parameters. Polymers (Basel) 2020; 12:E329. [PMID: 32033252 PMCID: PMC7077413 DOI: 10.3390/polym12020329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
Gellan gum (GG) spongy-like hydrogels have been explored for different tissue engineering (TE) applications owing to their highly attractive hydrogel-like features, and improved mechanical resilience and cell performance. Although the whole process for the preparation of these materials is well-defined, we hypothesized that variations occurring during the freezing step lead to batch-to-batch discrepancies. Aiming to address this issue, two freezing devices were tested, to prepare GG spongy-like hydrogels in a more reproducible way. The cooling and freezing rates, the nucleation time and temperature, and the end freezing time were determined at different freezing temperatures (-20, -80, and -210 °C). The efficacy of the devices was assessed by analyzing the physicochemical, mechanical, and biological properties of different formulations. The cooling rate and freezing rate varied between 0.1 and 128 °C/min, depending on the temperature used and the device. The properties of spongy-like hydrogels prepared with the tested devices showed lower standard deviation in comparison to those prepared with the standard process, due to the slower freezing rate of the hydrogels. However, with this method, mean pore size was significantly lower than that with the standard method. Cell entrapment, adhesion, and viability were not affected as demonstrated with human dermal fibroblasts. This work confirmed that batch-to-batch variations are mostly due to the freezing step and that the tested devices allow fine tuning of the scaffolds' structure and properties.
Collapse
Affiliation(s)
- Helena R. Moreira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Lucília P. da Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Guimarães, Portugal; (H.R.M.); (L.P.d.S.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
15
|
Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafizadeh M, Han SS, Khang G, Roveimiab Z. Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers (Basel) 2020; 12:E176. [PMID: 31936590 PMCID: PMC7022386 DOI: 10.3390/polym12010176] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The engineering of tissues under a three-dimensional (3D) microenvironment is a great challenge and needs a suitable supporting biomaterial-based scaffold that may facilitate cell attachment, spreading, proliferation, migration, and differentiation for proper tissue regeneration or organ reconstruction. Polysaccharides as natural polymers promise great potential in the preparation of a three-dimensional artificial extracellular matrix (ECM) (i.e., hydrogel) via various processing methods and conditions. Natural polymers, especially gums, based upon hydrogel systems, provide similarities largely with the native ECM and excellent biological response. Here, we review the origin and physico-chemical characteristics of potentially used natural gums. In addition, various forms of scaffolds (e.g., nanofibrous, 3D printed-constructs) based on gums and their efficacy in 3D cell culture and various tissue regenerations such as bone, osteoarthritis and cartilage, skin/wound, retinal, neural, and other tissues are discussed. Finally, the advantages and limitations of natural gums are precisely described for future perspectives in tissue engineering and regenerative medicine in the concluding remarks.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| | - Gilson Khang
- Department of Polymer Nano Science and Technology, Department of BIN Fusion Technology and BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Dukjin, Jeonju 54896, Korea;
| | - Ziba Roveimiab
- Department of Biological Sciences, and Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
16
|
Choi JH, Lee W, Song C, Moon BK, Yoon SJ, Neves NM, Reis RL, Khang G. Application of Gellan Gum-Based Scaffold for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:15-37. [PMID: 32602088 DOI: 10.1007/978-981-15-3258-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gellan gum (GG) is a linear microbial exopolysaccharide which is derived naturally by the fermentation process of Pseudomonas elodea. Application of GG in tissue engineering and regeneration medicine (TERM) is already over 10 years and has shown great potential. Although this biomaterial has many advantages such as biocompatibility, biodegradability, nontoxic in nature, and physical stability in the presence of cations, a variety of modification methods have been suggested due to some disadvantages such as mechanical properties, high gelation temperature, and lack of attachment sites. In this review, the application of GG-based scaffold for tissue engineering and approaches to improve GG properties are discussed. Furthermore, a recent trend and future perspective of GG-based scaffold are highlighted.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea
| | - Wonchan Lee
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea
| | - Cheolui Song
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea
| | - Byung Kwan Moon
- Department of Polymer Nano Science & Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sun-Jung Yoon
- Department of Orthopedic Surgery, Medical School, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Nuno M Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associated Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Jeonju, South Korea.
| |
Collapse
|
17
|
Li Z, Bratlie KM. How Cross-Linking Mechanisms of Methacrylated Gellan Gum Hydrogels Alter Macrophage Phenotype. ACS APPLIED BIO MATERIALS 2018; 2:217-225. [DOI: 10.1021/acsabm.8b00562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaitlin M. Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division of Materials Sciences & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
18
|
Carvalho CR, Wrobel S, Meyer C, Brandenberger C, Cengiz IF, López-Cebral R, Silva-Correia J, Ronchi G, Reis RL, Grothe C, Oliveira JM, Haastert-Talini K. Gellan Gum-based luminal fillers for peripheral nerve regeneration: an in vivo study in the rat sciatic nerve repair model. Biomater Sci 2018; 6:1059-1075. [PMID: 29464240 DOI: 10.1039/c7bm01101f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injuries (PNI) resulting in a gap to be bridged between the transected nerve ends are commonly reconstructed with autologous nerve tissue, but there is a need for valuable alternatives. This experimental work considers the innovative use of the biomaterial Gellan Gum (GG) as a luminal filler for nerve guidance channels made from chitosan with a 5% degree of acetylation. The engineered constructs should remodel the structural support given to regenerating axons by the so-called bands of Büngner. Four different GG formulations were produced by combining varying amounts of High-Acyl GG (HA-GG) and Methacrylated GG (MA-GG). The effective porosity of the freeze-dried networks was analysed by SEM and micro-CT 3D reconstructions, while the degradation and swelling abilities were characterized in vitro for up to 30 days. The metabolic activity and viability of immortalized Schwann cells seeded onto the freeze-dried networks were also evaluated. Finally, the developed hydrogel formulations were freeze-dried within the chitosan nerve guides and implanted in a 10 mm rat sciatic nerve defect. Functional and histomorphological analyses after 3, 6, and 12 weeks in vivo revealed that although it did not result in improved nerve regeneration, the NGC25:75 formulations could provide a basis for further development of GG scaffolds as luminal fillers for hollow nerve guidance channels.
Collapse
Affiliation(s)
- C R Carvalho
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial de Gandra, 4805-017 Barco, Guimarães, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Banerjee H, Suhail M, Ren H. Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics (Basel) 2018; 3:E15. [PMID: 31105237 PMCID: PMC6352708 DOI: 10.3390/biomimetics3030015] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
There are numerous developments taking place in the field of biorobotics, and one such recent breakthrough is the implementation of soft robots-a pathway to mimic nature's organic parts for research purposes and in minimally invasive surgeries as a result of their shape-morphing and adaptable features. Hydrogels (biocompatible, biodegradable materials that are used in designing soft robots and sensor integration), have come into demand because of their beneficial properties, such as high water content, flexibility, and multi-faceted advantages particularly in targeted drug delivery, surgery and biorobotics. We illustrate in this review article the different types of biomedical sensors and actuators for which a hydrogel acts as an active primary material, and we elucidate their limitations and the future scope of this material in the nexus of similar biomedical avenues.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Department of Biomedical Engineering, Faculty of Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore.
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore.
| | - Mohamed Suhail
- Department of Biomedical Engineering, Faculty of Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore.
- Department of Mechancial Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Hongliang Ren
- Department of Biomedical Engineering, Faculty of Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore.
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore.
- National University of Singapore (Suzhou) Research Institute (NUSRI), 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
20
|
Zhang X, Xu J, Lang C, Qiao S, An G, Fan X, Zhao L, Hou C, Liu J. Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel. Biomacromolecules 2017; 18:1885-1892. [DOI: 10.1021/acs.biomac.7b00321] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chao Lang
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shanpeng Qiao
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Guo An
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaotong Fan
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Linlu Zhao
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
21
|
Hussain Z, Thu HE, Katas H, Bukhari SNA. Hyaluronic Acid-Based Biomaterials: A Versatile and Smart Approach to Tissue Regeneration and Treating Traumatic, Surgical, and Chronic Wounds. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1315433] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Berti FV, Srisuk P, da Silva LP, Marques AP, Reis RL, Correlo VM. * Synthesis and Characterization of Electroactive Gellan Gum Spongy-Like Hydrogels for Skeletal Muscle Tissue Engineering Applications. Tissue Eng Part A 2017; 23:968-979. [PMID: 28152667 DOI: 10.1089/ten.tea.2016.0430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Advances on materials' research for tissue engineering (TE) applications have shown that animal cells respond directly to the material physical, chemical, mechanical, and electrical stimuli altering a variety of cell signaling cascades, which consequently result in phenotypic and genotypic alterations. Gellan gum (GG) spongy-like hydrogels (SLH) with open microstructure, mechanical properties, and cell performance have shown promising results for soft TE applications. Taking advantage of intrinsic properties of GG-SLH and polypyrrole (PPy) electroactivity, we developed electroactive PPy-GG-SLH envisaging their potential use for skeletal muscle TE. Three different methods of in situ chemical oxidative polymerization were developed based on the availability of pyrrole: freely dissolved in solution (method I and III) or immobilized into GG hydrogels (method II). PPy was homogeneously distributed within (method I and III) and on the surface (method II) of GG-SLH, as also confirmed by Fourier Transform infrared spectra. PPy-GG-SLH showed higher conductivity than GG-SLH (p < 0.05) whereas PPy-GG-SLH (method I and II) showed the best conductivity among the 3 methods (∼1 to 2 × 10-4 S/cm). The microarchitecture of PPy-GG-SLH (method I) was similar to GG-SLH but PPy-GG-SLH (method II and III) presented smaller pore sizes and lower porosity. PPy-GG-SLH (method I and II) compressive modulus (∼450-500 KPa) and recovering capacity (∼75-90%) was higher than GG-SLH, nevertheless the mechanical properties of PPy-GG-SLH (method III) were lower. The water uptake of PPy-GG-SLH was rapidly up to 2500% and were stable along 60 days of degradation being the maximum weight loss 20%. Mechanically stable and electroactive PPy-GG-SLH (method I and II) were analyzed regarding cellular performance. PPy-GG-SLH were not cytotoxic for L929 cells. In addition, L929 and C2C12 myoblast cells were able to adhere and spread within PPy-GG-SLH, showing improved spreading in comparison to GG-SLH performance. Overall, PPy-GG-SLH show promising features as an alternative electroactive platform to analyze the influence of electrical stimulation on skeletal muscle cells.
Collapse
Affiliation(s)
- Fernanda V Berti
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Pathomthat Srisuk
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal .,3 Faculty of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Khon Kaen University , Khon Kaen, Thailand
| | - Lucília P da Silva
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Alexandra P Marques
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Rui L Reis
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| | - Vitor M Correlo
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Guimarães, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Guimarães, Portugal
| |
Collapse
|
23
|
da Silva LP, Oliveira S, Pirraco RP, Santos TC, Reis RL, Marques AP, Correlo VM. Eumelanin-releasing spongy-like hydrogels for skin re-epithelialization purposes. ACTA ACUST UNITED AC 2017; 12:025010. [PMID: 28181477 DOI: 10.1088/1748-605x/aa5f79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Melanin function in the skin has been associated with pigmentation but other properties such as electrical conductance, photoprotection, and antioxidant and antimicrobial activity have also been recognized. Nonetheless, the use of melanin in a skin wound healing context has never been considered. In this sense, eumelanin particles with a typical round and nano-sized morphology and electrical conductivity of 2.09 × 10-8 S cm-1 were extracted from the ink of Sepia officinalis. The ability of primary human keratinocytes (hKCs) to phagocyte eumelanin, which was then accumulated in cytosolic vesicles and nuclei surroundings, was demonstrated. Keratinocyte viability and maturation was not affected by eumelanin contact, but at eumelanin amounts higher than 0.1 mg l-1 cell morphology was altered and cell proliferation was inhibited. A time and eumelanin amount-dependent reduction of reactive oxygen species (ROS) released by eumelanin-containing ultraviolet (UV)-irradiated keratinocytes was observed. Eumelanin-containing gellan gum (GG) spongy-like hydrogels allowed a sustained release of eumelanin in the range of 0.1 to 5 mg l-1, which was shown in vitro to not be harmful to hKCs, and the absence of a strong host reaction after subcutaneous implantation in mice. Herein, we propose spongy-like hydrogels as sustained release matrices of S. officinalis eumelanin for predicting a beneficial role in skin wound healing through a direct effect over keratinocytes.
Collapse
Affiliation(s)
- Lucília P da Silva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
24
|
Napavichayanun S, Aramwit P. Effect of animal products and extracts on wound healing promotion in topical applications: a review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:703-729. [DOI: 10.1080/09205063.2017.1301772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Supamas Napavichayanun
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
25
|
da Silva LP, Santos TC, Rodrigues DB, Pirraco RP, Cerqueira MT, Reis RL, Correlo VM, Marques AP. Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing. J Invest Dermatol 2017; 137:1541-1551. [PMID: 28259681 DOI: 10.1016/j.jid.2017.02.976] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
The detailed pathophysiology of diabetic foot ulcers is yet to be established and improved treatments are still required. We propose a strategy that directs inflammation, neovascularization, and neoinnervation of diabetic wounds. Aiming to potentiate a relevant secretome for nerve regeneration, stem cells were precultured in hyaluronic acid-based spongy hydrogels under neurogenic/standard media before transplantation into diabetic mice full-thickness wounds. Acellular spongy hydrogels and empty wounds were used as controls. Re-epithelialization was attained 4 weeks after transplantation independently of the test groups, whereas a thicker and more differentiated epidermis was observed for the cellular spongy hydrogels. A switch from the inflammatory to the proliferative phase of wound healing was revealed for all the experimental groups 2 weeks after injury, but a significantly higher M2(CD163+)/M1(CD86+) subtype ratio was observed in the neurogenic preconditioned group that also failed to promote neoinnervation. A higher number of intraepidermal nerve fibers were observed for the unconditioned group probably due to a more controlled transition from the inflammatory to the proliferative phase. Overall, stem cell-containing spongy hydrogels represent a promising approach to enhance diabetic wound healing by positively impacting re-epithelialization and by modulating the inflammatory response to promote a successful neoinnervation.
Collapse
Affiliation(s)
- Lucília Pereira da Silva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tírcia Carlos Santos
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniel Barreira Rodrigues
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério Pedro Pirraco
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana Teixeira Cerqueira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vitor Manuel Correlo
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra Pinto Marques
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, Taipas, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
26
|
Silva LPD, Pirraco RP, Santos TC, Novoa-Carballal R, Cerqueira MT, Reis RL, Correlo VM, Marques AP. Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33464-33474. [PMID: 27960396 DOI: 10.1021/acsami.6b11684] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neovascularization has been a major challenge in many tissue regeneration strategies. Hyaluronic acid (HA) of 3-25 disaccharides is known to be angiogenic due to its interaction with endothelial cell receptors. This effect has been explored with HA-based structures but a transitory response is observed due to HA burst biodegradation. Herein we developed gellan gum (GG)-HA spongy-like hydrogels from semi-interpenetrating network hydrogels with different HA amounts. Enzymatic degradation was more evident in the GG-HA with high HA amount due to their lower mechanical stability, also resulting from the degradation itself, which facilitated the access of the enzyme to the HA in the bulk. GG-HA spongy-like hydrogels hyaluronidase-mediated degradation lead to the release of HA oligosaccharides of different amounts and sizes in a HA content-dependent manner which promoted in vitro proliferation of human umbilical cord vein endothelial cells (HUVECs) but not their migration. Although no effect was observed in human dermal microvascular endothelial cells (hDMECs) in vitro, the implantation of GG-HA spongy-like hydrogels in an ischemic hind limb mice model promoted neovascularization in a material-dependent manner, consistent with the in vitro degradation profile. Overall, GG-HA spongy-like hydrogels with a sustained release of HA oligomers are valuable options to improve tissue vascularization, a critical issue in several applications in the tissue engineering and regenerative medicine field.
Collapse
Affiliation(s)
- Lucília P da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Tírcia C Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Ramon Novoa-Carballal
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Taipas, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
27
|
Mokhtarzadeh A, Alibakhshi A, Hejazi M, Omidi Y, Ezzati Nazhad Dolatabadi J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Gorodzha S, Douglas TEL, Samal SK, Detsch R, Cholewa-Kowalska K, Braeckmans K, Boccaccini AR, Skirtach AG, Weinhardt V, Baumbach T, Surmeneva MA, Surmenev RA. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels. J Biomed Mater Res A 2016; 104:1194-201. [DOI: 10.1002/jbm.a.35642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/07/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Svetlana Gorodzha
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Russia
| | | | - Sangram K. Samal
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University; Belgium
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg; Cauerstr. 6 Erlangen 91058 Germany
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings; AGH University of Science and Technology; Krakow Poland
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University; Belgium
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg; Cauerstr. 6 Erlangen 91058 Germany
| | - Andre G. Skirtach
- Department of Molecular Biotechnology; Coupure Links 653, Ghent University; Belgium
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg; Heidelberg Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Maria A. Surmeneva
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Russia
| | - Roman A. Surmenev
- Department of Experimental Physics; National Research Tomsk Polytechnic University; Russia
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Stuttgart Germany
| |
Collapse
|
29
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
30
|
Hui Y, Wen ZB, Pilate F, Xie H, Fan CJ, Du L, Liu D, Yang KK, Wang YZ. A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal–ligand interactions and hydrogen bonding. Polym Chem 2016. [DOI: 10.1039/c6py01752e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel poly(vinyl alcohol) hybrid hydrogel based on metal–ligand interactions and hydrogen bonding was fabricated, possessing highly-stretchable and self-healing properties.
Collapse
Affiliation(s)
- Yan Hui
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| | - Zhi-Bin Wen
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| | - Florence Pilate
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons – UMONS
- B-7000 Mons
- Belgium
| | - Hui Xie
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| | - Cheng-Jie Fan
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| | - Lan Du
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| | - Dan Liu
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| | - Ke-Ke Yang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| | - Yu-Zhong Wang
- Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE)
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan)
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
| |
Collapse
|
31
|
Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(l-glutamic acid). Biomacromolecules 2015; 16:3508-18. [DOI: 10.1021/acs.biomac.5b01287] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guifei Li
- School
of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jie Wu
- School
of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Bo Wang
- School
of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Shifeng Yan
- School
of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Kunxi Zhang
- School
of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianxun Ding
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jingbo Yin
- School
of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
32
|
Douglas TEL, Pilarz M, Lopez-Heredia M, Brackman G, Schaubroeck D, Balcaen L, Bliznuk V, Dubruel P, Knabe-Ducheyne C, Vanhaecke F, Coenye T, Pamula E. Composites of gellan gum hydrogel enzymatically mineralized with calcium-zinc phosphate for bone regeneration with antibacterial activity. J Tissue Eng Regen Med 2015; 11:1610-1618. [PMID: 26174042 DOI: 10.1002/term.2062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/22/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022]
Abstract
Gellan gum hydrogels functionalized with alkaline phosphatase were enzymatically mineralized with phosphates in mineralization medium containing calcium (Ca) and zinc (Zn) to improve their suitability as biomaterials for bone regeneration. The aims of the study were to endow mineralized hydrogels with antibacterial activity by incorporation of Zn in the inorganic phase, and to investigate the effect of Zn incorporation on the amount and type of mineral formed, the compressive modulus of the mineralized hydrogels and on their ability to support adhesion and growth of MC3T3-E1 osteoblast-like cells. Mineralization medium contained glycerophosphate (0.05 m) and three different molar Ca:Zn ratios, 0.05:0, 0.04:0.01 and 0.025:0.025 (all mol/dm3 ), hereafter referred to as A, B and C, respectively. FTIR, SAED and TEM analysis revealed that incubation for 14 days caused the formation of predominantly amorphous mineral phases in sample groups A, B and C. The presence of Zn in sample groups B and C was associated with a drop in the amount of mineral formed and a smaller mineral deposit morphology, as observed by SEM. ICP-OES revealed that Zn was preferentially incorporated into mineral compared to Ca. Mechanical testing revealed a decrease in compressive modulus in sample group C. Sample groups B and C, but not A, showed antibacterial activity against biofilm-forming, methicillin-resistant Staphylococcus aureus. All sample groups supported cell growth. Zn incorporation increased the viable cell number. The highest values were seen on sample group C. In conclusion, the sample group containing the most Zn, i.e. group C, appears to be the most promising. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy E L Douglas
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Belgium
| | - Magdalena Pilarz
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Marco Lopez-Heredia
- Department of Experimental and Orofacial Medicine, Faculty of Dentistry, Philipps University, Marburg, Germany
| | - Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - David Schaubroeck
- Centre for Microsystems Technology (CMST), IMEC, and Ghent University, Belgium
| | - Lieve Balcaen
- Department of Analytical Chemistry, Ghent University, Belgium
| | - Vitaliy Bliznuk
- Department of Materials Science and Engineering, Zwijnaarde, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Belgium
| | - Christine Knabe-Ducheyne
- Department of Experimental and Orofacial Medicine, Faculty of Dentistry, Philipps University, Marburg, Germany
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Elzbieta Pamula
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
33
|
Cerqueira MT, da Silva LP, Santos TC, Pirraco RP, Correlo VM, Reis RL, Marques AP. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19668-19679. [PMID: 25361388 DOI: 10.1021/am504520j] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Currently available substitutes for skin wound healing often result in the formation of nonfunctional neotissue. Thus, urgent care is still needed to promote an effective and complete regeneration. To meet this need, we proposed the assembling of a construct that takes advantage of cell-adhesive gellan gum-hyaluronic acid (GG-HA) spongy-like hydrogels and a powerful cell-machinery obtained from adipose tissue, human adipose stem cells (hASCs), and microvascular endothelial cells (hAMECs). In addition to a cell-adhesive character, GG-HA spongy-like hydrogels overpass limitations of traditional hydrogels, such as reduced physical stability and limited manipulation, due to improved microstructural arrangement characterized by pore wall thickening and increased mean pore size. The proposed constructs combining cellular mediators of the healing process within the spongy-like hydrogels that intend to recapitulate skin matrix aim to promote neoskin vascularization. Stable and off-the-shelf dried GG-HA polymeric networks, rapidly rehydrated at the time of cell seeding then depicting features of both sponges and hydrogels, enabled the natural cell entrapment/encapsulation and attachment supported by cell-polymer interactions. Upon transplantation into mice full-thickness excisional wounds, GG-HA spongy-like hydrogels absorbed the early inflammatory cell infiltrate and led to the formation of a dense granulation tissue. Consequently, spongy-like hydrogel degradation was observed, and progressive wound closure, re-epithelialization, and matrix remodelling was improved in relation to the control condition. More importantly, GG-HA spongy-like hydrogels promoted a superior neovascularization, which was enhanced in the presence of human hAMECs, also found in the formed neovessels. These observations highlight the successful integration of a valuable matrix and prevascularization cues to target angiogenesis/neovascularization in skin full-thickness excisional wounds.
Collapse
Affiliation(s)
- Mariana Teixeira Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark4806-909, Taipas, Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|