1
|
Tong X, Ayushman M, Lee HP, Yang F. Tuning local matrix compliance accelerates mesenchymal stem cell chondrogenesis in 3D sliding hydrogels. Biomaterials 2025; 317:123112. [PMID: 39827509 DOI: 10.1016/j.biomaterials.2025.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The mechanical properties of the extracellular matrix critically regulate stem cell differentiation in 3D. Alginate hydrogels with tunable bulk stiffness and viscoelasticity can modulate differentiation in 3D through mechanotransduction. Such enhanced differentiation is correlated with changes in the local matrix compliance- the extent of matrix deformation under applied load. However, the causal effect of local matrix compliance changes without altering bulk hydrogel mechanics on stem cell differentiation remains unclear. To address this, we report sliding hydrogel (SG) designs with tunable local matrix compliance obtained by varying the molecular mobility of the hydrogel network without changing bulk mechanics. Atomic force microscopy showed increasing SG mobility allowed cells to increasingly deform local niches with lesser forces, indicating higher local matrix compliance. Increasing SG mobility accelerates MSC chondrogenesis in a mobility-dependent manner and is independent of exogenous adhesive ligands or cell volume expansion. The enhanced chondrogenesis in SG is accompanied by enhanced cytoskeletal organization and TRPV4 expression, and blocking these elements abolished the effect. In conclusion, this study establishes a causal link between local matrix compliance and stem cell differentiation and establishes it as a crucial hydrogel design parameter. Furthermore, it offers novel SG designs to probe the role of local matrix compliance in various biological processes.
Collapse
Affiliation(s)
- Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Hung-Pang Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Kurenkova AD, Presniakova VS, Mosina ZA, Kibirskiy PD, Romanova IA, Tugaeva GK, Kosheleva NV, Vinogradov KS, Kostjuk SV, Kotova SL, Rochev YA, Medvedeva EV, Timashev PS. Resveratrol's Impact on the Chondrogenic Reagents' Effects in Cell Sheet Cultures of Wharton's Jelly-Derived MSCs. Cells 2023; 12:2845. [PMID: 38132166 PMCID: PMC10741663 DOI: 10.3390/cells12242845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest in tissue engineering. We obtained hWJ-MSCs from four patients, and then we stimulated their chondrogenic phenotype formation in vitro by adding resveratrol (during cell expansion) and a canonical Wnt pathway activator, LiCl, as well as a Rho-associated protein kinase inhibitor, Y27632 (during differentiation). The effects of the added reagents on the formation of hWJ-MSC sheets destined to repair osteochondral injuries were investigated. Three-dimensional hWJ-MSC sheets grown on P(NIPAM-co-NtBA)-based matrices were characterized in vitro and in vivo. The combination of resveratrol and LiCl showed effects on hWJ-MSC sheets similar to those of the basal chondrogenic medium. Adding Y27632 decreased both the proportion of hypertrophied cells and the expression of the hyaline cartilage markers. In vitro, DMSO was observed to impede the effects of the chondrogenic factors. The mouse knee defect model experiment revealed that hWJ-MSC sheets grown with the addition of resveratrol and Y27632 were well integrated with the surrounding tissues; however, after 3 months, the restored tissue was identical to that of the naturally healed cartilage injury. Thus, the combination of chondrogenic supplements may not always have additive effects on the progress of cell culture and could be neutralized by the microenvironment after transplantation.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Viktoria S. Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Zlata A. Mosina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Irina A. Romanova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Gilyana K. Tugaeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- FSBSI “Institute of General Pathology and Pathophysiology”, Baltiyskaya St. 8, Moscow 125315, Russia
| | - Kirill S. Vinogradov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Sergei V. Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Chemistry, Belarussian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Svetlana L. Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Yury A. Rochev
- Center for Research in Medical Devices (CÚRAM), National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| |
Collapse
|
3
|
Noh S, Jin YJ, Shin DI, Kwon HJ, Yun HW, Kim KM, Park JY, Chung JY, Park DY. Selective Extracellular Matrix Guided Mesenchymal Stem Cell Self-Aggregate Engineering for Replication of Meniscal Zonal Tissue Gradient in a Porcine Meniscectomy Model. Adv Healthc Mater 2023; 12:e2301180. [PMID: 37463568 DOI: 10.1002/adhm.202301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Degenerative meniscus tears (DMTs) are prevalent findings in osteoarthritic knees, yet current treatment is mostly limited to arthroscopic partial meniscectomy rather than regeneration, which further exacerbates arthritic changes. Translational research regarding meniscus regeneration is hindered by the complex, composite nature of the meniscus which exhibit a gradient from inner cartilage-like tissue to outer fibrous tissue, as well as engineering hurdles often requiring growth factors and cross-linking agents. Here, a meniscus zonal tissue gradient is proposed using zone-specific decellularized meniscus extracellular matrix (DMECM) and autologous synovial mesenchymal stem cells (SMSC) via self-aggregation without the use of growth factors or cross-linking agents. Combination with zone-specific DMECM during self-aggregation of MSCs forms zone-specific meniscus tissue that reflects the respective DMECM harvest site. The implantation of these constructs leads to the regeneration of meniscus tissue resembling the native meniscus, demonstrating inner cartilaginous and outer fibrous characteristics as well as recovery of native meniscal microarchitecture in a porcine partial meniscectomy model at 6 months. In all, the findings offer a potential regenerative therapy for DMTs that may improve current partial meniscectomy-based patient care.
Collapse
Affiliation(s)
- Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Dong Il Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyeon Jae Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
| | - Kyu Min Kim
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
| | - Jae-Young Park
- Department of Orthopedics Surgery, CHA University Bundang Medical Center, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Do Young Park
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
- Ajou University, Leading Convergence of Healthcare and Medicine, Institute of Science & Technology (ALCHeMIST), Suwon, 16499, Republic of Korea
| |
Collapse
|
4
|
Shou Y, Liu L, Liu Q, Le Z, Lee KL, Li H, Li X, Koh DZ, Wang Y, Liu TM, Yang Z, Lim CT, Cheung C, Tay A. Mechano-responsive hydrogel for direct stem cell manufacturing to therapy. Bioact Mater 2023; 24:387-400. [PMID: 36632503 PMCID: PMC9817177 DOI: 10.1016/j.bioactmat.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cell (MSC) is one of the most actively studied cell types due to its regenerative potential and immunomodulatory properties. Conventional cell expansion methods using 2D tissue culture plates and 2.5D microcarriers in bioreactors can generate large cell numbers, but they compromise stem cell potency and lack mechanical preconditioning to prepare MSC for physiological loading expected in vivo. To overcome these challenges, in this work, we describe a 3D dynamic hydrogel using magneto-stimulation for direct MSC manufacturing to therapy. With our technology, we found that dynamic mechanical stimulation (DMS) enhanced matrix-integrin β1 interactions which induced MSCs spreading and proliferation. In addition, DMS could modulate MSC biofunctions including directing MSC differentiation into specific lineages and boosting paracrine activities (e.g., growth factor secretion) through YAP nuclear localization and FAK-ERK pathway. With our magnetic hydrogel, complex procedures from MSC manufacturing to final clinical use, can be integrated into one single platform, and we believe this 'all-in-one' technology could offer a paradigm shift to existing standards in MSC therapy.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Ling Liu
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| | - Qimin Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, 430070, Wuhan, China
| | - Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Dion Zhanyun Koh
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Yuwen Wang
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Tong Ming Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119288, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
5
|
Kuwahara M, Akasaki Y, Goto N, Kurakazu I, Sueishi T, Toya M, Uchida T, Tsutsui T, Hirose R, Tsushima H, Nakashima Y. Fluvastatin promotes chondrogenic differentiation of adipose-derived mesenchymal stem cells by inducing bone morphogenetic protein 2. BMC Pharmacol Toxicol 2022; 23:61. [PMID: 35945639 PMCID: PMC9361648 DOI: 10.1186/s40360-022-00600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADMSCs) are a promising source of material source for medical regeneration of cartilage. Growth factors, including transforming growth factor-β (TGFβ) subfamily members and bone morphogenetic proteins (BMPs), play important roles in inducing and promoting chondrogenic differentiation of MSCs. However, these exogenous growth factors have some drawbacks related to their cost, biological half-life, and safety for clinical application. Several studies have reported that statins, the competitive inhibitors of 3-hydroxy-2-methylglutaryl coenzyme A (HMG-CoA) reductase, induce the expression of BMP2 in multiple cell types as the pleotropic effects. The objective of this study was to investigate the effects of fluvastatin during chondrogenic differentiation of human ADMSCs (hADMSCs). Methods The effects of fluvastatin were analyzed during chondrogenic differentiation of hADMSCs in the pellet culture without exogenous growth factors by qRT-PCR and histology. For functional studies, Noggin, an antagonist of BMPs, mevalonic acid (MVA) and geranylgeranyl pyrophosphate (GGPP), metabolites of the mevalonate pathway, ROCK inhibitor (Y27632), or RAC1 inhibitor (NSC23766) were applied to cells during chondrogenic differentiation. Furthermore, RhoA activity was measured by RhoA pulldown assay during chondrogenic differentiation with or without fluvastatin. Statistically significant differences between groups were determined by Student’s t-test or the Tukey–Kramer test. Results Fluvastatin-treated cells expressed higher levels of BMP2, SOX9, ACAN, and COL2A1 than control cells, and accumulated higher levels of glycosaminoglycans (GAGs). Noggin significantly inhibited the fluvastatin-mediated upregulation of ACAN and COL2A1. Both MVA and GGPP suppressed the effects of fluvastatin on the expressions of BMP2, SOX9, ACAN, and COL2A1. Furthermore, fluvastatin suppressed the RhoA activity, and inhibition of RhoA–ROCK signaling by Y27632 increased the expressions of BMP2, SOX9, ACAN, and COL2A1, as well as fluvastatin. Conclusions Our results suggest that fluvastatin promotes chondrogenic differentiation of hADMSCs by inducing endogenous BMP2, and that one of the mechanisms underlying the effects is inhibition of RhoA–ROCK signaling via suppression of GGPP. Fluvastatin is a safe and low-cost compound that holds promise for use in transplantation of hADMSCs for cartilage regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00600-7.
Collapse
Affiliation(s)
- Masanari Kuwahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan.
| | - Norio Goto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Ichiro Kurakazu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Takuya Sueishi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Taisuke Uchida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Tomoaki Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Ryota Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Hidetoshi Tsushima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Chen TC, Wong CW, Hsu SH. Three-dimensional printing of chitosan cryogel as injectable and shape recoverable scaffolds. Carbohydr Polym 2022; 285:119228. [DOI: 10.1016/j.carbpol.2022.119228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022]
|
7
|
Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 2022; 13:14. [PMID: 35012666 PMCID: PMC8751117 DOI: 10.1186/s13287-021-02689-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular cartilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)-based therapy has been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions of MSC-based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. Moreover, clinical application and the latest mechanistical findings of MSC-based therapy in cartilage regeneration were also demonstrated.
Collapse
Affiliation(s)
- Xiao-Na Xiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-Yi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong-Chen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Rehabilitation Medicine Centre, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines 2021; 9:biomedicines9091192. [PMID: 34572378 PMCID: PMC8470239 DOI: 10.3390/biomedicines9091192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.
Collapse
|
9
|
Shen H, He Y, Wang N, Fritch MR, Li X, Lin H, Tuan RS. Enhancing the potential of aged human articular chondrocytes for high-quality cartilage regeneration. FASEB J 2021; 35:e21410. [PMID: 33617078 DOI: 10.1096/fj.202002386r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 11/11/2022]
Abstract
Autologous chondrocyte implantation (ACI) is a regenerative procedure used to treat focal articular cartilage defects in knee joints. However, age has been considered as a limiting factor and ACI is not recommended for patients older than 40-50 years of age. One reason for this may be due to the reduced capacity of aged chondrocytes in generating new cartilage. Currently, the underlying mechanism contributing to aging-associated functional decline in chondrocytes is not clear and no proven approach exists to reverse chondrocyte aging. Given that chondrocytes in healthy hyaline cartilage typically display a spherical shape, believed to be essential for chondrocyte phenotype stability, we hypothesize that maintaining aged chondrocytes in a suspension culture that forces the cells to adopt a round morphology may help to "rejuvenate" them to a younger state, thus, leading to enhanced cartilage regeneration. Chondrocytes isolated from aged donors displayed reduced proliferation potential and impaired capacity in generating hyaline cartilage, compared to cells isolated from young donors, indicated by increased hypertrophy and cellular senescence. To test our hypothesis, the "old" chondrocytes were seeded as a suspension onto an agarose-based substratum, where they maintained a round morphology. After the 3-day suspension culture, aged chondrocytes displayed enhanced replicative capacity, compared to those grown adherent to tissue culture plastic. Moreover, chondrocytes subjected to suspension culture formed new cartilage in vitro with higher quality and quantity, with enhanced cartilage matrix deposition, concomitant with lower levels of hypertrophy and cellular senescence markers. Mechanistic analysis suggested the involvement of the RhoA and ERK1/2 signaling pathways in the "rejuvenation" process. In summary, our study presents a robust and straightforward method to enhance the function of aged human chondrocytes, which can be conveniently used to generate a large number of high-quality chondrocytes for ACI application in the elderly.
Collapse
Affiliation(s)
- He Shen
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ning Wang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinyu Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Langhans MT, Gao J, Tang Y, Wang B, Alexander P, Tuan RS. Wdpcp regulates cellular proliferation and differentiation in the developing limb via hedgehog signaling. BMC DEVELOPMENTAL BIOLOGY 2021; 21:10. [PMID: 34225660 PMCID: PMC8258940 DOI: 10.1186/s12861-021-00241-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Background Mice with a loss of function mutation in Wdpcp were described previously to display severe birth defects in the developing heart, neural tube, and limb buds. Further characterization of the skeletal phenotype of Wdpcp null mice was limited by perinatal lethality. Results We utilized Prx1-Cre mice to generate limb bud mesenchyme specific deletion of Wdpcp. These mice recapitulated the appendicular skeletal phenotype of the Wdpcp null mice including polydactyl and limb bud signaling defects. Examination of late stages of limb development demonstrated decreased size of cartilage anlagen, delayed calcification, and abnormal growth plates. Utilizing in vitro assays, we demonstrated that loss of Wdpcp in skeletal progenitors lead to loss of hedgehog signaling responsiveness and associated proliferative response. In vitro chondrogenesis assays showed this loss of hedgehog and proliferative response was associated with decreased expression of early chondrogenic marker N-Cadherin. E14.5 forelimbs demonstrated delayed ossification and expression of osteoblast markers Runx2 and Sp7. P0 growth plates demonstrated loss of hedgehog signaling markers and expansion of the hypertrophic zones of the growth plate. In vitro osteogenesis assays demonstrated decreased osteogenic differentiation of Wdpcp null mesenchymal progenitors in response to hedgehog stimulation. Conclusions These findings demonstrate how Wdpcp and associated regulation of the hedgehog signaling pathway plays an important role at multiple stages of skeletal development. Wdpcp is necessary for positive regulation of hedgehog signaling and associated proliferation is key to the initiation of chondrogenesis. At later stages, Wdpcp facilitates the robust hedgehog response necessary for chondrocyte hypertrophy and osteogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00241-9.
Collapse
Affiliation(s)
- Mark T Langhans
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Jingtao Gao
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Peter Alexander
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219-3143, USA. .,Present Address: Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
11
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|