1
|
McFaline-Figueroa J, Raymond-Pope CJ, Pearson JJ, Schifino AG, Heo J, Lillquist TJ, Pritchard EE, Winders EA, Hunda ET, Temenoff JS, Greising SM, Call JA. Advancing β-adrenoreceptor agonism for recovery after volumetric muscle loss through regenerative rehabilitation and biomaterial delivery approaches. Regen Biomater 2025; 12:rbaf015. [PMID: 40256211 PMCID: PMC12007732 DOI: 10.1093/rb/rbaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025] Open
Abstract
Volumetric muscle loss (VML) injury results in the unrecoverable loss of muscle mass and contractility. Oral delivery of formoterol, a β2-adrenergic receptor agonist, produces a modest recovery of muscle mass and contractility in VML-injured mice. The objective of this study was to determine if a regenerative rehabilitation paradigm or a regenerative medicine paradigm could enhance the recovery of VML-injured muscle. Regenerative rehabilitation involved oral formoterol delivery combined with voluntary wheel running. Regenerative medicine involved direct delivery of formoterol to VML-injured muscle using a non-biodegradable poly(ethylene glycol) biomaterial. To determine if the regenerative rehabilitation or regenerative medicine approaches were effective at 8 weeks post-injury, muscle mass, contractile function, metabolic function, and histological evaluations were used. One model of regenerative rehabilitation, in which rehabilitation was delayed until 1 month post-injury, resulted in greater muscle mass, muscle contractility, and permeabilized muscle fiber mitochondrial respiration compared to untreated VML-injured mice. Histologically, these mice had evidence of greater total muscle fiber number and oxidative fibers; however, they also had a greater percentage of densely packed collagen. The regenerative medicine model produced greater permeabilized muscle fiber mitochondrial respiration compared to untreated VML-injured mice; however, the non-biodegradable biomaterial was associated with fewer total muscle fibers and lower muscle quality (i.e. lower muscle mass-normalized contractility). The conclusions reached from this study are: (i) regenerative rehabilitation and regenerative medicine strategies utilizing formoterol require further optimization but showed promising outcomes; and (ii) in general, β-adrenergic receptor agonism continues to be a physiologically supportive intervention to improve muscle contractile and metabolic function after VML injury.
Collapse
Affiliation(s)
| | | | - Joseph J Pearson
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30032, USA
| | - Albino G Schifino
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Junwon Heo
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emma E Pritchard
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth A Winders
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Edward T Hunda
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30032, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Hoffman DB, Schifino AG, Cooley MA, Zhong RX, Heo J, Morris CM, Campbell MJ, Warren GL, Greising SM, Call JA. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of volumetric muscle loss. J Orthop Res 2025; 43:622-631. [PMID: 39610268 PMCID: PMC11806655 DOI: 10.1002/jor.26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
This study's objective was to investigate the extent to which two different levels of low-intensity vibration training (0.6 g or 1.0 g) affected musculoskeletal structure and function after a volumetric muscle loss (VML) injury in male C57BL/6J mice. All mice received a unilateral VML injury to the posterior plantar flexors. Mice were randomized into a control group (no vibration; VML-noTX), or one of two experimental groups. The two experimental groups received vibration training for 15-min/day, 5-days/week for 8 weeks at either 0.6 g (VML-0.6 g) or 1.0 g (VML-1.0 g) beginning 3-days after induction of VML. Muscles were analyzed for contractile and metabolic adaptations. Tibial bone mechanical properties and geometric structure were assessed by a three-point bending test and microcomputed tomography (µCT). Body mass-normalized peak isometric-torque was 18% less in VML-0.6 g mice compared with VML-noTx mice (p = 0.030). There were no statistically significant differences of vibration intervention on contractile power or muscle oxygen consumption (p ≥ 0.191). Bone ultimate load, but not stiffness, was ~16% greater in tibias of VML-1.0 g mice compared with those from VML-noTx mice (p = 0.048). Cortical bone volume was ~12% greater in tibias of both vibration groups compared with VML-noTx mice (p = 0.003). Importantly, cross-section moment of inertia, the primary determinant of bone ultimate load, was 44% larger in tibias of VML-0.6 g mice compared with VML-noTx mice (p = 0.006). These changes indicate that following VML, bones are more responsive to the selected vibration training parameters than muscle. Vibration training represents a possible adjuvant intervention to address bone deficits following VML.
Collapse
Affiliation(s)
| | | | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of GeorgiaAugust UniversityAugustaGeorgiaUSA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative MedicineAugusta UniversityAugustaGeorgiaUSA
| | - Junwon Heo
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Courtney M. Morris
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Matthew J. Campbell
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Gordon L. Warren
- Department of Physical TherapyGeorgia State UniversityAtlantaGeorgiaUSA
| | | | - Jarrod A. Call
- Department of Physiology & PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
3
|
Egorova VV, Lavrenteva MP, Makhaeva LN, Petrova EA, Ushakova AA, Bozhokin MS, Krivoshapkina EF. Fibrillar Hydrogel Inducing Cell Mechanotransduction for Tissue Engineering. Biomacromolecules 2024; 25:7674-7684. [PMID: 39526968 DOI: 10.1021/acs.biomac.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
One of the key strategies for tissue engineering is to design multifunctional bioinks that balance printability with cytocompatibility. Here, we describe fibrillar hydrogels produced by Schiff base formation between B-type gelatin and oxidized sodium alginate, followed by the incorporation of type I collagen, yielding a new gel (MyoColl). The resulting hydrogel exhibits a temperature- and mass-ratio-dependent sol-gel transition, showing variability of hydrogel properties depending on the component ratio. MyoColl composition provides a convenient platform for biofabrication in terms of shear thinning, yielding, Young's modulus, and shape accuracy. Metabolic activity tests and fluorescent microscopy of 2D hydrogel-based mouse C2C12 myoblast cell culture show significant cytocompatibility of the developed carriers. In addition, primary signs of cell mechanotransduction and myofilament formation of 3D printed MyoColl-based cell cultures were detected and described. Due to these promising results, the described hydrogel composition has shown itself as a convenient platform for muscle tissue engineering.
Collapse
Affiliation(s)
- Viktoriia V Egorova
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mariia P Lavrenteva
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Liubov N Makhaeva
- St. Petersburg Governor's Physics and Mathematics Lyceum N 30, Saint Petersburg 199004, Russian Federation
| | - Ekaterina A Petrova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Alina A Ushakova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mikhail S Bozhokin
- Russian Scientific Research Institute of Traumatology and Orthopedics Named After R.R. Vredena, Saint Petersburg 195427, Russian Federation
- Cytology Institute of Russian Academy of Sciences, Saint Petersburg 194064, Russian Federation
| | | |
Collapse
|
4
|
Bruzina AS, Raymond-Pope CJ, Murray KJ, Lillquist TJ, Castelli KM, Bijwadia SR, Call JA, Greising SM. Limitations in metabolic plasticity after traumatic injury are only moderately exacerbated by physical activity restriction. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:4. [PMID: 39421399 PMCID: PMC11486518 DOI: 10.1038/s44324-024-00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 10/19/2024]
Abstract
Following traumatic musculoskeletal injuries, prolonged bedrest and loss of physical activity may limit muscle plasticity and drive metabolic dysfunction. One specific injury, volumetric muscle loss (VML), results in frank loss of muscle and is characterized by whole-body and cellular metabolic dysfunction. However, how VML and restricted physical activity limit plasticity of the whole-body, cellular, and metabolomic environment of the remaining uninjured muscle remains unclear. Adult mice were randomized to posterior hindlimb compartment VML or were age-matched injury naïve controls, then randomized to standard or restricted activity cages for 8-wks. Activity restriction in naïve mice resulted in ~5% greater respiratory exchange ratio (RER); combined with VML, carbohydrate oxidation was ~23% greater than VML alone, but lipid oxidation was largely unchanged. Activity restriction combined with VML increased whole-body carbohydrate usage. Together there was a greater pACC:ACC ratio in the muscle remaining, which may contribute to decreased fatty acid synthesis. Further, β-HAD activity normalized to mitochondrial content was decreased following VML, suggesting a diminished capacity to oxidize fatty acids. The muscle metabolome was not altered by the restriction of physical activity. The combination of VML and activity restriction resulted in similar (~91%) up- and down-regulated metabolites and/or ratios, suggesting that VML injury alone is regulating changes in the metabolome. Data supports possible VML-induced alterations in fatty acid metabolism are exacerbated by activity restriction. Collectively, this work adds to the sequala of VML injury, exhausting the ability of the muscle remaining to oxidize fatty acids resulting in a possible accumulation of triglycerides.
Collapse
Affiliation(s)
- Angela S. Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Kevin J. Murray
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Katelyn M. Castelli
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | | | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Schifino AG, Cooley MA, Zhong RX, Heo J, Hoffman DB, Warren GL, Greising SM, Call JA. Tibial bone strength is negatively affected by volumetric muscle loss injury to the adjacent muscle in male mice. J Orthop Res 2024; 42:123-133. [PMID: 37337074 PMCID: PMC10728344 DOI: 10.1002/jor.25643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
This study's objective was to investigate how contractile strength loss associated with a volumetric muscle loss (VML) injury affects the adjacent tibial bone structural and functional properties in male C57BL/6J mice. Mice were randomized into one of two experimental groups: VML-injured mice that were injured at age 12 weeks and aged to 20 weeks (8 weeks postinjury, VML) and 20-week-old age-matched uninjured mice (Uninjured-20). Tibial bone strength, mid-diaphysis cortical geometry, intrinsic material properties, and metaphyseal trabecular bone structure were assessed by three-point bending and microcomputed tomography (µCT). The plantar flexor muscle group (gastrocnemius, soleus, plantaris) was analyzed for its functional capacities, that is, peak-isometric torque and peak-isokinetic power. VML-injured limbs had 25% less peak-isometric torque and 31% less peak-isokinetic power compared to those of Uninjured-20 mice (p < 0.001). Ultimate load, but not stiffness, was significantly less (10%) in tibias of VML-injured limbs compared to those from Uninjured-20 (p = 0.014). µCT analyses showed cortical bone thickness was 6% less in tibias of VML-injured limbs compared to Uninjured-20 (p = 0.001). Importantly, tibial bone cross-section moment of inertia, the primary determinant of bone ultimate load, was 16% smaller in bones of VML-injured limbs compared to bones from Uninjured-20 (p = 0.046). Metaphyseal trabecular bone structure was also altered up to 23% in tibias of VML-injured limbs (p < 0.010). These changes in tibial bone structure and function after a VML injury occur during a natural maturation phase between the age of 12 and 20 weeks, as evidenced by Uninjured-20 mice having greater tibial bone size and strength compared to uninjured-aged 12-week mice.
Collapse
Affiliation(s)
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, August University, Augusta, GA USA
| | - Roger X. Zhong
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA USA
| | - Junwon Heo
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
| | | | - Gordon L. Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA USA
| | | | - Jarrod A. Call
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA USA
| |
Collapse
|
6
|
Heo J, Schifino AG, McFaline‐Figueroa J, Miller DL, Hoffman JR, Noble EE, Greising SM, Call JA. Differential effects of Western diet and traumatic muscle injury on skeletal muscle metabolic regulation in male and female mice. J Cachexia Sarcopenia Muscle 2023; 14:2835-2850. [PMID: 37879629 PMCID: PMC10751418 DOI: 10.1002/jcsm.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND This study was designed to develop an understanding of the pathophysiology of traumatic muscle injury in the context of Western diet (WD; high fat and high sugar) and obesity. The objective was to interrogate the combination of WD and injury on skeletal muscle mass and contractile and metabolic function. METHODS Male and female C57BL/6J mice were randomized into four groups based on a two-factor study design: (1) injury (uninjured vs. volumetric muscle loss [VML]) and (2) diet (WD vs. normal chow [NC]). Electrophysiology was used to test muscle strength and metabolic function in cohorts of uninjured + NC, uninjured + WD, VML + NC and VML + WD at 8 weeks of intervention. RESULTS VML-injured male and female mice both exhibited decrements in muscle mass (-17%, P < 0.001) and muscle strength (-28%, P < 0.001); however, VML + WD females had a 28% greater muscle mass compared to VML + NC females (P = 0.034), a compensatory response not detected in males. VML-injured male and female mice both had lower carbohydrate- and fat-supported muscle mitochondrial respiration (JO2 ) and less electron conductance through the electron transport system (ETS); however, male VML-WD had 48% lower carbohydrate-supported JO2 (P = 0.014) and 47% less carbohydrate-supported electron conductance (P = 0.026) compared to male VML + NC, and this diet-injury phenotype was not present in females. ETS electron conductance starts with complex I and complex II dehydrogenase enzymes at the inner mitochondrial membrane, and male VML + WD had 31% less complex I activity (P = 0.004) and 43% less complex II activity (P = 0.005) compared to male VML + NC. This was a diet-injury phenotype not present in females. Pyruvate dehydrogenase (PDH), β-hydroxyacyl-CoA dehydrogenase, citrate synthase, α-ketoglutarate dehydrogenase and malate dehydrogenase metabolic enzyme activities were evaluated as potential drivers of impaired JO2 in the context of diet and injury. There were notable male and female differential effects in the enzyme activity and post-translational regulation of PDH. PDH enzyme activity was 24% less in VML-injured males, independent of diet (P < 0.001), but PDH enzyme activity was not influenced by injury in females. PDH enzyme activity is inhibited by phosphorylation at serine-293 by PDH kinase 4 (PDK4). In males, there was greater total PDH, phospho-PDHser293 and phospho-PDH-to-total PDH ratio in WD mice compared to NC, independent of injury (P ≤ 0.041). In females, PDK4 was 51% greater in WD compared to NC, independent of injury (P = 0.025), and was complemented by greater phospho-PDHser293 (P = 0.001). CONCLUSIONS Males are more susceptible to muscle metabolic dysfunction in the context of combined WD and traumatic injury compared to females, and this may be due to impaired metabolic enzyme functions.
Collapse
Affiliation(s)
- Junwon Heo
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Albino G. Schifino
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
- Department of KinesiologyUniversity of GeorgiaAthensGAUSA
| | - Jennifer McFaline‐Figueroa
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - David L. Miller
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Jessica R. Hoffman
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Emily E. Noble
- Department of Nutritional ScienceUniversity of GeorgiaAthensGAUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
7
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
8
|
Schifino AG, Raymond‐Pope CJ, Heo J, McFaline‐Figueroa J, Call JA, Greising SM. Resistance wheel running improves contractile strength, but not metabolic capacity, in a murine model of volumetric muscle loss injury. Exp Physiol 2023; 108:1282-1294. [PMID: 37526646 PMCID: PMC10543535 DOI: 10.1113/ep091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The primary objective of this study was to determine if low- or high-resistance voluntary wheel running leads to functional improvements in muscle strength (i.e., isometric and isokinetic torque) and metabolic function (i.e., permeabilized fibre bundle mitochondrial respiration) after a volumetric muscle loss (VML) injury. C57BL/6J mice were randomized into one of four experimental groups at age 12 weeks: uninjured control, VML untreated (VML), low-resistance wheel running (VML-LR) and high-resistance wheel running (VML-HR). All mice, excluding the uninjured, were subject to a unilateral VML injury to the plantar flexor muscles and wheel running began 3 days post-VML. At 8 weeks post-VML, peak isometric torque was greater in uninjured compared to all VML-injured groups, but both VML-LR and VML-HR had greater (∼32%) peak isometric torque compared to VML. All VML-injured groups had less isokinetic torque compared to uninjured, and there was no statistical difference among VML, VML-LR and VML-HR. No differences in cumulative running distance were observed between VML-LR and VML-HR groups. Because adaptations in VML-HR peak isometric torque were attributed to greater gastrocnemius muscle mass, atrophy- and hypertrophy-related protein content and post-translational modifications were explored via immunoblot; however, results were inconclusive. Permeabilized fibre bundle mitochondrial oxygen consumption was 22% greater in uninjured compared to VML, but there was no statistical difference among VML, VML-LR and VML-HR. Furthermore, neither wheel running group demonstrated a change in the relative protein content of the mitochondrial biogenesis transcription factor, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). These results indicate that resistance wheel running alone only has modest benefits in the VML-injured muscle. NEW FINDINGS: What is the central question of the study? Does initiation of a resistance wheel running regimen following volumetric muscle loss (VML) improve the functional capacity of skeletal muscle? What is the main finding and its importance? Resistance wheel running led to greater muscle mass and strength in mice with a VML injury but did not result in a full recovery. Neither low- nor high-resistance wheel running was associated with a change in permeabilized muscle fibre respiration despite runners having greater whole-body treadmill endurance capacity, suggesting resilience to metabolic adaptations in VML-injured muscle. Resistance wheel running may be a suitable adjuvant rehabilitation strategy, but alone does not fully mitigate VML pathology.
Collapse
Affiliation(s)
| | | | - Junwon Heo
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|
9
|
Bijwadia SR, Raymond‐Pope CJ, Basten AM, Lentz MT, Lillquist TJ, Call JA, Greising SM. Exploring skeletal muscle tolerance and whole-body metabolic effects of FDA-approved drugs in a volumetric muscle loss model. Physiol Rep 2023; 11:e15756. [PMID: 37332022 PMCID: PMC10277213 DOI: 10.14814/phy2.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Volumetric muscle loss (VML) is associated with persistent functional impairment due to a lack of de novo muscle regeneration. As mechanisms driving the lack of regeneration continue to be established, adjunctive pharmaceuticals to address the pathophysiology of the remaining muscle may offer partial remediation. Studies were designed to evaluate the tolerance and efficacy of two FDA-approved pharmaceutical modalities to address the pathophysiology of the remaining muscle tissue after VML injury: (1) nintedanib (an anti-fibrotic) and (2) combined formoterol and leucine (myogenic promoters). Tolerance was first established by testing low- and high-dosage effects on uninjured skeletal muscle mass and myofiber cross-sectional area in adult male C57BL/6J mice. Next, tolerated doses of the two pharmaceutical modalities were tested in VML-injured adult male C57BL/6J mice after an 8-week treatment period for their ability to modulate muscle strength and whole-body metabolism. The most salient findings indicate that formoterol plus leucine mitigated the loss in muscle mass, myofiber number, whole-body lipid oxidation, and muscle strength, and resulted in a higher whole-body metabolic rate (p ≤ 0.016); nintedanib did not exacerbate or correct aspects of the muscle pathophysiology after VML. This supports ongoing optimization efforts, including scale-up evaluations of formoterol treatment in large animal models of VML.
Collapse
Affiliation(s)
| | | | - Alec M. Basten
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mason T. Lentz
- School of KinesiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGeorgiaUSA
| | | |
Collapse
|
10
|
McFaline-Figueroa J, Hunda ET, Heo J, Winders EA, Greising SM, Call JA. The bioenergetic “CK Clamp” technique detects substrate-specific changes in mitochondrial respiration and membrane potential during early VML injury pathology. Front Physiol 2023; 14:1178213. [PMID: 37082244 PMCID: PMC10112539 DOI: 10.3389/fphys.2023.1178213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Volumetric muscle loss (VML) injuries are characterized by non-recoverable loss of tissue resulting in contractile and metabolic dysfunction. The characterization of metabolic dysfunction in volumetric muscle loss-injured muscle has been interpreted from permeabilized myofiber respiration experiments involving saturating ADP levels and non-physiologic ATP:ADP concentration ratios. The extent to which this testing condition obscures the analysis of mitochondrial (dys) function after volumetric muscle loss injury is unclear. An alternative approach is described that leverages the enzymatic reaction of creatine kinase and phosphocreatine to assess mitochondrial respiration and membrane potential at clamped physiologic ATP:ADP ratios, “CK Clamp.” The objective of this study was to validate the CK Clamp in volumetric muscle loss-injured muscle and to detect differences that may exist between volumetric muscle loss-injured and uninjured muscles at 1, 3, 5, 7, 10, and 14 days post-injury. Volumetric muscle loss-injured muscle maintains bioenergetic features of the CK Clamp approach, i.e., mitochondrial respiration rate (JO2) titters down and mitochondrial membrane potential is more polarized with increasing ATP:ADP ratios. Pyruvate/malate/succinate-supported JO2 was significantly less in volumetric muscle loss-injured muscle at all timepoints compared to uninjured controls (−26% to −84%, p < 0.001) and electron conductance was less at day 1 (−60%), 5 (−52%), 7 (−35%), 10 (−59%), and 14 (−41%) (p < 0.001). Palmitoyl-carnitine/malate-supported JO2 and electron conductance were less affected following volumetric muscle loss injury. volumetric muscle loss-injury also corresponded with a more polarized mitochondrial membrane potential across the clamped ATP:ADP ratios at day 1 and 10 (pyruvate and palmitoyl-carnitine, respectively) (+5%, p < 0.001). This study supports previous characterizations of metabolic dysfunction and validates the CK Clamp as a tool to investigate bioenergetics in traumatically-injured muscle.
Collapse
Affiliation(s)
- Jennifer McFaline-Figueroa
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
- Regenerative Biosciences Center, University of Georgia, Athens, GA, United States
| | - Edward T. Hunda
- Regenerative Biosciences Center, University of Georgia, Athens, GA, United States
| | - Junwon Heo
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
- Regenerative Biosciences Center, University of Georgia, Athens, GA, United States
| | - Elizabeth A. Winders
- Regenerative Biosciences Center, University of Georgia, Athens, GA, United States
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN, United States
| | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
- Regenerative Biosciences Center, University of Georgia, Athens, GA, United States
- *Correspondence: Jarrod A. Call,
| |
Collapse
|
11
|
Raymond-Pope CJ, Basten AM, Bruzina AS, McFaline-Figueroa J, Lillquist TJ, Call JA, Greising SM. Restricted physical activity after volumetric muscle loss alters whole-body and local muscle metabolism. J Physiol 2023; 601:743-761. [PMID: 36536512 PMCID: PMC9931639 DOI: 10.1113/jp283959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Volumetric muscle loss (VML) is the traumatic loss of skeletal muscle, resulting in chronic functional deficits and pathological comorbidities, including altered whole-body metabolic rate and respiratory exchange ratio (RER), despite no change in physical activity in animal models. In other injury models, treatment with β2 receptor agonists (e.g. formoterol) improves metabolic and skeletal muscle function. We aimed first to examine if restricting physical activity following injury affects metabolic and skeletal muscle function, and second, to enhance the metabolic and contractile function of the muscle remaining following VML injury through treatment with formoterol. Adult male C57Bl/6J mice (n = 32) underwent VML injury to the posterior hindlimb compartment and were randomly assigned to unrestricted or restricted activity and formoterol treatment or no treatment; age-matched injury naïve mice (n = 4) were controls for biochemical analyses. Longitudinal 24 h evaluations of physical activity and whole-body metabolism were conducted following VML. In vivo muscle function was assessed terminally, and muscles were biochemically evaluated for protein expression, mitochondrial enzyme activity and untargeted metabolomics. Restricting activity chronically after VML had the greatest effect on physical activity and RER, reflected in reduced lipid oxidation, although changes were attenuated by formoterol treatment. Formoterol enhanced injured muscle mass, while mitigating functional deficits. These novel findings indicate physical activity restriction may recapitulate following VML clinically, and adjunctive oxidative treatment may create a metabolically beneficial intramuscular environment while enhancing the injured muscle's mass and force-producing capacity. Further investigation is needed to evaluate adjunctive oxidative treatment with rehabilitation, which may augment the muscle's regenerative and functional capacity following VML. KEY POINTS: The natural ability of skeletal muscle to regenerate and recover function is lost following complex traumatic musculoskeletal injury, such as volumetric muscle loss (VML), and physical inactivity following VML may incur additional deleterious consequences for muscle and metabolic health. Modelling VML injury-induced physical activity restriction altered whole-body metabolism, primarily by decreasing lipid oxidation, while preserving local skeletal muscle metabolic activity. The β2 adrenergic receptor agonist formoterol has shown promise in other severe injury models to improve regeneration, recover function and enhance metabolism. Treatment with formoterol enhanced mass of the injured muscle and whole-body metabolism while mitigating functional deficits resulting from injury. Understanding of chronic effects of the clinically available and FDA-approved pharmaceutical formoterol could be a translational option to support muscle function after VML injury.
Collapse
Affiliation(s)
| | - Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | - Angela S. Bruzina
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | | | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| |
Collapse
|
12
|
Basten AM, Raymond-Pope CJ, Hoffman DB, Call JA, Greising SM. Early initiation of electrical stimulation paired with range of motion after a volumetric muscle loss injury does not benefit muscle function. Exp Physiol 2023; 108:76-89. [PMID: 36116106 PMCID: PMC9805496 DOI: 10.1113/ep090630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/15/2022] [Indexed: 01/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? First, how does physical rehabilitation influence recovery from traumatic muscle injury? Second, how does physical activity impact the rehabilitation response for skeletal muscle function and whole-body metabolism? What is the main finding and its importance? The most salient findings were that rehabilitation impaired muscle function and range of motion, while restricting activity mitigated some negative effects but also impacted whole-body metabolism. These data suggest that first, work must continue to explore treatment parameters, including modality, time, type, duration and intensity, to find the best rehabilitation approaches for volumetric muscle loss injuries; and second, restricting activity acutely might enhance rehabilitation response, but whole-body co-morbidities should continue to be considered. ABSTRACT Volumetric muscle loss (VML) injury occurs when a substantial volume of muscle is lost by surgical removal or trauma, resulting in an irrecoverable deficit in muscle function. Recently, it was suggested that VML impacts whole-body and muscle-specific metabolism, which might contribute to the inability of the muscle to respond to treatments such as physical rehabilitation. The aim of this work was to understand the complex relationship between physical activity and the response to rehabilitation after VML in an animal model, evaluating the rehabilitation response by measurement of muscle function and whole-body metabolism. Adult male mice (n = 24) underwent a multi-muscle, full-thickness VML injury to the gastrocnemius, soleus and plantaris muscles and were randomized into one of three groups: (1) untreated; (2) rehabilitation (i.e., combined electrical stimulation and range of motion, twice per week, beginning 72 h post-injury, for ∼8 weeks); or (3) rehabilitation and restriction of physical activity. There was a lack of positive adaption associated with electrical stimulation and range of motion intervention alone; however, maximal isometric torque of the posterior muscle group was greater in mice receiving treatment with activity restriction (P = 0.008). Physical activity and whole-body metabolism were measured ∼6 weeks post-injury; metabolic rate decreased (P = 0.001) and respiratory exchange ratio increased (P = 0.022) with activity restriction. Therefore, restricting physical activity might enhance an intervention delivered to the injured muscle group but impair whole-body metabolism. It is possible that restricting activity is important initially post-injury to protect the muscle from excess demand. A gradual increase in activity throughout the course of treatment might optimize muscle function and whole-body metabolism.
Collapse
Affiliation(s)
- Alec M. Basten
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | | | - Daniel B. Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA
| | - Jarrod A. Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA,Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis MN 55455, USA,Corresponding Author: Sarah M. Greising, Ph.D., 1900 University Ave SE, Minneapolis MN, 55455, , Phone: 612-626-7890, Fax: 612-626-7700
| |
Collapse
|