1
|
Loureiro ZY, Samant A, Desai A, DeSouza T, Cirka H, Ceesay M, Kostyra D, Joyce S, Khair L, Solivan-Rivera J, Ziegler R, Carneiro NK, Tsai LT, Brehm M, Messina LM, Fitzgerald KA, Rosen ED, Corvera S, Nguyen TT. Human Bone Marrow Adipose Tissue is a Hematopoietic Niche for Leptin-Driven Monopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.29.555167. [PMID: 37693594 PMCID: PMC10491256 DOI: 10.1101/2023.08.29.555167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During aging, adipose tissue within the bone marrow expands while the trabecular red marrow contracts. The impact of these changes on blood cell formation remains unclear. To address this question, we performed single-cell and single-nuclei transcriptomic analysis on adipose-rich yellow bone marrow (BMY) and adipose-poor trabecular red marrow (BMR) from human subjects undergoing lower limb amputations. Surprisingly, we discovered two distinct hematopoietic niches, in which BMY contains a higher number of monocytes and progenitor cells expressing genes associated with inflammation. To further investigate these niches, we developed an in-vitro organoid system that maintains features of the human bone marrow. We find cells from BMY are distinct in their expression of the leptin receptor, and respond to leptin stimulation with enhanced proliferation, leading to increased monocyte production. These findings suggest that the age-associated expansion of bone marrow adipose tissue drives a pro-inflammatory state by stimulating monocyte production from a spatially distinct, leptin-responsive hematopoietic stem/progenitor cell population. Significance This study reveals that adipose tissue within the human bone marrow is a niche for hematopoietic stem and progenitor cells that can give rise to pro-inflammatory monocytes through leptin signaling. Expansion of bone marrow adipose tissue with age and stress may thus underlie inflammageing.
Collapse
|
2
|
Salazar-Puerta AI, Ott N, Diaz-Starokozheva L, Das D, Lawrence WR, Johnson J, Houser R, Higuita-Castro N, Stanford KI, Gallego-Perez D. A Protocol for co-Injecting Cells with Pulverized Fibers for Improved Cell Survival and Engraftment. Bio Protoc 2024; 14:e5117. [PMID: 39600980 PMCID: PMC11588581 DOI: 10.21769/bioprotoc.5117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Adipose tissue is crucial for medical applications such as tissue reconstruction, cosmetic procedures, and correcting soft tissue deformities. Significant advances in the use of adipose tissue have been achieved through Coleman's studies in fat grafting, which gained widespread acceptance due to its effectiveness and safety. Despite its benefits, adipose tissue grafting faces several limitations, including high absorption rates due to insufficient support or anchorage, replacement by fibrous tissue, migration from the intended site, and loss of the initial desired morphology post-administration. To counteract these constraints, there is a need for improved grafting techniques that enhance the predictability and consistency of outcomes. Biomaterials are extensively used in tissue engineering to support cell adhesion, proliferation, and growth. Both natural and synthetic materials have shown promise in creating suitable microenvironments for adipose tissue regeneration. PLGA, a synthetic copolymer, is particularly notable for its biocompatibility, biodegradability, and tunable mechanical properties. Here, we describe a protocol using milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers combined with lipoaspirated tissue to create a fibrous slurry for injection. By pulverizing PLGA fiber mats to create fiber fragments with increased pore size and porosity, we can influence key cellular responses and enhance the success of adipose tissue-grafting procedures. This approach improves anchorage and support for adipocytes, thereby increasing cell viability. This method aims to enhance vascularity, perfusion, and volume retention in adipose tissue grafts, which addresses many of the limitations of current approaches to adipose tissue grafting and holds promise for more consistent and successful outcomes. Key features • Adipose tissue for tissue reconstruction. • Need for improved engraftment and volume retention. • Pulverized PLGA fiber mats to create a fibrous "slurry" that allows injection. • PLGA fibers co-injected with lipoaspirated tissue. • Improved adipose engraftment outcomes (e.g., perfusion, vascularity, and retention of graft volume).
Collapse
Affiliation(s)
| | - Neil Ott
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - William R. Lawrence
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Robert Houser
- Cosmetic & Plastic Surgery of Columbus, Columbus, OH, USA
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | | | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Chatterjee E, Betti MJ, Sheng Q, Lin P, Emont MP, Li G, Amancherla K, Limpitikul WB, Whittaker OR, Luong K, Azzam C, Gee D, Hutter M, Flanders K, Sahu P, Garcia-Contreras M, Gokulnath P, Flynn CR, Brown J, Yu D, Rosen ED, Jensen KVK, Gamazon ER, Shah R, Das S. The extracellular vesicle transcriptome provides tissue-specific functional genomic annotation relevant to disease susceptibility in obesity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317277. [PMID: 39606385 PMCID: PMC11601731 DOI: 10.1101/2024.11.18.24317277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We characterized circulating extracellular vesicles (EVs) in obese and lean humans, identifying transcriptional cargo differentially expressed in obesity. Since circulating EVs may have broad origin, we compared this obesity EV transcriptome to expression from human visceral adipose tissue derived EVs from freshly collected and cultured biopsies from the same obese individuals. Using a comprehensive set of adipose-specific epigenomic and chromatin conformation assays, we found that the differentially expressed transcripts from the EVs were those regulated in adipose by BMI-associated SNPs from a large-scale GWAS. Using a phenome-wide association study of the regulatory SNPs for the EV-derived transcripts, we identified a substantial enrichment for inflammatory phenotypes, including type 2 diabetes. Collectively, these findings represent the convergence of the GWAS (genetics), epigenomics (transcript regulation), and EV (liquid biopsy) fields, enabling powerful future genomic studies of complex diseases.
Collapse
|
4
|
Desai A, Loureiro ZY, DeSouza T, Yang Q, Solivan-Rivera J, Corvera S. cAMP driven UCP1 induction in human adipocytes requires ATGL-catalyzed lipolysis. Mol Metab 2024; 90:102051. [PMID: 39454826 PMCID: PMC11585812 DOI: 10.1016/j.molmet.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. METHODS Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 h to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. RESULTS UCP1 mRNA expression was induced within 3 h of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2, the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. CONCLUSIONS UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP may result from the production of natural PPARγ activating ligands through ATGL-mediated lipolysis.
Collapse
Affiliation(s)
- Anand Desai
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Qin Yang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA; Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Desai A, Yang Loureiro Z, DeSouza T, Yang Q, Solivan-Rivera J, Corvera S. PPARγ activation by lipolysis-generated ligands is required for cAMP dependent UCP1 induction in human thermogenic adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607465. [PMID: 39211160 PMCID: PMC11360943 DOI: 10.1101/2024.08.10.607465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective The uncoupling protein 1 (UCP1) is induced in brown or "beige" adipocytes through catecholamine-induced cAMP signaling, which activates diverse transcription factors. UCP1 expression can also be enhanced by PPARγ agonists such as rosiglitazone (Rsg). However, it is unclear whether this upregulation results from de-novo differentiation of beige adipocytes from progenitor cells, or from the induction of UCP1 in pre-existing adipocytes. To explore this, we employed human adipocytes differentiated from progenitor cells and examined their acute response to Rsg, to the adenylate-cyclase activator forskolin (Fsk), or to both simultaneously. Methods Adipocytes generated from primary human progenitor cells were differentiated without exposure to PPARγ agonists, and treated for 3, 6 or 78 hours to Fsk, to Rsg, or to both simultaneously. Bulk RNASeq, RNAScope, RT-PCR, CRISPR-Cas9 mediated knockout, oxygen consumption and western blotting were used to assess cellular responses. Results UCP1 mRNA expression was induced within 3 hours of exposure to either Rsg or Fsk, indicating that Rsg's effect is independent on additional adipocyte differentiation. Although Rsg and Fsk induced distinct overall transcriptional responses, both induced genes associated with calcium metabolism, lipid droplet assembly, and mitochondrial remodeling, denoting core features of human adipocyte beiging. Unexpectedly, we found that Fsk-induced UCP1 expression was reduced by approximately 80% following CRISPR-Cas9-mediated knockout of PNPLA2 , the gene encoding the triglyceride lipase ATGL. As anticipated, ATGL knockout suppressed lipolysis; however, the associated suppression of UCP1 induction indicates that maximal cAMP-mediated UCP1 induction requires products of ATGL-catalyzed lipolysis. Supporting this, we observed that the reduction in Fsk-stimulated UCP1 induction caused by ATGL knockout was reversed by Rsg, implying that the role of lipolysis in this process is to generate natural PPARγ agonists. Conclusion UCP1 transcription is known to be stimulated by transcription factors activated downstream of cAMP-dependent protein kinases. Here we demonstrate that UCP1 transcription can also be acutely induced through PPARγ-activation. Moreover, both pathways are activated in human adipocytes in response to cAMP, synergistically inducing UCP1 expression. The stimulation of PPARγ in response to cAMP occurs as a result of the production of natural PPARγ activating ligands through ATGL-mediated lipolysis. GRAPHICAL ABSTRACT
Collapse
|
6
|
O'Reilly ME, Ho S, Coronel J, Zhu L, Liu W, Xue C, Kim E, Cynn E, Matias CV, Soni RK, Wang C, Ionita-Laza I, Bauer RC, Ross L, Zhang Y, Corvera S, Fried SK, Reilly MP. linc-ADAIN, a human adipose lincRNA, regulates adipogenesis by modulating KLF5 and IL-8 mRNA stability. Cell Rep 2024; 43:114240. [PMID: 38753486 PMCID: PMC11334222 DOI: 10.1016/j.celrep.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.
Collapse
Affiliation(s)
- Marcella E O'Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Sebastian Ho
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Johana Coronel
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Lucie Zhu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Wen Liu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Eunyoung Kim
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Esther Cynn
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Chen Wang
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Leila Ross
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Muredach P Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA; Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
7
|
Navarro-Perez J, Carobbio S. Adipose tissue-derived stem cells, in vivo and in vitro models for metabolic diseases. Biochem Pharmacol 2024; 222:116108. [PMID: 38438053 DOI: 10.1016/j.bcp.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The primary role of adipose tissue stem cells (ADSCs) is to support the function and homeostasis of adipose tissue in physiological and pathophysiological conditions. However, when ADSCs become dysfunctional in diseases such as obesity and cancer, they become impaired, undergo signalling changes, and their epigenome is altered, which can have a dramatic effect on human health. In more recent years, the therapeutic potential of ADSCs in regenerative medicine, wound healing, and for treating conditions such as cancer and metabolic diseases has been extensively investigated with very promising results. ADSCs have also been used to generate two-dimensional (2D) and three-dimensional (3D) cellular and in vivo models to study adipose tissue biology and function as well as intracellular communication. Characterising the biology and function of ADSCs, how it is altered in health and disease, and its therapeutic potential and uses in cellular models is key for designing intervention strategies for complex metabolic diseases and cancer.
Collapse
|
8
|
Das D, Lawrence WR, Diaz-Starokozheva L, Salazar-Puerta A, Ott N, Goebel ER, Damughtala A, Vidal P, Gallentine S, Moore JT, Kayuha D, Mendonca NC, Albert JB, Houser R, Johnson J, Powell H, Higuita-Castro N, Stanford KI, Gallego-Perez D. Injectable pulverized electrospun poly(lactic-co-glycolic acid) fibers improve human adipose tissue engraftment and volume retention. J Biomed Mater Res A 2023; 111:1722-1733. [PMID: 37326365 PMCID: PMC10527741 DOI: 10.1002/jbm.a.37581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Autologous adipose tissue is commonly used for tissue engraftment for the purposes of soft tissue reconstruction due to its relative abundance in the human body and ease of acquisition using liposuction methods. This has led to the adoption of autologous adipose engraftment procedures that allow for the injection of adipose tissues to be used as a "filler" for correcting cosmetic defects and deformities in soft tissues. However, the clinical use of such methods has several limitations, including high resorption rates and poor cell survivability, which lead to low graft volume retention and inconsistent outcomes. Here, we describe a novel application of milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers, which can be co-injected with adipose tissue to improve engraftment outcomes. These PLGA fibers had no significant negative impact on the viability of adipocytes in vitro and did not elicit long-term proinflammatory responses in vivo. Furthermore, co-delivery of human adipose tissue with pulverized electrospun PLGA fibers led to significant improvements in reperfusion, vascularity, and retention of graft volume compared to injections of adipose tissue alone. Taken together, the use of milled electrospun fibers to enhance autologous adipose engraftment techniques represents a novel approach for improving upon the shortcomings of such methods.
Collapse
Affiliation(s)
- Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - William R. Lawrence
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ludmila Diaz-Starokozheva
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Ana Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Neil Ott
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Erin R. Goebel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Abhishek Damughtala
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Summer Gallentine
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jordan T. Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | | | - Natalia C. Mendonca
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jared B. Albert
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Robert Houser
- Cosmetic & Plastic Surgery of Columbus, Columbus, OH, USA
| | | | - Heather Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Shriners Hospitals-Ohio, Dayton, OH, USA
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Surgery, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
9
|
Emont MP, Rosen ED. Exploring the heterogeneity of white adipose tissue in mouse and man. Curr Opin Genet Dev 2023; 80:102045. [PMID: 37094486 PMCID: PMC10330284 DOI: 10.1016/j.gde.2023.102045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Adipose tissue is a heterogeneous organ, comprising cell types, including mature adipocytes, progenitor cells, immune cells, and vascular cells. Here, we discuss the heterogeneity of human and mouse white adipose tissue in general and white adipocytes specifically, focusing on how our understanding of adipocyte subpopulations has expanded with the advent of single nuclear RNA sequencing and spatial transcriptomics. Furthermore, we discuss critical remaining questions regarding how these distinct populations arise, how their functions differ from one another, and which potentially contribute to metabolic pathophysiology.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, USA; Harvard Medical School, USA; Broad Institute, USA.
| |
Collapse
|
10
|
Soler-Vázquez MC, Romero MDM, Todorcevic M, Delgado K, Calatayud C, Benitez-Amaro A, La Chica Lhoëst MT, Mera P, Zagmutt S, Bastías-Pérez M, Ibeas K, Casals N, Escolà-Gil JC, Llorente-Cortés V, Consiglio A, Serra D, Herrero L. Implantation of CPT1AM-expressing adipocytes reduces obesity and glucose intolerance in mice. Metab Eng 2023; 77:256-272. [PMID: 37088334 DOI: 10.1016/j.ymben.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/14/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Obesity and its associated metabolic comorbidities are a rising global health and social issue, with novel therapeutic approaches urgently needed. Adipose tissue plays a key role in the regulation of energy balance and adipose tissue-derived mesenchymal stem cells (AT-MSCs) have gained great interest in cell therapy. Carnitine palmitoyltransferase 1A (CPT1A) is the gatekeeper enzyme for mitochondrial fatty acid oxidation. Here, we aimed to generate adipocytes expressing a constitutively active CPT1A form (CPT1AM) that can improve the obese phenotype in mice after their implantation. AT-MSCs were differentiated into mature adipocytes, subjected to lentivirus-mediated expression of CPT1AM or the GFP control, and subcutaneously implanted into mice fed a high-fat diet (HFD). CPT1AM-implanted mice showed lower body weight, hepatic steatosis and serum insulin and cholesterol levels alongside improved glucose tolerance. HFD-induced increases in adipose tissue hypertrophy, fibrosis, inflammation, endoplasmic reticulum stress and apoptosis were reduced in CPT1AM-implanted mice. In addition, the expression of mitochondrial respiratory chain complexes was enhanced in the adipose tissue of CPT1AM-implanted mice. Our results demonstrate that implantation of CPT1AM-expressing AT-MSC-derived adipocytes into HFD-fed mice improves the obese metabolic phenotype, supporting the future clinical use of this ex vivo gene therapy approach.
Collapse
Affiliation(s)
- M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Marijana Todorcevic
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Katia Delgado
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital- IDIBELL, E-08908, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain
| | - Maria Teresa La Chica Lhoëst
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Marianela Bastías-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain
| | - Kevin Ibeas
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), E-08195, Sant Cugat del Vallés, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Vicenta Llorente-Cortés
- Lipids and Cardiovascular Pathology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC), 08041, Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041, Barcelona, Spain; CIBER of Cardiovascular (CIBERCV), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital- IDIBELL, E-08908, Hospitalet de Llobregat, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato, 15, 25121, Brescia, BS, Italy
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona (UB), E-08028, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| |
Collapse
|
11
|
Yang YS, Kim JM, Xie J, Chaugule S, Lin C, Ma H, Hsiao E, Hong J, Chun H, Shore EM, Kaplan FS, Gao G, Shim JH. Suppression of heterotopic ossification in fibrodysplasia ossificans progressiva using AAV gene delivery. Nat Commun 2022; 13:6175. [PMID: 36258013 PMCID: PMC9579182 DOI: 10.1038/s41467-022-33956-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Heterotopic ossification is the most disabling feature of fibrodysplasia ossificans progressiva, an ultra-rare genetic disorder for which there is currently no prevention or treatment. Most patients with this disease harbor a heterozygous activating mutation (c.617 G > A;p.R206H) in ACVR1. Here, we identify recombinant AAV9 as the most effective serotype for transduction of the major cells-of-origin of heterotopic ossification. We use AAV9 delivery for gene replacement by expression of codon-optimized human ACVR1, ACVR1R206H allele-specific silencing by AAV-compatible artificial miRNA and a combination of gene replacement and silencing. In mouse skeletal cells harboring a conditional knock-in allele of human mutant ACVR1 and in patient-derived induced pluripotent stem cells, AAV gene therapy ablated aberrant Activin A signaling and chondrogenic and osteogenic differentiation. In Acvr1(R206H) knock-in mice treated locally in early adulthood or systemically at birth, trauma-induced endochondral bone formation was markedly reduced, while inflammation and fibroproliferative responses remained largely intact in the injured muscle. Remarkably, spontaneous heterotopic ossification also substantially decreased in in Acvr1(R206H) knock-in mice treated systemically at birth or in early adulthood. Collectively, we develop promising gene therapeutics that can prevent disabling heterotopic ossification in mice, supporting clinical translation to patients with fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- Yeon-Suk Yang
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Jung-Min Kim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
| | - Sachin Chaugule
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Chujiao Lin
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA
| | - Hong Ma
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA
| | - Edward Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine; the Institute for Human Genetics; the Program in Craniofacial Biology; and the Eli and Edyth Broad Institute of Regeneration Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jaehyoung Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eileen M Shore
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Center for Research in FOP and Related Disorders, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA.
- Viral Vector Core, UMass Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| | - Jae-Hyuck Shim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA, USA.
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Solivan-Rivera J, Yang Loureiro Z, DeSouza T, Desai A, Pallat S, Yang Q, Rojas-Rodriguez R, Ziegler R, Skritakis P, Joyce S, Zhong D, Nguyen T, Corvera S. A neurogenic signature involving monoamine Oxidase-A controls human thermogenic adipose tissue development. eLife 2022; 11:e78945. [PMID: 36107478 PMCID: PMC9519151 DOI: 10.7554/elife.78945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms that control 'beige/brite' thermogenic adipose tissue development may be harnessed to improve human metabolic health. To define these mechanisms, we developed a species-hybrid model in which human mesenchymal progenitor cells were used to develop white or thermogenic/beige adipose tissue in mice. The hybrid adipose tissue developed distinctive features of human adipose tissue, such as larger adipocyte size, despite its neurovascular architecture being entirely of murine origin. Thermogenic adipose tissue recruited a denser, qualitatively distinct vascular network, differing in genes mapping to circadian rhythm pathways, and denser sympathetic innervation. The enhanced thermogenic neurovascular network was associated with human adipocyte expression of THBS4, TNC, NTRK3, and SPARCL1, which enhance neurogenesis, and decreased expression of MAOA and ACHE, which control neurotransmitter tone. Systemic inhibition of MAOA, which is present in human but absent in mouse adipocytes, induced browning of human but not mouse adipose tissue, revealing the physiological relevance of this pathway. Our results reveal species-specific cell type dependencies controlling the development of thermogenic adipose tissue and point to human adipocyte MAOA as a potential target for metabolic disease therapy.
Collapse
Affiliation(s)
- Javier Solivan-Rivera
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Zinger Yang Loureiro
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Sabine Pallat
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Qin Yang
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Rachel Ziegler
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Pantos Skritakis
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Shannon Joyce
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Denise Zhong
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tammy Nguyen
- Department of Surgery, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| |
Collapse
|
13
|
Yang Loureiro Z, Solivan-Rivera J, Corvera S. Adipocyte Heterogeneity Underlying Adipose Tissue Functions. Endocrinology 2022; 163:6314636. [PMID: 34223880 PMCID: PMC8660558 DOI: 10.1210/endocr/bqab138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Adipose tissue distribution in the human body is highly heterogeneous, and the relative mass of different depots is differentially associated with metabolic disease risk. Distinct functions of adipose depots are mediated by their content of specialized adipocyte subtypes, best exemplified by thermogenic adipocytes found in specific depots. Single-cell transcriptome profiling has been used to define the cellular composition of many tissues and organs, but the large size, buoyancy, and fragility of adipocytes have rendered it challenging to apply these techniques to understand the full complexity of adipocyte subtypes in different depots. Discussed here are strategies that have been recently developed for investigating adipocyte heterogeneity, including single-cell RNA-sequencing profiling of the stromal vascular fraction to identify diverse adipocyte progenitors, and single-nuclei profiling to characterize mature adipocytes. These efforts are yielding a more complete characterization of adipocyte subtypes in different depots, insights into the mechanisms of their development, and perturbations associated with different physiological states such as obesity. A better understanding of the adipocyte subtypes that compose different depots will help explain metabolic disease phenotypes associated with adipose tissue distribution and suggest new strategies for improving metabolic health.
Collapse
Affiliation(s)
- Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655,USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655,USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655,USA
- Correspondence: Silvia Corvera, MD, Program in Moelcular Medicine, UMass Chan Medical School, 373 Plantation Street, suite 107 Worcester, MA 01605, USA. E-mail:
| |
Collapse
|
14
|
Abstract
Adipose tissue depots in distinct anatomical locations mediate key aspects of metabolism, including energy storage, nutrient release, and thermogenesis. Although adipocytes make up more than 90% of adipose tissue volume, they represent less than 50% of its cellular content. Here, I review recent advances in genetic lineage tracing and transcriptomics that reveal the identities of the heterogeneous cell populations constituting mouse and human adipose tissues. In addition to mature adipocytes and their progenitors, these include endothelial and various immune cell types that together orchestrate adipose tissue development and functions. One salient finding is the identification of progenitor subtypes that can modulate adipogenic capacity through paracrine mechanisms. Another is the description of fate trajectories of monocyte/macrophages, which can respond maladaptively to nutritional and thermogenic stimuli, leading to metabolic disease. These studies have generated an extraordinary source of publicly available data that can be leveraged to explore commonalities and differences among experimental models, providing new insights into adipose tissues and their role in metabolic disease.
Collapse
Affiliation(s)
- Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW It has been increasingly common to use adipose tissue for regenerative and reconstructive purposes. Applications of autologous fat transfer and different stem cell therapies have significant limitations and adipose tissue engineering may have the potential to be an important strategy in the reconstruction of large tissue defects. A better understanding of adipogenesis will help to develop strategies to make adipose tissue more effective for repairing volumetric defects. RECENT FINDINGS We provide an overview of the current applications of adipose tissue transfer and cellular therapy methods for soft tissue reconstruction, cellular physiology, and factors influencing adipogenesis, and adipose tissue engineering. Furthermore, we discuss mechanical properties and vascularization strategies of engineered adipose tissue, and its potential applications in the clinical settings. SUMMARY Autologous fat tissue transfer is the standard of care technique for the majority of surgeons; however, high resorption rates, poor perfusion within a large volume fat graft and widely inconsistent graft survival are the main limitations. Adipose tissue engineering is a promising field to reach the first goal of producing adipose tissue which has more predictable survival and higher graft retention rates. Advancements of scaffold and vascularization strategies will contribute to metabolically and functionally more relevant adipose tissue engineering.
Collapse
|
16
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci U S A 2019; 116:17970-17979. [PMID: 31420514 PMCID: PMC6731669 DOI: 10.1073/pnas.1906512116] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Single-cell sequencing technologies have revealed an unexpectedly broad repertoire of cells required to mediate complex functions in multicellular organisms. Despite the multiple roles of adipose tissue in maintaining systemic metabolic homeostasis, adipocytes are thought to be largely homogenous with only 2 major subtypes recognized in humans so far. Here we report the existence and characteristics of 4 distinct human adipocyte subtypes, and of their respective mesenchymal progenitors. The phenotypes of these distinct adipocyte subtypes are differentially associated with key adipose tissue functions, including thermogenesis, lipid storage, and adipokine secretion. The transcriptomic signature of "brite/beige" thermogenic adipocytes reveals mechanisms for iron accumulation and protection from oxidative stress, necessary for mitochondrial biogenesis and respiration upon activation. Importantly, this signature is enriched in human supraclavicular adipose tissue, confirming that these cells comprise thermogenic depots in vivo, and explain previous findings of a rate-limiting role of iron in adipose tissue browning. The mesenchymal progenitors that give rise to beige/brite adipocytes express a unique set of cytokines and transcriptional regulators involved in immune cell modulation of adipose tissue browning. Unexpectedly, we also find adipocyte subtypes specialized for high-level expression of the adipokines adiponectin or leptin, associated with distinct transcription factors previously implicated in adipocyte differentiation. The finding of a broad adipocyte repertoire derived from a distinct set of mesenchymal progenitors, and of the transcriptional regulators that can control their development, provides a framework for understanding human adipose tissue function and role in metabolic disease.
Collapse
|