1
|
Sparks DS, Savi FM, Dlaska CE, Saifzadeh S, Brierly G, Ren E, Cipitria A, Reichert JC, Wille ML, Schuetz MA, Ward N, Wagels M, Hutmacher DW. Convergence of scaffold-guided bone regeneration principles and microvascular tissue transfer surgery. SCIENCE ADVANCES 2023; 9:eadd6071. [PMID: 37146134 PMCID: PMC10162672 DOI: 10.1126/sciadv.add6071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A preclinical evaluation using a regenerative medicine methodology comprising an additively manufactured medical-grade ε-polycaprolactone β-tricalcium phosphate (mPCL-TCP) scaffold with a corticoperiosteal flap was undertaken in eight sheep with a tibial critical-size segmental bone defect (9.5 cm3, M size) using the regenerative matching axial vascularization (RMAV) approach. Biomechanical, radiological, histological, and immunohistochemical analysis confirmed functional bone regeneration comparable to a clinical gold standard control (autologous bone graft) and was superior to a scaffold control group (mPCL-TCP only). Affirmative bone regeneration results from a pilot study using an XL size defect volume (19 cm3) subsequently supported clinical translation. A 27-year-old adult male underwent reconstruction of a 36-cm near-total intercalary tibial defect secondary to osteomyelitis using the RMAV approach. Robust bone regeneration led to complete independent weight bearing within 24 months. This article demonstrates the widely advocated and seldomly accomplished concept of "bench-to-bedside" research and has weighty implications for reconstructive surgery and regenerative medicine more generally.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia M Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Constantin E Dlaska
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Gary Brierly
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Edward Ren
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Johannes C Reichert
- Department of Orthopaedics and Orthopaedic Surgery, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald, Germany
| | - Marie-Luise Wille
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael A Schuetz
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Nicola Ward
- Department of Orthopaedics, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Michael Wagels
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
- Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Additive Biomanufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
2
|
Sparks DS, Wiper J, Lloyd T, Wille ML, Sehu M, Savi FM, Ward N, Hutmacher DW, Wagels M. Protocol for the BONE-RECON trial: a single-arm feasibility trial for critical sized lower limb BONE defect RECONstruction using the mPCL-TCP scaffold system with autologous vascularised corticoperiosteal tissue transfer. BMJ Open 2023; 13:e056440. [PMID: 37137563 PMCID: PMC10163528 DOI: 10.1136/bmjopen-2021-056440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Reconstruction of critical bone defects is challenging. In a substantial subgroup of patients, conventional reconstructive techniques are insufficient. Biodegradable scaffolds have emerged as a novel tissue engineering strategy for critical-sized bone defect reconstruction. A corticoperiosteal flap integrates the hosts' ability to regenerate bone and permits the creation of a vascular axis for scaffold neo-vascularisation (regenerative matching axial vascularisation-RMAV). This phase IIa study evaluates the application of the RMAV approach alongside a custom medical-grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffold (Osteopore) to regenerate bone sufficient to heal critical size defects in lower limb defects. METHODS AND ANALYSIS This open-label, single-arm feasibility trial will be jointly coordinated by the Complex Lower Limb Clinic (CLLC) at the Princess Alexandra Hospital in Woolloongabba (Queensland, Australia), the Australian Centre for Complex Integrated Surgical Solutions (Queensland, Australia) and the Faculty of Engineering, Queensland University of Technology in Kelvin Grove (Queensland, Australia). Aiming for limb salvage, the study population (n=10) includes any patient referred to the CLLC with a critical-sized bone defect not amenable to conventional reconstructive approaches, after discussion by the interdisciplinary team. All patients will receive treatment using the RMAV approach using a custom mPCL-TCP implant. The primary study endpoint will be safety and tolerability of the reconstruction. Secondary end points include time to bone union and weight-bearing status on the treated limb. Results of this trial will help shape the role of scaffold-guided bone regenerative approaches in complex lower limb reconstruction where current options remain limited. ETHICS AND DISSEMINATION Approval was obtained from the Human Research Ethics Committee at the participating centre. Results will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ACTRN12620001007921.
Collapse
Affiliation(s)
- David S Sparks
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- The University of Queensland PA Southside Clinical School, Woolloongabba, Queensland, Australia
| | - Jay Wiper
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Thomas Lloyd
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Radiology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Marie-Luise Wille
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Marjoree Sehu
- Department of Infectious Diseases, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Flavia M Savi
- Queensland University of Technology, Faculty of Engineering, Brisbane, Queensland, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicola Ward
- Department of Orthopaedics, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Dietmar W Hutmacher
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical, and Process Engineering | Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health, School of Biomedical Siences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Australian Centre for Complex Integrated Surgical Solutions (ACCISS), Translational Research Institute Australia Ghrelin Research Group, South Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, Zhang X. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:249-264. [PMID: 36548196 DOI: 10.1021/acsami.2c15000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sike Lai
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Li
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Weili Fu
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Suh JW, Lee KM, Ko EA, Yoon DS, Park KH, Kim HS, Yook JI, Kim NH, Lee JW. Promoting angiogenesis and diabetic wound healing through delivery of protein transduction domain-BMP2 formulated nanoparticles with hydrogel. J Tissue Eng 2023; 14:20417314231190641. [PMID: 37601810 PMCID: PMC10434183 DOI: 10.1177/20417314231190641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Decreased angiogenesis contributes to delayed wound healing in diabetic patients. Recombinant human bone morphogenetic protein-2 (rhBMP2) has also been demonstrated to promote angiogenesis. However, the short half-lives of soluble growth factors, including rhBMP2, limit their use in wound-healing applications. To address this limitation, we propose a novel delivery model using a protein transduction domain (PTD) formulated in a lipid nanoparticle (LNP). We aimed to determine whether a gelatin hydrogel dressing loaded with LNP-formulated PTD-BMP2 (LNP-PTD-BMP2) could enhance the angiogenic function of BMP2 and improve diabetic wound healing. In vitro, compared to the control and rhBMP2, LNP-PTD-BMP2 induced greater tube formation in human umbilical vein endothelial cells and increased the cell recruitment capacity of HaCaT cells. We inflicted large, full-thickness back skin wounds on streptozotocin-induced diabetic mice and applied gelatin hydrogel (GH) cross-linked by microbial transglutaminase containing rhBMP2, LNP-PTD-BMP2, or a control to these wounds. Wounds treated with LNP-PTD-BMP2-loaded GH exhibited enhanced wound closure, increased re-epithelialization rates, and higher collagen deposition than those with other treatments. Moreover, LNP-PTD-BMP2-loaded GH treatment resulted in more CD31- and α-SMA-positive cells, indicating greater neovascularization capacity than rhBMP2-loaded GH or GH treatments alone. Furthermore, in vivo near-infrared fluorescence revealed that LNP-PTD-BMP2 has a longer half-life than rhBMP2 and that BMP2 localizes around wounds. In conclusion, LNP-PTD-BMP2-loaded GH is a viable treatment option for diabetic wounds.
Collapse
Affiliation(s)
- Jae Wan Suh
- Department of Orthopaedic Surgery, Dankook University College of Medicine, Cheonan, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Ae Ko
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Suk Yoon
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong-Si, Gyeonggi-Do, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Gonzalez Matheus I, Hutmacher DW, Olson S, Redmond M, Sutherland A, Wagels M. A Medical-Grade Polycaprolactone and Tricalcium Phosphate Scaffold System With Corticoperiosteal Tissue Transfer for the Reconstruction of Acquired Calvarial Defects in Adults: Protocol for a Single-Arm Feasibility Trial. JMIR Res Protoc 2022; 11:e36111. [PMID: 36227628 PMCID: PMC9614622 DOI: 10.2196/36111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Large skull defects present a reconstructive challenge. Conventional cranioplasty options include autologous bone grafts, vascularized bone, metals, synthetic ceramics, and polymers. Autologous options are affected by resorption and residual contour deformities. Synthetic materials may be customized via digital planning and 3D printing, but they all carry a risk of implant exposure, failure, and infection, which increases when the defect is large. These complications can be a threat to life. Without reconstruction, patients with cranial defects may experience headaches and stigmatization. The protection of the brain necessitates lifelong helmet use, which is also stigmatizing. Objective Our clinical trial will formally study a hybridized technique's capacity to reconstruct large calvarial defects. Methods A hybridized technique that draws on the benefits of autologous and synthetic materials has been developed by the research team. This involves wrapping a biodegradable, ultrastructured, 3D-printed scaffold made of medical-grade polycaprolactone and tricalcium phosphate in a vascularized, autotransplanted periosteum to exploit the capacity of vascularized periostea to regenerate bone. In vitro, the scaffold system supports cell attachment, migration, and proliferation with slow but sustained degradation to permit host tissue regeneration and the replacement of the scaffold. The in vivo compatibility of this scaffold system is robust—the base material has been used clinically as a resorbable suture material for decades. The importance of scaffold vascularization, which is inextricably linked to bone regeneration, is underappreciated. A variety of methods have been described to address this, including scaffold prelamination and axial vascularization via arteriovenous loops and autotransplanted flaps. However, none of these directly promote bone regeneration. Results We expect to have results before the end of 2023. As of December 2020, we have enrolled 3 participants for the study. Conclusions The regenerative matching axial vascularization technique may be an alternative method of reconstruction for large calvarial defects. It involves performing a vascularized free tissue transfer and using a bioresorbable, 3D-printed scaffold to promote and support bone regeneration (termed the regenerative matching axial vascularization technique). This technique may be used to reconstruct skull bone defects that were previously thought to be unreconstructable, reduce the risk of implant-related complications, and achieve consistent outcomes in cranioplasty. This must now be tested in prospective clinical trials. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12620001171909; https://tinyurl.com/4rakccb3 International Registered Report Identifier (IRRID) DERR1-10.2196/36111
Collapse
Affiliation(s)
- Isabel Gonzalez Matheus
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Dietmar W Hutmacher
- Regenerative Medicine Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Sarah Olson
- Department of Neurosurgery, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Michael Redmond
- Herston Biofabrication Institute, Herston, Australia.,Department of Neurosurgery, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Allison Sutherland
- The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Queenland, Australia.,Herston Biofabrication Institute, Herston, Australia.,The Australian Centre for Complex Integrated Surgical Solutions, Translational Research Institute, Woolloongabba, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Highly porous multiple-cell-laden collagen/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol 2022; 222:1264-1276. [DOI: 10.1016/j.ijbiomac.2022.09.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022]
|
7
|
Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, Chai Y, Xu J, Zheng X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:415. [PMID: 34294121 PMCID: PMC8296592 DOI: 10.1186/s13287-021-02487-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02487-3.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
8
|
Vascularization Strategies in Bone Tissue Engineering. Cells 2021; 10:cells10071749. [PMID: 34359919 PMCID: PMC8306064 DOI: 10.3390/cells10071749] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a highly vascularized tissue, and its development, maturation, remodeling, and regeneration are dependent on a tight regulation of blood vessel supply. This condition also has to be taken into consideration in the context of the development of artificial tissue substitutes. In classic tissue engineering, bone-forming cells such as primary osteoblasts or mesenchymal stem cells are introduced into suitable scaffolds and implanted in order to treat critical-size bone defects. However, such tissue substitutes are initially avascular. Because of the occurrence of hypoxic conditions, especially in larger tissue substitutes, this leads to the death of the implanted cells. Therefore, it is necessary to devise vascularization strategies aiming at fast and efficient vascularization of implanted artificial tissues. In this review article, we present and discuss the current vascularization strategies in bone tissue engineering. These are based on the use of angiogenic growth factors, the co-implantation of blood vessel forming cells, the ex vivo microfabrication of blood vessels by means of bioprinting, and surgical methods for creating surgically transferable composite tissues.
Collapse
|
9
|
Comparison of Freshly Isolated Adipose Tissue-derived Stromal Vascular Fraction and Bone Marrow Cells in a Posterolateral Lumbar Spinal Fusion Model. Spine (Phila Pa 1976) 2021; 46:631-637. [PMID: 32991510 DOI: 10.1097/brs.0000000000003709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Rat posterolateral lumbar fusion model. OBJECTIVE The aim of this study was to compare the efficacy of freshly isolated adipose tissue-derived stromal vascular fraction (A-SVF) and bone marrow cells (BMCs) cells in achieving spinal fusion in a rat model. SUMMARY OF BACKGROUND DATA Adipose tissue-derived stromal cells (ASCs) offer advantages as a clinical cell source compared to bone marrow-derived stromal cells (BMSCs), including larger available tissue volumes and reduced donor site morbidity. While pre-clinical studies have shown that ex vivo expanded ASCs can be successfully used in spinal fusion, the use of A-SVF cells better allows for clinical translation. METHODS A-SVF cells were isolated from the inguinal fat pads, whereas BMCs were isolated from the long bones of syngeneic 6- to 8-week-old Lewis rats and combined with Vitoss (Stryker) bone graft substitute for subsequent transplantation. Posterolateral spinal fusion surgery at L4-L5 was performed on 36 female Lewis rats divided into three experimental groups: Vitoss bone graft substitute only (VO group); Vitoss + 2.5 × 106 A-SVF cells/side; and, Vitoss + 2.5 × 106 BMCs/side. Fusion was assessed 8 weeks post-surgery via manual palpation, micro-computed tomography (μCT) imaging, and histology. RESULTS μCT imaging analyses revealed that fusion volumes and μCT fusion scores in the A-SVF group were significantly higher than in the VO group; however, they were not significantly different between the A-SVF group and the BMC group. The average manual palpation score was highest in the A-SVF group compared with the BMC and VO groups. Fusion masses arising from cell-seeded implants yielded better bone quality than nonseeded bone graft substitute. CONCLUSION In a rat model, A-SVF cells yielded a comparable fusion mass volume and radiographic rate of fusion to BMCs when combined with a clinical-grade bone graft substitute. These results suggest the feasibility of using freshly isolated A-SVF cells in spinal fusion procedures.Level of Evidence: N/A.
Collapse
|
10
|
Duan L, Li Y, Hu J, Ma Q, Yu T, Zhang C, Luo F, Xu J, Dou C. Light rare earth elements hinder bone development via inhibiting type H vessels formation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112275. [PMID: 33962277 DOI: 10.1016/j.ecoenv.2021.112275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Light rare earth elements (LREEs) are widely used in medical, industrial, and agricultural fields. Wide application of light rare earth and exposure to these elements in human society leads to increasing accumulation of LREE in human skeletal system. However, the effects of LREEs on human bone health is not clear. In this study, we found that LREE reduced CD31highEmcnhigh endothelial cell mediated type H vessels formation at the metaphyseal sites, resulting in reduced bone mass and low bone quality in mouse bone development. To explore the underlying mechanism, we induced bone marrow macrophages (BMMs) to preosteoclasts (pOCs) with exposure of LREE (Pr3+, Nd3+, Sm3+). The cytotoxicity of LREE was evaluated by CCK-8. Platelet-derived growth factor (PDGF-BB) is the cytokine secreted by pOCs that most responsible for inducing Type H vessel formation. We used ELISA kit to determine the PDGF-BB level in pOC supernatant, and mouse serum finding that the PDGF-BB level was reduced by LREEs treatment. Then we tested the ability of migration and tube formation of HUVECs using condition medium from pOCs. The migration and tube formation ability of HUVECs were both suppressed with LREEs pretreatment. We concluded that LREEs hinder mouse bone development by suppressing type H vessels associated bone formation. DATA AND MATERIALS AVAILABILITY: All data generated or analyzed during this study are included in this article. Please contact the corresponding author for unique material requests. Some material used in the reported research may require requests to collaborators and agreements with both commercial and non-profit institutions, as specified in the paper. Requests are reviewed by Third Military Medical University to verify whether the request is subject to any intellectual property or confidentiality obligations. Any material that can be shared will be released via a Material Transfer Agreement.
Collapse
Affiliation(s)
- Lianli Duan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Yang Li
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Junxian Hu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China.
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Multifunctional TaCu-nanotubes coated titanium for enhanced bacteriostatic, angiogenic and osteogenic properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111777. [DOI: 10.1016/j.msec.2020.111777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
|
12
|
Lee EJ, Jain M, Alimperti S. Bone Microvasculature: Stimulus for Tissue Function and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:313-329. [PMID: 32940150 DOI: 10.1089/ten.teb.2020.0154] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone is a highly vascularized organ, providing structural support to the body, and its development, regeneration, and remodeling depend on the microvascular homeostasis. Loss or impairment of vascular function can develop diseases, such as large bone defects, avascular necrosis, osteoporosis, osteoarthritis, and osteopetrosis. In this review, we summarize how vasculature controls bone development and homeostasis in normal and disease cases. A better understanding of this process will facilitate the development of novel disease treatments that promote bone regeneration and remodeling. Specifically, approaches based on tissue engineering components, such as stem cells and growth factors, have demonstrated the capacity to induce bone microvasculature regeneration and mineralization. This knowledge will have relevant clinical implications for the treatment of bone disorders by developing novel pharmaceutical approaches and bone grafts. Finally, the tissue engineering approaches incorporating vascular components may widely be applied to treat other organ diseases by enhancing their regeneration capacity. Impact statement Bone vasculature is imperative in the process of bone development, regeneration, and remodeling. Alterations or disruption of the bone vasculature leads to loss of bone homeostasis and the development of bone diseases. In this study, we review the role of vasculature on bone diseases and how vascular tissue engineering strategies, with a detailed emphasis on the role of stem cells and growth factors, will contribute to bone therapeutics.
Collapse
Affiliation(s)
- Eun-Jin Lee
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| | - Mahim Jain
- Kennedy Krieger Institute, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stella Alimperti
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| |
Collapse
|
13
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
14
|
Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020; 6:5399-5430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morbidity, mortality, and burden of burn victims and patients with severe diabetic wounds are still high, which leads to an extensively growing demand for novel treatments with high clinical efficacy. Biomaterial-based wound treatment approaches have progressed over time from simple cotton wool dressings to advanced skin substitutes containing cells and growth factors; however, no wound care approach is yet completely satisfying. Bioactive glasses are materials with potential in many areas that exhibit unique features in biomedical applications. Today, bioactive glasses are not only amorphous solid structures that can be used as a substitute in hard tissue but also are promising materials for soft tissue regeneration and wound healing applications. Biologically active elements such as Ag, B, Ca, Ce, Co, Cu, Ga, Mg, Se, Sr, and Zn can be incorporated in glass networks; hence, the superiority of these multifunctional materials over current materials results from their ability to release multiple therapeutic ions in the wound environment, which target different stages of the wound healing process. Bioactive glasses and their dissolution products have high potency for inducing angiogenesis and exerting several biological impacts on cell functions, which are involved in wound healing and some other features that are valuable in wound healing applications, namely hemostatic and antibacterial properties. In this review, we focus on skin structure, the dynamic process of wound healing in injured skin, and existing wound care approaches. The basic concepts of bioactive glasses are reviewed to better understand the relationship between glass structure and its properties. We illustrate the active role of bioactive glasses in wound repair and regeneration. Finally, research studies that have used bioactive glasses in wound healing applications are summarized and the future trends in this field are elaborated.
Collapse
Affiliation(s)
- Tina Mehrabi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Zahra Mohammadi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
15
|
Zhang Y, Yu T, Peng L, Sun Q, Wei Y, Han B. Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Front Pharmacol 2020; 11:622. [PMID: 32435200 PMCID: PMC7218105 DOI: 10.3389/fphar.2020.00622] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Bone defects caused by injury, disease, or congenital deformity remain a major health concern, and efficiently regenerating bone is a prominent clinical demand worldwide. However, bone regeneration is an intricate process that requires concerted participation of both cells and bioactive factors. Mimicking physiological bone healing procedures, the sustained release of bioactive molecules plays a vital role in creating an optimal osteogenic microenvironment and achieving promising bone repair outcomes. The utilization of biomaterial scaffolds can positively affect the osteogenesis process by integrating cells with bioactive factors in a proper way. A high water content, tunable physio-mechanical properties, and diverse synthetic strategies make hydrogels ideal cell carriers and controlled drug release reservoirs. Herein, we reviewed the current advancements in hydrogel-based drug sustained release systems that have delivered osteogenesis-inducing peptides, nucleic acids, and other bioactive molecules in bone tissue engineering (BTE).
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
16
|
Sparks DS, Savi FM, Saifzadeh S, Schuetz MA, Wagels M, Hutmacher DW. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies-A Quest for Regenerative Matching Axial Vascularization. Front Bioeng Biotechnol 2020; 7:448. [PMID: 31998712 PMCID: PMC6967032 DOI: 10.3389/fbioe.2019.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue engineered constructs (TECs) that require blood vessel supply. The research and clinical community rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate a clinically-relevant vascular network formation within TECs. The regenerative matching axial vascularization approach presented in this manuscript incorporates the advantages of flap-based techniques for neo-vascularization yet also harnesses the in vivo bioreactor principle in a more directed "like for like" approach to further assist regeneration of the specific tissue type that is lost, such as a corticoperiosteal flap in critical sized bone defect reconstruction.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia Medeiros Savi
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Michael A Schuetz
- Department of Orthopaedic Surgery, Royal Brisbane Hospital, Herston, QLD, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia.,Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,ARC Centre for Additive Bio-Manufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
17
|
Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 2019; 219:119366. [PMID: 31374482 DOI: 10.1016/j.biomaterials.2019.119366] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Biomedical implants have been widely used in various orthopedic treatments, including total hip arthroplasty, joint arthrodesis, fracture fixation, non-union, dental repair, etc. The modern research and development of orthopedic implants have gradually shifted from traditional mechanical support to a bioactive graft in order to endow them with better osteoinduction and osteoconduction. Inspired by structural and mechanical properties of natural bone, this review provides a panorama of current biological surface modifications for facilitating the interaction between medical implants and bone tissue and gives a future outlook for fabricating the next-generation multifunctional and smart implants by systematically biomimicking the physiological processes involved in formation and functioning of bones.
Collapse
Affiliation(s)
- Chao Hu
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Deepu Ashok
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - David R Nisbet
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Vini Gautam
- John Curtin School of Medical Research, Australian National University, ACT, 2601, Australia.
| |
Collapse
|
18
|
Extra low interstitial titanium based fully porous morphological bone scaffolds manufactured using selective laser melting. J Mech Behav Biomed Mater 2019; 95:1-12. [DOI: 10.1016/j.jmbbm.2019.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/12/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022]
|
19
|
Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, Hofmann A. CD34 + cells seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model. J Biomed Mater Res B Appl Biomater 2017; 106:1505-1516. [PMID: 28730696 DOI: 10.1002/jbm.b.33956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/29/2017] [Accepted: 07/04/2017] [Indexed: 11/10/2022]
Abstract
Bone tissue engineering (BTE) holds promise for managing the clinical problem of large bone defects. However, clinical adoption of BTE is limited due to limited vascularization of constructs, which could be circumvented by pre-cultivation of osteogenic and endothelial derived cells in natural-based polymer scaffolds. However, until now not many studies compared the effect of mono- and cocultures pre-seeded in collagen before implantation. We utilized a mouse calvarial defect model and compared five groups of collagen scaffolds: a negative control of a collagen scaffold alone, a positive control treated with BMP-7, monocultures of either human osteoblasts (hOBs) or CD34+ cells, and a coculture of hOB and CD34+ cells. Each pre-seeded collagen scaffold was implanted in mice. After 6 weeks mice were sacrificed and their skulls prepared for volumetric and histologic analysis. We found that a monoculture of CD34+ cells and a coculture of hOB and CD34+ cells pre-cultured in the collagen scaffold increased bone regeneration to a similar extend. In these groups, greater amounts of new bone were found compared with hOB monocultures. Interestingly, monoculture of CD34+ cells demonstrated better fracture healing than monoculture of hOBs, emphasizing the possible role of angiogenesis. Our results are promising regarding a cellular based collagen BTE construct, but more work is needed to understand the complex interaction between the osteogenic and endothelial cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1505-1516, 2018.
Collapse
Affiliation(s)
- Jens Hertweck
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hermann Götz
- Platform for Biomaterial Research, Biomatics, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Patrick C Schottel
- Department of Orthopedics and Rehabilitation, University of Vermont Medical Center, Burlington, Vermont
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
20
|
Orciani M, Fini M, Di Primio R, Mattioli-Belmonte M. Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Front Bioeng Biotechnol 2017; 5:17. [PMID: 28386538 PMCID: PMC5362636 DOI: 10.3389/fbioe.2017.00017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 01/06/2023] Open
Abstract
The growing occurrence of bone disorders and the increase in aging population have resulted in the need for more effective therapies to meet this request. Bone tissue engineering strategies, by combining biomaterials, cells, and signaling factors, are seen as alternatives to conventional bone grafts for repairing or rebuilding bone defects. Indeed, skeletal tissue engineering has not yet achieved full translation into clinical practice because of several challenges. Bone biofabrication by additive manufacturing techniques may represent a possible solution, with its intrinsic capability for accuracy, reproducibility, and customization of scaffolds as well as cell and signaling molecule delivery. This review examines the existing research in bone biofabrication and the appropriate cells and factors selection for successful bone regeneration as well as limitations affecting these approaches. Challenges that need to be tackled with the highest priority are the obtainment of appropriate vascularized scaffolds with an accurate spatiotemporal biochemical and mechanical stimuli release, in order to improve osseointegration as well as osteogenesis.
Collapse
Affiliation(s)
- Monia Orciani
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna , Italy
| | - Roberto Di Primio
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| | - Monica Mattioli-Belmonte
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| |
Collapse
|
21
|
Zhou Y, Dong L, Liu C, Lin Y, Yu M, Ma L, Zhang B, Cheng K, Weng W, Wang H. Engineering prevascularized composite cell sheet by light-induced cell sheet technology. RSC Adv 2017. [DOI: 10.1039/c7ra05333a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Light-induced cell sheet technology based on light-responsive TiO2 nanodots film realized an optimal and transferable prevascularized MSC–EC composite cell sheet.
Collapse
|
22
|
Hausherr TC, Nuss K, Thein E, Applegate LA, Pioletti DP. Human Bone Progenitor Cells for Clinical Application: What Kind of Immune Reaction Does Fetal Xenograft Tissue Trigger in Immunocompetent Rats? Cell Transplant 2016; 26:879-890. [PMID: 27938479 DOI: 10.3727/096368916x693789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The potential of human fetal bone cells for successful bone regeneration has been shown in vivo. In particular, it has been demonstrated that the seeding of these cells in porous poly-(l-lactic acid)/β-tricalcium phosphate scaffolds improved the bone formation compared to cell-free scaffolds in skulls of rats. However, even if the outcome is an improvement of bone formation, a thorough analysis concerning any immune responses, due to the implantation of a xenograft tissue, is not known. As the immune response and skeletal system relationship may contribute to either the success or failure of an implant, we were interested in evaluating the presence of any immune cells and specific reactions of human fetal cells (also called human bone progenitor cells) once implanted in femoral condyles of rats. For this purpose, (1) cell-free scaffolds, (2) human bone progenitor cells, or (3) osteogenic human bone progenitor cells within scaffolds were implanted over 3, 7, 14 days, and 12 weeks. The key finding is that human bone progenitor cells and osteogenic human bone progenitor cells do not trigger any particular specific immune reactions in immunocompetent rats but are noted to delay some bone formation.
Collapse
|
23
|
Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model. Arch Oral Biol 2016; 68:123-30. [DOI: 10.1016/j.archoralbio.2016.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
|
24
|
Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep 2016; 6:27374. [PMID: 27271057 PMCID: PMC4895436 DOI: 10.1038/srep27374] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
A series of biodegradable Mg-Cu alloys is designed to induce osteogenesis, stimulate angiogenesis, and provide long-lasting antibacterial performance at the same time. The Mg-Cu alloys with precipitated Mg2Cu intermetallic phases exhibit accelerated degradation in the physiological environment due to galvanic corrosion and the alkaline environment combined with Cu release endows the Mg-Cu alloys with prolonged antibacterial effects. In addition to no cytotoxicity towards HUVECs and MC3T3-E1 cells, the Mg-Cu alloys, particularly Mg-0.03Cu, enhance the cell viability, alkaline phosphatase activity, matrix mineralization, collagen secretion, osteogenesis-related gene and protein expressions of MC3T3-E1 cells, cell proliferation, migration, endothelial tubule forming, angiogenesis-related gene, and protein expressions of HUVECs compared to pure Mg. The favorable osteogenesis and angiogenesis are believed to arise from the release of bioactive Mg and Cu ions into the biological environment and the biodegradable Mg-Cu alloys with osteogenesis, angiogenesis, and long-term antibacterial ability are very promising in orthopedic applications.
Collapse
|
25
|
Kumar VV, Heller M, Götz H, Schiegnitz E, Al-Nawas B, Kämmerer PW. Comparison of growth & function of endothelial progenitor cells cultured on deproteinized bovine bone modified with covalently bound fibronectin and bound vascular endothelial growth factor. Clin Oral Implants Res 2016; 28:543-550. [PMID: 26992449 DOI: 10.1111/clr.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The objective of this study was to assess and compare the growth and function of Endothelial Progenitor Cells (EPCs) cultured on covalently bonded Vascular Endothelial Growth Factor (VEGF) and covalently bonded Fibronectin (FN) coating on deproteinized bovine bone (DBB) (test samples), compared to non-modified DBB blocks (control sample). MATERIALS AND METHODS The test samples were prepared by plasma polymerization of allylamine onto DBB blocks. Group1 of test samples were prepared with VEGF coating (VEGF-DBB) where as the Group2 test samples were coated with FN (FN-DBB). Non-modified DBB blocks served as a Control. EPCs were isolated and cultivated from buffy coats of peripheral blood of healthy volunteers and cultivated in the different samples and examined at time intervals of 24 h, 3 days, and 7 days. Evaluation of growth by cell count and cell morphology was done using Confocal Laser Scanning Electron Microscopy; vitality and function of cells was assessed using MTT assay and RT-PCR and ELISA for eNOS and iNOS respectively. RESULTS The results of the study show that both VEGF and FN could be successfully immobilized by plasma polymerization onto a complex, porous, three-dimensional structure of DBB. When comparing vital cell coverage, proliferation and function of EPCs, FN-DBB provided more positive values followed by VEGF-DBB as compared to DBB samples. eNOS level were significant higher in VEGF-DBB and FN-DBB when compared to DBB (P = 0.019 and P = 0.002). The difference between VEGF-DBB and FN-DBB was not significant. CONCLUSIONS Biomimetic coatings of Fibronectin may clinically relate to faster angiogenesis and earlier healing potential.
Collapse
Affiliation(s)
- Vinay V Kumar
- Department of Oral and Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University, Mainz, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Center of Rostock University, Rostock, Germany.,Head and Neck Institute, Mazumdar Shaw Medical Center and Center for Translational Research, Narayana Health, Bangalore, India
| | - Martin Heller
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Hermann Götz
- Department of Applied Structure and Microanalysis, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center of Rostock University, Rostock, Germany
| |
Collapse
|
26
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
27
|
Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 2016; 83:363-82. [PMID: 26803405 DOI: 10.1016/j.biomaterials.2016.01.024] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 02/08/2023]
Abstract
The rising incidence of bone disorders has resulted in the need for more effective therapies to meet this demand, exacerbated by an increasing ageing population. Bone tissue engineering is seen as a means of developing alternatives to conventional bone grafts for repairing or reconstructing bone defects by combining biomaterials, cells and signalling factors. However, skeletal tissue engineering has not yet achieved full translation into clinical practice as a consequence of several challenges. The use of additive manufacturing techniques for bone biofabrication is seen as a potential solution, with its inherent capability for reproducibility, accuracy and customisation of scaffolds as well as cell and signalling factor delivery. This review highlights the current research in bone biofabrication, the necessary factors for successful bone biofabrication, in addition to the current limitations affecting biofabrication, some of which are a consequence of the limitations of the additive manufacturing technology itself.
Collapse
Affiliation(s)
- Daniel Tang
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom; Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - David F Williams
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Keng-Liang Ou
- Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan, ROC; Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC.
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
28
|
Murphy KC, Stilhano RS, Mitra D, Zhou D, Batarni S, Silva EA, Leach JK. Hydrogel biophysical properties instruct coculture-mediated osteogenic potential. FASEB J 2015; 30:477-86. [PMID: 26443826 DOI: 10.1096/fj.15-279984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Cell-based approaches for bone formation require instructional cues from the surrounding environment. As an alternative to pharmacological strategies or transplanting single cell populations, one approach is to coimplant populations that can establish a new vasculature and differentiate to bone-forming osteoblasts. Mesenchymal stem/stromal cells (MSCs) possess osteogenic potential and produce numerous angiogenic growth factors. Endothelial colony-forming cells (ECFCs) are a subpopulation of endothelial progenitor cells capable of vasculogenesis in vivo and may provide endogenous cues to support MSC function. We investigated the contribution of the carrier biophysical properties to instruct entrapped human MSCs and ECFCs to simultaneously promote their osteogenic and proangiogenic potential. Compared with gels containing MSCs alone, fibrin gels engineered with increased compressive stiffness simultaneously increased the osteogenic and proangiogenic potential of entrapped cocultured cells. ECFCs produced bone morphogenetic protein-2 (BMP-2), a potent osteoinductive molecule, and increases in BMP-2 secretion correlated with gel stiffness. Coculture of MSCs with ECFCs transduced to knockdown BMP-2 production abrogated the osteogenic response to levels observed with MSCs alone. These results demonstrate that physical properties of engineered hydrogels modulate the function of cocultured cells in the absence of inductive cues, thus increasing the translational potential of coimplantation to speed bone formation and repair.
Collapse
Affiliation(s)
- Kaitlin C Murphy
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Roberta S Stilhano
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Debika Mitra
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Dejie Zhou
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Samir Batarni
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eduardo A Silva
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - J Kent Leach
- *Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Davis, California, USA; and Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
29
|
Ignjatović N, Uskoković V, Ajduković Z, Uskoković D. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 33:943-50. [PMID: 25382938 DOI: 10.1016/j.msec.2012.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholecalciferol, vitamin D3, plays an important role in bonemetabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA). Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.
Collapse
Affiliation(s)
- Nenad Ignjatović
- Centre for Fine Particle Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | | | | | | |
Collapse
|
30
|
Pang Y, Tsigkou O, Spencer JA, Lin CP, Neville C, Grottkau B. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing. Tissue Eng Part C Methods 2015; 21:1025-31. [PMID: 25962617 DOI: 10.1089/ten.tec.2015.0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad applicability for evaluating vascularization in other engineered tissues as well.
Collapse
Affiliation(s)
- Yonggang Pang
- 1 Department of Orthopaedic Surgery, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Olga Tsigkou
- 2 School of Materials, University of Manchester , Manchester, United Kingdom
| | - Joel A Spencer
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Charles P Lin
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Craig Neville
- 1 Department of Orthopaedic Surgery, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Brian Grottkau
- 1 Department of Orthopaedic Surgery, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Gümüşderelioğlu M, Karakuş E, Çapkın Yurtsever M, Altındal DÇ. Inosculation potential of angiopoietin-4-immobilized pHEMA-based bone scaffolds. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515591646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although angiopoietin-1has potential therapeutic use in angiogenesis, the biological role of angiopoietin-4, especially in its immobilized form, is already unknown. In this study, vascularization potential of angiopoietin-4 either alone or in combination with vascular endothelial growth factor (VEGF) was investigated following its immobilization onto the poly(2-hydroxyethyl methacrylate)-based bone scaffolds. Poly(2-hydroxyethyl methacrylate) (pHEMA)-based superporous hydrogels (SPHs) were synthesized by radical polymerization of hydroxyethyl methacrylate in the presence of gelatin or chitosan and the porosity was achieved by gas foaming. However, only pHEMA-gelatin SPHs fulfill the structural and biological characteristics of a bone scaffold. Therefore, angiopoietin-4 and/or VEGF were immobilized successfully onto the pHEMA–gelatin SPHs using carbodiimide chemistry. The cell culture studies that were performed with human umbilical vein endothelial cells (HUVECs) for 28 days showed that immobilized angiopoietin-4 supported sprout formation more than that of other groups, while the immobilized VEGF including scaffolds promoted proliferation of HUVECs.
Collapse
Affiliation(s)
- Menemşe Gümüşderelioğlu
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| | - Eda Karakuş
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | | | | |
Collapse
|
32
|
Roux BM, Cheng MH, Brey EM. Engineering clinically relevant volumes of vascularized bone. J Cell Mol Med 2015; 19:903-14. [PMID: 25877690 PMCID: PMC4420594 DOI: 10.1111/jcmm.12569] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 12/15/2022] Open
Abstract
Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility.
Collapse
Affiliation(s)
- Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | | | | |
Collapse
|
33
|
Wang MO, Vorwald CE, Dreher ML, Mott EJ, Cheng MH, Cinar A, Mehdizadeh H, Somo S, Dean D, Brey EM, Fisher JP. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:138-44. [PMID: 25387454 PMCID: PMC4404492 DOI: 10.1002/adma.201403943] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 05/19/2023]
Abstract
There is an unmet need for a consistent set of tools for the evaluation of 3D-printed constructs. A toolbox developed to design, characterize, and evaluate 3D-printed poly(propylene fumarate) scaffolds is proposed for vascularized engineered tissues. This toolbox combines modular design and non-destructive fabricated design evaluation, evaluates biocompatibility and mechanical properties, and models angiogenesis.
Collapse
Affiliation(s)
- Martha O. Wang
- Fischell Department of Bioengineering, 3238 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD
| | - Charlotte E. Vorwald
- Fischell Department of Bioengineering, 3238 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD
| | - Maureen L. Dreher
- Division of Solid and Fluid Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD
| | - Eric J. Mott
- Department of Plastic Surgery, Ohio State University, 460 West 12th Avenue, Columbus, OH
| | - Ming-Huei Cheng
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL
| | - Hamidreza Mehdizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL
| | - Sami Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Chicago, IL
| | - David Dean
- Department of Plastic Surgery, Ohio State University, 460 West 12th Avenue, Columbus, OH
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Chicago, IL
- Research Service, Hines VA Hospital, 5000 South 5th Avenue, Hines, IL
| | - John P. Fisher
- Fischell Department of Bioengineering, 3238 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD
- Corresponding Author: John P. Fisher, Ph.D., Fischell Family Distinguished Professor of Bioengineering, Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Building, College Park, Maryland 20742, Work: 301 405 7475, Fax: 301 314 6868, , Web Site: http://www.terpconnect.umd.edu/~jpfisher
| |
Collapse
|
34
|
Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui SM, Bareille R, Letourneur D, Amédée J. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A 2014; 21:861-74. [PMID: 25333855 DOI: 10.1089/ten.tea.2014.0367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.
Collapse
Affiliation(s)
- Julien Guerrero
- 1 Inserm, U1026, Tissue Bioengineering, University of Bordeaux , Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo. Stem Cell Res 2014; 13:465-77. [DOI: 10.1016/j.scr.2014.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 08/22/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
|
36
|
Li DQ, Li M, Liu PL, Zhang YK, Lu JX, Li JM. Improved repair of bone defects with prevascularized tissue-engineered bones constructed in a perfusion bioreactor. Orthopedics 2014; 37:685-90. [PMID: 25275969 DOI: 10.3928/01477447-20140924-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/12/2014] [Indexed: 02/03/2023]
Abstract
Vascularization of tissue-engineered bones is critical to achieving satisfactory repair of bone defects. The authors investigated the use of prevascularized tissue-engineered bone for repairing bone defects. The new bone was greater in the prevascularized group than in the non-vascularized group, indicating that prevascularized tissue-engineered bone improves the repair of bone defects. [Orthopedics. 2014; 37(10):685-690.].
Collapse
|
37
|
Abou-Khalil R, Colnot C. Cellular and molecular bases of skeletal regeneration: what can we learn from genetic mouse models? Bone 2014; 64:211-21. [PMID: 24709685 DOI: 10.1016/j.bone.2014.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Although bone repairs through a very efficient regenerative process in 90% of the patients, many factors can cause delayed or impaired healing. To date, there are no reliable biological parameters to predict or diagnose bone repair defects. Orthopedic surgeons mostly base their diagnoses on radiographic analyses. With the recent progress in our understanding of the bone repair process, new methods may be envisioned. Animal models have allowed us to define the key steps of bone regeneration and the biological and mechanical factors that may influence bone healing in positive or negative ways. Most importantly, small animal models such as mice have provided powerful tools to apprehend the genetic bases of normal and impaired bone healing. The current review presents a state of the art of the genetically modified mouse models that have advanced our understanding of the cellular and molecular components of bone regeneration and repair. The review illustrates the use of these models to define the role of inflammation, skeletal cell lineages, signaling pathways, the extracellular matrix, osteoclasts and angiogenesis. These genetic mouse models promise to change the field of orthopedic surgery to help establish genetic predispositions for delayed repair, develop models of non-union that mimic the human conditions and elaborate new therapeutic approaches to enhance bone regeneration.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Céline Colnot
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
38
|
Battiston KG, Cheung JWC, Jain D, Santerre JP. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials 2014; 35:4465-76. [PMID: 24602569 DOI: 10.1016/j.biomaterials.2014.02.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems.
Collapse
Affiliation(s)
- Kyle G Battiston
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6
| | - Jane W C Cheung
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6
| | - Devika Jain
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6
| | - J Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 124 Edward Street, Room 461, Toronto, Ontario, Canada M5G 1G6; Department of Biomaterials, Faculty of Dentistry, University of Toronto, 124 Edward Street, Room 464D, Toronto, Ontario, Canada M5G 1G6.
| |
Collapse
|
39
|
Wu X, Hou T, Luo F, Xing J, He Q, Jin H, Xie Z, Xu J. Vascular Endothelial Growth Factor and Physiological Compressive Loading Synergistically Promote Bone Formation of Tissue-Engineered Bone. Tissue Eng Part A 2013; 19:2486-94. [PMID: 23786586 DOI: 10.1089/ten.tea.2013.0124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xuehui Wu
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| | - Tianyong Hou
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| | - Fei Luo
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| | - Junchao Xing
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| | - Qingyi He
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| | - Huiyong Jin
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| | - Zhao Xie
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| | - Jianzhong Xu
- National and Local United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China
- Center of Tissue Engineering Research and Application, the Third Military Medical University, Chongqing, China
- Laboratory of Tissue Engineering in Chongqing City, Chongqing, China
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing City, Chongqing, China
| |
Collapse
|
40
|
Simunovic F, Steiner D, Pfeifer D, Stark GB, Finkenzeller G, Lampert F. Increased extracellular matrix and proangiogenic factor transcription in endothelial cells after cocultivation with primary human osteoblasts. J Cell Biochem 2013; 114:1584-94. [PMID: 23334902 DOI: 10.1002/jcb.24500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
The most promising strategies in bone engineering have concentrated on providing sufficient vascularization to support the newly forming tissue. In this context, recent research in the field has focused on studying the complex interactions between bone forming and endothelial cells. Our previous work has demonstrated that direct contact cocultivation of human umbilical vein endothelial cells (HUVECs) with primary human osteoblasts (hOBs) induces the osteogenic phenotype and survival of hOBs. In order to investigate the mechanisms that lead to this effect, we performed microarray gene expression profiling on HUVECs following cocultivation with hOBs. Our data reveal profound transcriptomic changes that are dependent on direct cell contact between these cell populations. Pathway analysis using the MetaCore™ platform and literature research suggested a striking upregulation of transcripts related to extracellular matrix and cell-matrix interactions. Upregulation of a number of major angiogenetic factors confirms previous observations that HUVECs enter a proangiogenic state upon cocultivation with osteoblasts. Interestingly, the downregulated transcripts clustered predominantly around cell cycle-related processes. The microarray data were confirmed by quantitative real-time RT-PCR on selected genes. Taken together, this study provides a platform for further inquiries in complex interactions between endothelial cells and osteoblasts.
Collapse
Affiliation(s)
- F Simunovic
- Department of Plastic and Hand Surgery, Freiburg University Medical Center, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Guerrero J, Catros S, Derkaoui SM, Lalande C, Siadous R, Bareille R, Thébaud N, Bordenave L, Chassande O, Le Visage C, Letourneur D, Amédée J. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis. Acta Biomater 2013; 9:8200-13. [PMID: 23743130 DOI: 10.1016/j.actbio.2013.05.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/03/2013] [Accepted: 05/22/2013] [Indexed: 12/12/2022]
Abstract
Several studies have reported the benefits of mesenchymal stem cells (MSCs) for bone tissue engineering. However, vascularization remains one of the main obstacles that must be overcome to reconstruct large bone defects. In vitro prevascularization of the three-dimensional (3-D) constructs using co-cultures of human progenitor-derived endothelial cells (PDECs) with human bone marrow mesenchymal stem cells (HBMSCs) appeared as a potential strategy. However, the crosstalk between the two lineages has been studied in two-dimensional (2-D), but remains unknown in 3-D. The aim of this study is to investigate the cell interactions between PDECs and HBMSCs in a porous matrix composed of polysaccharides. This biodegradable scaffold promotes cell interactions by inducing multicellular aggregates composed of HBMSCs surrounded by PDECs. Cell aggregation contributes to the formation of junctional proteins composed of Connexin43 (Cx43) and VE-cadherin, and an activation of osteoblastic differentiation of HBMSCs stimulated by the presence of PDECs. Inhibition of Cx43 by mimetic peptide 43GAP27 induced a decrease in mRNA levels of Cx43 and all the bone-specific markers. Finally, subcutaneous implantations for 3 and 8 weeks in NOG mice revealed an increase in osteoid formation with the tissue-engineered constructs seeded with HBMSCs/PDECs compared with those loaded with HBMSCs alone. Taking together, these results demonstrate that this 3-D microenvironment favored cell communication, osteogenesis and bone formation.
Collapse
Affiliation(s)
- J Guerrero
- Inserm, U1026, Tissue Bioengineering, University Bordeaux Segalen, Bordeaux Cedex 33076, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2013; 40:363-408. [PMID: 23339648 DOI: 10.1615/critrevbiomedeng.v40.i5.10] [Citation(s) in RCA: 1409] [Impact Index Per Article: 117.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.
Collapse
Affiliation(s)
- Ami R Amini
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
43
|
Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev 2013; 65:581-603. [PMID: 22820527 DOI: 10.1016/j.addr.2012.07.009] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/29/2012] [Accepted: 07/06/2012] [Indexed: 02/05/2023]
Abstract
Over the last 4 decades innovations in biomaterials and medical technology have had a sustainable impact on the development of biopolymers, titanium/stainless steel and ceramics utilized in medical devices and implants. This progress was primarily driven by issues of biocompatibility and demands for enhanced mechanical performance of permanent and non-permanent implants as well as medical devices and artificial organs. In the 21st century, the biomaterials community aims to develop advanced medical devices and implants, to establish techniques to meet these requirements, and to facilitate the treatment of older as well as younger patient cohorts. The major advances in the last 10 years from a cellular and molecular knowledge point of view provided the scientific foundation for the development of third-generation biomaterials. With the introduction of new concepts in molecular biology in the 2000s and specifically advances in genomics and proteomics, a differentiated understanding of biocompatibility slowly evolved. These cell biological discoveries significantly affected the way of biomaterials design and use. At the same time both clinical demands and patient expectations continued to grow. Therefore, the development of cutting-edge treatment strategies that alleviate or at least delay the need of implants could open up new vistas. This represents the main challenge for the biomaterials community in the 21st century. As a result, the present decade has seen the emergence of the fourth generation of biomaterials, the so-called smart or biomimetic materials. A key challenge in designing smart biomaterials is to capture the degree of complexity needed to mimic the extracellular matrix (ECM) of natural tissue. We are still a long way from recreating the molecular architecture of the ECM one to one and the dynamic mechanisms by which information is revealed in the ECM proteins in response to challenges within the host environment. This special issue on smart biomaterials lists a large number of excellent review articles which core is to present and discuss the basic sciences on the topic of smart biomaterials. On the other hand, the purpose of our review is to assess state of the art and future perspectives of the so called "smart biomaterials" from a translational science and specifically clinical point of view. Our aim is to filter out and discuss which biomedical advances and innovations help us to achieve the objective to translate smart biomaterials from bench to bedside. The authors predict that analyzing the field of smart biomaterials from a clinical point of view, looking back 50 years from now, it will show that this is our heritage in the 21st century.
Collapse
Affiliation(s)
- Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland, University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part II: challenges on the evolution from single to multiple bioactive factor delivery. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:327-52. [PMID: 23249320 DOI: 10.1089/ten.teb.2012.0727] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors.
Collapse
Affiliation(s)
- Vítor E Santo
- 3Bs Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | |
Collapse
|
45
|
Pang H, Wu XH, Fu SL, Luo F, Zhang ZH, Hou TY, Li ZQ, Chang ZQ, Yu B, Xu JZ. Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction. INTERNATIONAL ORTHOPAEDICS 2013; 37:753-9. [PMID: 23288045 DOI: 10.1007/s00264-012-1751-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/05/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to examine whether the addition of endothelial progenitor cells (EPCs) contributes to restoring the architectural and functional properties of newly formed bone for reconstruction of bone defects. METHODS Bone marrow-derived EPCs and mesenchymal stem cells (MSCs) were co-seeded onto demineralized bone matrix (DBM) as a prevascularized tissue-engineered bone (TEB) for the repair of segmental bone defects to evaluate the effects of prevascularization of TEB on ameliorating morphological, haemodynamic and mechanical characteristics. RESULTS The restoration of the intraosseous vasculature and medullary cavity was improved markedly compared to the non-prevascularized groups. The blood supply, biomechanical strength, and bone mineral density of the prevascularized group were significantly higher than those of the non-prevascularized groups during bone reconstruction. CONCLUSIONS The present study indicates that EPC-dependent prevascularization contributes to bone healing with structural reconstruction and functional recovery and may improve the understanding of correlation between angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Hao Pang
- Department of Orthopaedics, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang W, Yang F, Wang Y, Both SK, Jansen JA. In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 2013; 9:4505-12. [PMID: 23059416 DOI: 10.1016/j.actbio.2012.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 01/18/2023]
Abstract
A new concept of generating bone tissue via the endochondral route might be superior to the standard intramembranous ossification approach. To implement the endochondral approach, suitable scaffolds are required to provide a three-dimensional (3-D) substrate for cell population and differentiation, and eventually for the generation of osteochondral tissue. Therefore, a novel wet-electrospinning system, using ethanol as the collecting medium, was exploited in this study to fabricate a cotton-like poly(lactic-co-glycolic acid)/poly(ε-caprolactone) scaffold that consisted of a very loose and uncompressed accumulation of fibers. Rat bone marrow cells were seeded on these scaffolds and chondrogenically differentiated in vitro for 4 weeks followed by subcutaneous implantation in vivo for 8 weeks. Cell pellets were used as a control. A glycosaminoglycan assay and Safranin O staining showed that the cells infiltrated throughout the scaffolds and deposited an abundant cartilage matrix after in vitro chondrogenic priming. Histological analysis of the in vivo samples revealed extensive new bone formation through the remodeling of the cartilage template. In conclusion, using the wet-electrospinning method, we are able to create a 3-D scaffold in which bone tissue can be formed via the endochondral pathway. This system can be easily processed for various assays and histological analysis. Consequently, it is more efficient than the traditional cell pellets as a tool to study endochondral bone formation for tissue engineering purposes.
Collapse
|
47
|
Sugawara A, Asaoka K, Ding SJ. Calcium phosphate-based cements: clinical needs and recent progress. J Mater Chem B 2013; 1:1081-1089. [DOI: 10.1039/c2tb00061j] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Feng YF, Wang L, Li X, Ma ZS, Zhang Y, Zhang ZY, Lei W. Influence of architecture of β-tricalcium phosphate scaffolds on biological performance in repairing segmental bone defects. PLoS One 2012. [PMID: 23185494 PMCID: PMC3503864 DOI: 10.1371/journal.pone.0049955] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Although three-dimensional (3D) β-tricalcium phosphate (β-TCP) scaffolds serve as promising bone graft substitutes for the segmental bone defect treatment, no consensus has been achieved regarding their optimal 3D architecture. METHODS In this study, we has systematically compared four types of β-TCP bone graft substitutes with different 3D architectures, including two types of porous scaffolds, one type of tubular scaffolds and one type of solid scaffolds, for their efficacy in treating segmental bone defect in a rabbit model. RESULTS Our study has demonstrated that when compared to the traditional porous and solid scaffolds, tubular scaffolds promoted significantly higher amount of new bone formation in the defect regions as shown by X-ray, micro CT examinations and histological analysis, restored much greater mechanical properties of the damaged bone evidenced by the biomechanical testing, and eventually achieved the complete union of segmental defect. Moreover, the implantation of tubular scaffolds enhanced the neo-vascularization at the defect region with higher bone metabolic activities than others, as indicated by the bone scintigraphy assay. CONCLUSIONS This study has further the current knowledge regarding the profound influence of overall 3D architecture of β-TCP scaffolds on their in vivo defect healing performance and illuminated the promising potential use of tubular scaffolds as effective bone graft substitute in treating large segmental bone defects.
Collapse
Affiliation(s)
- Ya-Fei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lin Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, China
| | - Zhen-Sheng Ma
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yang Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhi-Yong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Tissue Engineering Center of China, Shanghai, China
- * E-mail: (WL); (ZYZ)
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (WL); (ZYZ)
| |
Collapse
|
49
|
Thébaud NB, Siadous R, Bareille R, Remy M, Daculsi R, Amédée J, Bordenave L. Whatever their differentiation status, human progenitor derived - or mature - endothelial cells induce osteoblastic differentiation of bone marrow stromal cells. J Tissue Eng Regen Med 2012; 6:e51-60. [PMID: 22740324 DOI: 10.1002/term.1539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/16/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023]
Abstract
Association of the bone-forming osteoblasts (OBs) and vascular endothelial cells (ECs) into a biomaterial composite provides a live bone graft substitute that can repair the bone defect when implanted. An intimate functional relationship exists between these cell types. This communication is crucial to the coordinated cell behaviour necessary for bone development and remodelling. Previous studies have shown that direct co-culture of primary human osteoprogenitors (HOPs) with primary human umbilical vein endothelial cells (HUVECs) stimulates HOPs differentiation and induces tubular-like networks. The present work aims to test the use of human bone marrow stromal cells (HBMSCs) co-cultured with human endothelial progenitor cells in order to assess whether progenitor-derived ECs (PDECs) could support osteoblastic differentiation as mature ECs do. Indeed, data generated from the literature by different laboratories considering these co-culture systems appear difficult to compare. Monocultures of HUVECs, HOPs, HBMSCs (in a non-orientated lineage), PDECs (from cord blood) were used as controls and four combinations of co-cultures were undertaken: HBMSCs-PDECs, HBMSCs-HUVECs, HOPs-PDECs, HOPs-HUVECs with ECs (mature or progenitor) for 6 h to 7 days. At the end of the chosen co-culture time, intracellular alkaline phosphatase (ALP) activity was detected in HOPs and HBMSCs and quantified in cell extracts. Quantitative real-time polymerase chain reaction (qPCR) of ALP was performed over time and vascular endothelial growth factor (VEGF) was measured. After 21 days, calcium deposition was observed, comparing mono- and co-cultures. We confirm that ECs induce osteoblastic differentiation of mesenchymal stem cells in vitro. Moreover, HUVECs can be replaced by PDECs, the latter being of great interest in tissue engineering.
Collapse
|
50
|
Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PLoS One 2012; 7:e34647. [PMID: 22493705 PMCID: PMC3321026 DOI: 10.1371/journal.pone.0034647] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/05/2012] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis.
Collapse
|