1
|
Nguyen T, Gundogdu G, Bottini C, Chaudhuri AK, Mauney JR. Evaluation of Bi-layer Silk Fibroin Grafts for Inlay Vaginoplasty in a Rat Model. Tissue Eng Regen Med 2024; 21:985-994. [PMID: 38822221 PMCID: PMC11416452 DOI: 10.1007/s13770-024-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Autologous tissues derived from bowel, buccal mucosa and skin are primarily used to repair or replace diseased vaginal segments as well as create neovaginas for male-to-female transgenders. These grafts are often limited by scarce tissue supply, donor site morbidity and post-operative complications. Bi-layer silk fibroin (BLSF) biomaterials represent potential alternatives for vaginoplasty given their structural strength and elasticity, low immunogenicity, and processing flexibility. The goals of the current study were to assess the potential of acellular BLSF scaffolds for vaginal tissue regeneration in respect to conventional small intestinal submucosal (SIS) matrices in a rat model of vaginoplasty. METHODS Inlay vaginoplasty was performed with BLSF and SIS scaffolds (N = 21 per graft) in adult female rats for up to 2 months of implantation. Nonsurgical controls (N = 4) were investigated in parallel. Outcome analyses included histologic, immunohistochemical and histomorphometric evaluations of wound healing patterns; µ-computed tomography (CT) of vaginal continuity; and breeding assessments. RESULTS Animals in both scaffold cohorts exhibited 100% survival rates with no severe post-operative complications. At 2 months post-op, µ-CT analysis revealed normal vaginal anatomy and continuity in both graft groups similar to controls. In parallel, BLSF and SIS grafts also induced comparable constructive remodeling patterns and were histologically equivalent in their ability to support formation of vascularized vaginal neotissues with native tissue architecture, however with significantly less smooth muscle content. Vaginal tissues reconstructed with both implants were capable of supporting copulation, pregnancy and similar amounts of live births. CONCLUSIONS BLSF biomaterials represent potential "off-the-shelf" candidates for vaginoplasty.
Collapse
Affiliation(s)
- Travis Nguyen
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Building 55, 101 The City Drive South., Rm. 300, Orange, CA, USA
| | - Christina Bottini
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Ambika K Chaudhuri
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Joshua R Mauney
- Department of Urology, University of California, Irvine, Building 55, 101 The City Drive South., Rm. 300, Orange, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
3
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|
4
|
Xu R, Fang X, Wu S, Wang Y, Zhong Y, Hou R, Zhang L, Shao L, Pang Q, Zhang J, Cui X, Zuo R, Yao L, Zhu Y. Development and Prospect of Esophageal Tissue Engineering. Front Bioeng Biotechnol 2022; 10:853193. [PMID: 35252159 PMCID: PMC8892191 DOI: 10.3389/fbioe.2022.853193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, patients with esophageal cancer, especially advanced patients, usually use autologous tissue for esophageal alternative therapy. However, an alternative therapy is often accompanied by serious complications such as ischemia and leakage, which seriously affect the prognosis of patients. Tissue engineering has been widely studied as one of the ideal methods for the treatment of esophageal cancer. In view of the complex multi-layer structure of the natural esophagus, how to use the tissue engineering method to design the scaffold with structure and function matching with the natural tissue is the principle that the tissue engineering method must follow. This article will analyze and summarize the construction methods, with or without cells, and repair effects of single-layer scaffold and multi-layer scaffold. Especially in the repair of full-thickness and circumferential esophageal defects, the flexible design method and the binding force between the layers of the scaffold are very important. In short, esophageal tissue engineering technology has broad prospects and plays a more and more important role in the treatment of esophageal diseases.
Collapse
Affiliation(s)
- Rui Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Xinnan Fang
- School of Medicine, Ningbo University, Ningbo, China
| | - Shengqian Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiyin Wang
- School of Medicine, Ningbo University, Ningbo, China
| | - Yi Zhong
- School of Medicine, Ningbo University, Ningbo, China
| | - Ruixia Hou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
- *Correspondence: Ruixia Hou,
| | - Libing Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Lei Shao
- School of Medicine, Ningbo University, Ningbo, China
| | - Qian Pang
- School of Medicine, Ningbo University, Ningbo, China
| | - Jian Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xiang Cui
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Rongyue Zuo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Liwei Yao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Gundogdu G, Okhunov Z, Cristofaro V, Starek S, Veneri F, Orabi H, Jiang P, Sullivan MP, Mauney JR. Evaluation of Bi-Layer Silk Fibroin Grafts for Tubular Ureteroplasty in a Porcine Defect Model. Front Bioeng Biotechnol 2021; 9:723559. [PMID: 34604185 PMCID: PMC8484785 DOI: 10.3389/fbioe.2021.723559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Ureteral reconstruction with autologous tissue grafts is often limited by tissue availability and donor site morbidity. This study investigates the performance of acellular, bi-layer silk fibroin (BLSF) scaffolds in a porcine model of ureteroplasty. Tubular ureteroplasty with BLSF grafts in combination with transient stenting for 8 weeks was performed in adult female, Yucatan, mini-swine (N = 5). Animals were maintained for 12 weeks post-op with imaging of neoconduits using ultrasonography and retrograde ureteropyelography carried out at 2 and 4 weeks intervals. End-point analyses of ureteral neotissues and unoperated controls included histological, immunohistochemical (IHC), histomorphometric evaluations as well as ex vivo functional assessments of contraction/relaxation. All animals survived until scheduled euthanasia and displayed mild hydronephrosis (Grades 1-2) in reconstructed collecting systems during the 8 weeks stenting period with one animal presenting with a persistent subcutaneous fistula at 2 weeks post-op. By 12 weeks of scaffold implantation, unstented neoconduits led to severe hydronephrosis (Grade 4) and stricture formation in the interior of graft sites in 80% of swine. Bulk scaffold extrusion into the distal ureter was also apparent in 60% of swine contributing to ureteral obstruction. However, histological and IHC analyses revealed the formation of innervated, vascularized neotissues with a-smooth muscle actin+ and SM22α+ smooth muscle bundles as well as uroplakin 3A+ and pan-cytokeratin + urothelium. Ex vivo contractility and relaxation responses of neotissues were similar to unoperated control segments. BLSF biomaterials represent emerging platforms for tubular ureteroplasty, however further optimization is needed to improve in vivo degradation kinetics and mitigate stricture formation.
Collapse
Affiliation(s)
- Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Irvine, CA, United States
| | - Zhamshid Okhunov
- Department of Urology, University of California, Irvine, Irvine, CA, United States
| | - Vivian Cristofaro
- Division of Urology, Veterans Affairs Boston Healthcare System, Boston, MA, United States
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stephanie Starek
- Department of Urology, University of California, Irvine, Irvine, CA, United States
| | - Faith Veneri
- Department of Urology, University of California, Irvine, Irvine, CA, United States
| | - Hazem Orabi
- Department of Urology, University of California, Irvine, Irvine, CA, United States
| | - Pengbo Jiang
- Department of Urology, University of California, Irvine, Irvine, CA, United States
| | - Maryrose P. Sullivan
- Division of Urology, Veterans Affairs Boston Healthcare System, Boston, MA, United States
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua R. Mauney
- Department of Urology, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Gundogdu G, Tosun M, Morhardt D, Gheinani AH, Algarrahi K, Yang X, Costa K, Alegria CG, Adam RM, Yang W, Mauney JR. Molecular mechanisms of esophageal epithelial regeneration following repair of surgical defects with acellular silk fibroin grafts. Sci Rep 2021; 11:7086. [PMID: 33782465 PMCID: PMC8007829 DOI: 10.1038/s41598-021-86511-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Constructive remodeling of focal esophageal defects with biodegradable acellular grafts relies on the ability of host progenitor cell populations to repopulate implant regions and facilitate growth of de novo functional tissue. Intrinsic molecular mechanisms governing esophageal repair processes following biomaterial-based, surgical reconstruction is largely unknown. In the present study, we utilized mass spectrometry-based quantitative proteomics and in silico pathway evaluations to identify signaling cascades which were significantly activated during neoepithelial formation in a Sprague Dawley rat model of onlay esophagoplasty with acellular silk fibroin scaffolds. Pharmacologic inhibitor and rescue experiments revealed that epithelialization of neotissues is significantly dependent in part on pro-survival stimuli capable of suppressing caspase activity in epithelial progenitors via activation of hepatocyte growth factor receptor (c-MET), tropomyosin receptor kinase A (TrkA), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) signaling mechanisms. These data highlight the molecular machinery involved in esophageal epithelial regeneration following surgical repair with acellular implants.
Collapse
Affiliation(s)
- Gokhan Gundogdu
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA
| | - Mehmet Tosun
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA
| | - Duncan Morhardt
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Khalid Algarrahi
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Xuehui Yang
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kyle Costa
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Cinthia Galvez Alegria
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joshua R Mauney
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Orange, CA, 92868, USA.
- Departments of Urology and Biomedical Engineering, University of California, Irvine, Building 55, 101 The City Drive South., Rm. 300, Orange, CA, 92868, USA.
| |
Collapse
|