1
|
Ramirez J, Estrada S, Harmsen M, Sharma P. Development of an in vitro platform for epithelial-stromal interactions: A basement membrane-containing scaffold from decellularized porcine bladders. Matrix Biol Plus 2025; 26:100169. [PMID: 40124183 PMCID: PMC11928823 DOI: 10.1016/j.mbplus.2025.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
The first organized extracellular matrix that appears during mammalian embryogenesis is a basement membrane (BM), BM is present in all adult epithelia, endothelia, muscle, nerve and fat tissues. BM is a sub-micrometer thick compact lattice of macromolecules that is maintained by the adhered cells. Systems such as collagen gels, Matrigel® or synthetic polymeric scaffolds have been proposed to mimic the BM and to study the interactions between different cell types, but all lack a structured BM. Here we aimed to obtain and characterize a natural, thin basement membrane-containing scaffold from pig urinary bladders that are subjected to blunt dissection of layers and decellularization steps, preserving the near native BM with a few layers of underlying connective tissue to maintain its structural integrity. The scanning electron microscopy, confocal multiphoton microscopy and immunohistochemistry helped confirm the presence of the BM. A veil-like network composed of thin fibers was present on top of a course network, and glycosaminoglycans, collagen and basement membrane proteins were present. The scaffold's ability to repopulation and basement membrane barrier function were further confirmed when HaCaT and MRC5 cells attached and remained respectively on the epithelial and mesenchymal side without any crossover. Cells remained viable till 2 weeks. This BM-containing scaffold allows to create in vitro models of epithelial-mesenchymal tissues through a structured basement membrane and investigate basement membrane dynamics. The basement membrane-containing scaffold was found to be isotropic under uniaxial tension with a failure strain of 0.25 allowing its use to investigate strain induced basement membrane dynamics.
Collapse
Affiliation(s)
- J.A. Ramirez
- University of Groningen, University Medical Center Groningen, Department of Biomaterials and Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Tissue Engineering and Cells Therapy Group (GITTC), Cell Therapy and Biobank, Alma Mater Hospital of Antioquia, School of Medicine, University of Antioquia. Medellín, Colombia, Cra. 51a #62-42 Medellín, Colombia
| | - S. Estrada
- Tissue Engineering and Cells Therapy Group (GITTC), Cell Therapy and Biobank, Alma Mater Hospital of Antioquia, School of Medicine, University of Antioquia. Medellín, Colombia, Cra. 51a #62-42 Medellín, Colombia
| | - M.C. Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
| | - P.K. Sharma
- University of Groningen, University Medical Center Groningen, Department of Biomaterials and Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
2
|
Jia Z, Wang Z. Photo-Crosslinking Hydrogel Based on Porcine Small Intestinal Submucosa Decellularized Matrix/Fish Collagen/GelMA for Culturing Small Intestinal Organoids and Repairing Intestinal Defects. Int J Mol Sci 2025; 26:663. [PMID: 39859377 PMCID: PMC11766382 DOI: 10.3390/ijms26020663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA). The cost-effective hydrogel demonstrated excellent biocompatibility, tunable mechanical properties, rapid gelation properties, and low immunogenicity. Importantly, the proliferation and differentiation capacities of small intestinal organoids cultured in hydrogel were comparable to those in Matrigel, with no significant disparity observed. Furthermore, after one week of transplantation in nude mice, the hydrogel-organoid complex exhibited sustained structural and functional stability while preserving the differentiation characteristics of small intestinal organoids. Our study also demonstrated the effective potential of FC/SIS/GelMA hydrogel in accelerating the repair process of small intestinal defects, reducing the area of scar formation, and promoting the regeneration of both intestinal villi and smooth muscle tissue. In summary, this study presents a novel protocol for culturing small intestinal organoids, offering potential implications for future clinical applications and serving as an experimental foundation for the development of tissue-engineered intestines based on small intestinal organoids.
Collapse
Affiliation(s)
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| |
Collapse
|
3
|
Song YT, Liu PC, Zhou XL, Chen YM, Wu W, Zhang JY, Li-Ling J, Xie HQ. Extracellular matrix-based biomaterials in burn wound repair: A promising therapeutic strategy. Int J Biol Macromol 2024; 283:137633. [PMID: 39549816 DOI: 10.1016/j.ijbiomac.2024.137633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Burns are common traumatic injuries affecting many people worldwide. Development of specialized burn units, advances in acute care modalities, and burn prevention programs have successfully reduced the mortality rate of severe burns. Autologous skin grafting has been considered as the gold standard for wound coverage after the removal of burned skin. For full-thickness burns of a larger scale, however, the autograft donor site may be quickly exhausted, so that alternative skin coverage is necessary. Although rapid progress has been made in the development of skin substitutes for burn wounds during the last decade, no skin substitute has fulfilled the criteria as a perfect replacement for the damaged skin. Extracellular matrix (ECM) derived components have emerged as a source for the engineering of biomaterials capable of inducing desirable cell-specific responses and one of the most promising biomaterials for burn wound healing. Among these, acellular dermal matrix, small intestinal submucosa, and amniotic membrane have been applied to treat burn wounds with acceptable outcomes. This review has explored the use of biomaterials derived from naturally occurring ECM and their derivatives for approaches aiming to promote burn wound healing, and summarized the ECM-based wound dressings products applicable in burn wound and postburn scar contracture to date.
Collapse
Affiliation(s)
- Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing-Li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-Ming Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wu Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
4
|
Somasundaram S, D F, Genasan K, Kamarul T, Raghavendran HRB. Implications of Biomaterials and Adipose-Derived Stem Cells in the Management of Calvarial Bone Defects. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 01/03/2025]
|
5
|
Zhao Y, Peng H, Sun L, Tong J, Cui C, Bai Z, Yan J, Qin D, Liu Y, Wang J, Wu X, Li B. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio 2024; 26:101032. [PMID: 38533376 PMCID: PMC10963656 DOI: 10.1016/j.mtbio.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
Collapse
Affiliation(s)
- Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
6
|
Zavareh ZK, Asbagh RA, Hajikhani K, Tabasi AH, Nazari H, Abbasi M, Moghaddam MG, Behboodi B, Kazemeini A, Tafti SMA. Reinforcing decellularized small intestine submucosa with cellulose acetate nanofibrous and silver nanoparticles as a scaffold for wound healing applications. Mol Biol Rep 2024; 51:658. [PMID: 38748314 DOI: 10.1007/s11033-024-09465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/19/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-β (TGF-β) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-β IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-β increased significantly in SIS/CA/Ag group.
Collapse
Affiliation(s)
- Zahra Khorasani Zavareh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Akbari Asbagh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Hajikhani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Asieh Heirani Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Maryam Abbasi
- Zhino-Gene Research Services Co., Tehran, Iran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Mohammadamir Ghasemian Moghaddam
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Behnam Behboodi
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemeini
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ahmadi Tafti
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Division of Colorectal Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Harmon KA, Burnette MD, Avery JT, Kimmerling KA, Mowry KC. Varying Properties of Extracellular Matrix Grafts Impact Their Durability and Cell Attachment and Proliferation in an In Vitro Chronic Wound Model. J Tissue Eng Regen Med 2024; 2024:6632276. [PMID: 40225755 PMCID: PMC11918773 DOI: 10.1155/2024/6632276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2025]
Abstract
While acute wounds typically progress through the phases of wound healing, chronic wounds often stall in the inflammatory phase due to elevated levels of matrix metalloproteinases (MMPs) and proinflammatory cytokines. Dysregulated expression of MMPs can result in the breakdown of extracellular matrix (ECM) formed during the wound healing process, resulting in stalled wounds. Native collagen-based wound dressings offer a potential wound management option to sequester excess MMPs and support cellular interactions that allow wound progression through the natural healing process. Herein, we utilized commercially available ECM matrices, two derived from porcine small intestinal submucosa (PCMP, 2 layers; PCMP-XT, 5 layers) and one derived from propria submucosa (ovine forestomach matrix, OFM, 1 layer), to demonstrate the impact of processing methodologies (e.g., layering and crosslinking) on functional characteristics needed for the management of chronic wounds. Grafts were evaluated for structural composition using scanning electron microscopy and histology, ability to reduce MMPs using fluorometric assays, and durability in an in vitro degradation chronic wound model. Both intact (nondegraded) and partially degraded grafts were assessed for their ability to serve as a functional cell scaffold using primary human fibroblasts. Grafts differed in matrix substructure and composition. While all grafts demonstrated attenuation of MMP activity, PCMP and PCMP-XT showed larger reductions of MMP levels. OFM rapidly degraded in the in vitro degradation model (<3 hours), while PCMP and PCMP-XT were significantly more durable (>7 days). The ability of PCMP and PCMP-XT to serve as scaffolds for cellular attachment was not impacted by degradation in vitro. Three ECM grafts with varying structural and functional characteristics exhibited differential durability when degraded in a simulated chronic wound model. Those that withstood rapid degradation maintained their ability to function as a scaffold to support attachment and proliferation of fibroblasts, a cell type important for wound healing.
Collapse
Affiliation(s)
- Katrina A. Harmon
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Miranda D. Burnette
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Justin T. Avery
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Kelly A. Kimmerling
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Katie C. Mowry
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| |
Collapse
|
8
|
Leng W, Li X, Dong L, Guo Z, Ji X, Cai T, Xu C, Zhu Z, Lin J. The Regenerative Microenvironment of the Tissue Engineering for Urethral Strictures. Stem Cell Rev Rep 2024; 20:672-687. [PMID: 38305981 DOI: 10.1007/s12015-024-10686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Urethral stricture caused by various reasons has threatened the quality of life of patients for decades. Traditional reconstruction methods, especially for long-segment injuries, have shown poor outcomes in treating urethral strictures. Tissue engineering for urethral regeneration is an emerging concept in which special designed scaffolds and seed cells are used to promote local urethral regeneration. The scaffolds, seed cells, various factors and the host interact with each other and form the regenerative microenvironment. Among the various interactions involved, vascularization and fibrosis are the most important biological processes during urethral regeneration. Mesenchymal stem cells and induced pluripotent stem cells play special roles in stricture repair and facilitate long-segment urethral regeneration, but they may also induce carcinogenesis and genomic instability during reconstruction. Nevertheless, current technologies, such as genetic engineering, molecular imaging, and exosome extraction, provide us with opportunities to manage seed cell-related regenerative risks. In this review, we described the interactions among seed cells, scaffolds, factors and the host within the regenerative microenvironment, which may help in determining the exact molecular mechanisms involved in urethral stricture regeneration and promoting clinical trials and the application of urethral tissue engineering in patients suffering from urethral stricture.
Collapse
Affiliation(s)
- Wenyuan Leng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xiaoyu Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Lei Dong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenke Guo
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Xing Ji
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Tianyu Cai
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Zhenpeng Zhu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
- Institute of Urology, Peking University, Beijing, 100034, China
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
- Institute of Urology, Peking University, Beijing, 100034, China.
- National Urological Cancer Center, No. 8, Street Xishiku, District Xicheng, Beijing, 100034, China.
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
| |
Collapse
|
9
|
Guo W, Liu H, Zhang J, Zhang J, Wang F, Zhang P, Yang Y. Preparation and characterization of a novel composite acellular matrix/hyaluronic acid thermosensitive hydrogel for interstitial cystitis/bladder pain syndrome. J Biomed Mater Res A 2024; 112:449-462. [PMID: 37975156 DOI: 10.1002/jbm.a.37643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Bladder mucosa damage that causes harm to the interstitium is a recognized pathogenesis of interstitial cystitis/bladder pain syndrome (IC/BPS). The intravesical instillation of drugs is an important second-line therapy, but it is often necessary to use drugs repeatedly in the clinic because of their short residence time in the bladder cavity, which alters the therapeutic effect. To overcome this drawback, this study developed a novel composite acellular matrix/hyaluronic acid (HA) thermosensitive hydrogel (HA-Gel) using rabbit small intestinal submucosa extracellular matrix (ECM) as the thermosensitive material and HA as the drug component and examined its composition, microstructure, thermodynamic properties, temperature sensitivity, rheological properties, biocompatibility, drug release, hydrogel residue, and bacteriostatic properties. The study showed HA-Gel was liquid at temperatures of 15-37.5°C and solid at 37.5-50°C, its swelling rate decreased with increasing temperature, and its lower critical solution temperature occurred at approximately 37.5°C. This property made the hydrogel liquid at room temperature convenient for intravesical perfusion and turned into a solid about 1 min after entering the body and rising to body temperature to increase its residence time. Subsequent experiments also proved that the gel residue time of HA-Gel in vivo and the drug release time of HA in vivo could reach more than 5 days, which was significantly higher than that of HA alone, and it had good biocompatibility and antibacterial properties. Therefore, this hydrogel possesses the proper characteristics to possibly make it an ideal dosage form for IC/BPS intravesical instillation therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Haichao Liu
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jiaxing Zhang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| | - Jianzhong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Fei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yunbo Yang
- Department of Urology, Hebei Yanda Hospital, West of SiPuLan Road, Langfang, China
| |
Collapse
|
10
|
Gao W, Cheng T, Tang Z, Zhang W, Xu Y, Han M, Zhou G, Tao C, Xu N, Xia H, Sun W. Enhancing cartilage regeneration and repair through bioactive and biomechanical modification of 3D acellular dermal matrix. Regen Biomater 2024; 11:rbae010. [PMID: 38414795 PMCID: PMC10898337 DOI: 10.1093/rb/rbae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
Acellular dermal matrix (ADM) shows promise for cartilage regeneration and repair. However, an effective decellularization technique that removes cellular components while preserving the extracellular matrix, the transformation of 2D-ADM into a suitable 3D scaffold with porosity and the enhancement of bioactive and biomechanical properties in the 3D-ADM scaffold are yet to be fully addressed. In this study, we present an innovative decellularization method involving 0.125% trypsin and 0.5% SDS and a 1% Triton X-100 solution for preparing ADM and converting 2D-ADM into 3D-ADM scaffolds. These scaffolds exhibit favorable physicochemical properties, exceptional biocompatibility and significant potential for driving cartilage regeneration in vitro and in vivo. To further enhance the cartilage regeneration potential of 3D-ADM scaffolds, we incorporated porcine-derived small intestinal submucosa (SIS) for bioactivity and calcium sulfate hemihydrate (CSH) for biomechanical reinforcement. The resulting 3D-ADM+SIS scaffolds displayed heightened biological activity, while the 3D-ADM+CSH scaffolds notably bolstered biomechanical strength. Both scaffold types showed promise for cartilage regeneration and repair in vitro and in vivo, with considerable improvements observed in repairing cartilage defects within a rabbit articular cartilage model. In summary, this research introduces a versatile 3D-ADM scaffold with customizable bioactive and biomechanical properties, poised to revolutionize the field of cartilage regeneration.
Collapse
Affiliation(s)
- Wei Gao
- Qingdao Medical College of Qingdao University, Qingdao, 266071, China
| | - Tan Cheng
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200040, China
| | - Zhengya Tang
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Wenqiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Min Han
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Guangdong Zhou
- Department of Plastic surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Chunsheng Tao
- Department of Orthopaedics, Ninety-seventh Hospital of the Chinese People's Liberation Army Navy, Qingdao, 266071, China
| | - Ning Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Orthopedic Surgery, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Huitang Xia
- Department of Plastic Surgery & Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University, Jinan, 266299, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Shushan, Hefei, 230022, China
| |
Collapse
|
11
|
Wang X, Liu C, Li X, Shen T, Lian J, Shi J, Jiang Z, Qiu G, Wang Y, Meng E, Wei G. A novel electrospun polylactic acid silkworm fibroin mesh for abdominal wall hernia repair. Mater Today Bio 2024; 24:100915. [PMID: 38188648 PMCID: PMC10767193 DOI: 10.1016/j.mtbio.2023.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Abdominal wall hernias are common abdominal diseases, and effective hernia repair is challenging. In clinical practice, synthetic meshes are widely applied for repairing abdominal wall hernias. However, postoperative complications, such as inflammation and adhesion, are prevalent. Although biological meshes can solve this problem to a certain extent, they face the problems of heterogeneity, rapid degradation rate, ordinary mechanical properties, and high-cost. Here, a novel electrospinning mesh composed of polylactic acid and silk fibroin (PLA-SF) for repairing abdominal wall hernias was manufactured with good physical properties, biocompatibility and low production cost. Materials and methods FTIR and EDS were used to demonstrate that the PLA-SF mesh was successfully synthesized. The physicochemical properties of PLA-SF were detected by swelling experiments and in vitro degradation experiments. The water contact angle reflected the hydrophilicity, and the stress‒strain curve reflected the mechanical properties. A rat abdominal wall hernia model was established to observe degradation, adhesion, and inflammation in vivo. In vitro cell mesh culture experiments were used to detect cytocompatibility and search for affected biochemical pathways. Results The PLA-SF mesh was successfully synthesized and did not swell or degrade over time in vitro. It had a high hydrophilicity and strength. The PLA-SF mesh significantly reduced abdominal inflammation and inhibited adhesion formation in rat models. The in vitro degradation rate of the PLA-SF mesh was slower than that of tissue remodeling. Coculture experiments suggested that the PLA-SF mesh reduced the expression of inflammatory factors secreted by fibroblasts and promoted fibroblast proliferation through the TGF-β1/Smad pathway. Conclusion The PLA-SF mesh had excellent physicochemical properties and biocompatibility, promoted hernia repair of the rat abdominal wall, and reduced postoperative inflammation and adhesion. It is a promising mesh and has potential for clinical application.
Collapse
Affiliation(s)
- Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jing Shi
- Department of Respiratory and Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuanbo Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Guangbing Wei
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
12
|
Zhu W, Shi J, Weng B, Zhou Z, Mao X, Pan S, Peng J, Zhang C, Mao H, Li M, Zhao J. EVs from cells at the early stages of chondrogenesis delivered by injectable SIS dECM promote cartilage regeneration. J Tissue Eng 2024; 15:20417314241268189. [PMID: 39157647 PMCID: PMC11329914 DOI: 10.1177/20417314241268189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.
Collapse
Affiliation(s)
- Weilai Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jiaying Shi
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Bowen Weng
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Zhenger Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Xufeng Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Senhao Pan
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jing Peng
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Chi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Mei Li
- Zhejiang Key Laboratory of Precision Medicine for Atherosclerotic Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Bergman M, Harwood J, Liu L, Dharmadikhari S, Shontz KM, Chiang T. Optimization of Chondrocyte Viability in Partially Decellularized Tracheal Grafts. Otolaryngol Head Neck Surg 2023; 169:1241-1246. [PMID: 37313949 PMCID: PMC10792494 DOI: 10.1002/ohn.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Advancements in tissue-engineered tracheal replacement (TETR) show promise for the use of partially decellularized tracheal grafts (PDTG) to address critical gaps in airway management and reconstruction. In this study, aiming to leverage the immunoprivileged nature of cartilage to preserve tracheal biomechanics, we optimize PDTG for retention of native chondrocytes. STUDY DESIGN Comparison in vivo murine study. SETTING Research Institute affiliated with Tertiary Pediatric Hospital. METHODS PDTG were created per a shortened decellularization protocol using sodium dodecyl sulfate, then biobanked via cryopreservation technique. Decellularization efficiency was characterized by DNA assay and histology. Viability and apoptosis of chondrocytes in preimplanted PDTG and biobanked native trachea (control) was assessed with live/dead and apoptosis assays. PDTG (N = 5) and native trachea (N = 6) were orthotopically implanted in syngeneic recipients for 1-month. At the endpoint, microcomputed tomography (micro-CT) was employed to interrogate graft patency and radiodensity in vivo. Vascularization and epithelialization were qualitatively analyzed using histology images following explant. RESULTS PDTG exhibited complete decellularization of all extra-cartilaginous cells and reduced DNA content compared to control. Chondrocyte viability and nonapoptotic cell populations were improved utilizing biobanking and shorter decellularization time. All grafts remained patent. Evaluation of graft radiodensity at 1 month revealed elevation of Hounsfield units in both PDTG and native compared to host, with PDTG showing higher radiodensity than native. PDTG supported complete epithelialization and functional reendothelialization 1-month postimplantation. CONCLUSION Optimizing PDTG chondrocyte viability is a key component to successful tracheal replacement. Ongoing research seeks to evaluate the acute and chronic immunogenicity of PDTG.
Collapse
Affiliation(s)
- Maxwell Bergman
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Jacqueline Harwood
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Sayali Dharmadikhari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kimberly M. Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
14
|
Koziolek M, Augustijns P, Berger C, Cristofoletti R, Dahlgren D, Keemink J, Matsson P, McCartney F, Metzger M, Mezler M, Niessen J, Polli JE, Vertzoni M, Weitschies W, Dressman J. Challenges in Permeability Assessment for Oral Drug Product Development. Pharmaceutics 2023; 15:2397. [PMID: 37896157 PMCID: PMC10609725 DOI: 10.3390/pharmaceutics15102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly permeable compounds such as drugs for targeted protein degradation, have made permeability a key parameter in oral drug product development. This review describes the various in vitro, in silico and in vivo methodologies that are applied to determine drug permeability in the human gastrointestinal tract and identifies how they are applied in the different stages of drug development. The various methods used to predict, estimate or measure permeability values, ranging from in silico and in vitro methods all the way to studies in animals and humans, are discussed with regard to their advantages, limitations and applications. A special focus is put on novel techniques such as computational approaches, gut-on-chip models and human tissue-based models, where significant progress has been made in the last few years. In addition, the impact of permeability estimations on PK predictions in PBPK modeling, the degree to which excipients can affect drug permeability in clinical studies and the requirements for colonic drug absorption are addressed.
Collapse
Affiliation(s)
- Mirko Koziolek
- NCE Drug Product Development, Development Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Constantin Berger
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics, University of Florida, 6550 Sanger Road, Orlando, FL 32827, USA
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden (J.N.)
| | - Janneke Keemink
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland;
| | - Pär Matsson
- Department of Pharmacology and SciLifeLab Gothenburg, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Fiona McCartney
- School of Veterinary Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Marco Metzger
- Translational Center for Regenerative Therapies (TLZ-RT) Würzburg, Branch of the Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany;
| | - Janis Niessen
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden (J.N.)
| | - James E. Polli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21021, USA;
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, 157 84 Zografou, Greece;
| | - Werner Weitschies
- Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
15
|
Kim K, Kim H, Do S, Kim H. Potential of Aligned Electrospun PLGA/SIS Blended Nanofibrous Membrane for Tendon Tissue Engineering. Polymers (Basel) 2023; 15:polym15102313. [PMID: 37242888 DOI: 10.3390/polym15102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tendons are responsible for transmitting mechanical forces from muscles to bones for body locomotion and joint stability. However, tendons are frequently damaged with high mechanical forces. Various methods have been utilized for repairing damaged tendons, including sutures, soft tissue anchors, and biological grafts. However, tendons experience a higher rate of retear post-surgery due to their low cellularity and vascularity. Surgically sutured tendons are vulnerable to reinjury due to their inferior functionality when compared with native tendons. Surgical treatment using biological grafts also has complications such as joint stiffness, re-rupture, and donor-site morbidity. Therefore, current research is focused on developing novel materials that can facilitate the regeneration of tendons with histological and mechanical characteristics similar to those of intact tendons. With respect to the complications in association with the surgical treatment of tendon injuries, electrospinning may be an alternative for tendon tissue engineering. Electrospinning is an effective method for fabrication of polymeric fibers with diameters ranging from nanometers to micrometers. Thus, this method produces nanofibrous membranes with an extremely high surface area-to-volume ratio, which is similar to the extracellular matrix structure, making them suitable candidates for application in tissue engineering. Moreover, it is possible to fabricate nanofibers with specific orientations that are similar to those of the native tendon tissue using an adequate collector. To increase the hydrophilicity of the electrospun nanofibers, natural polymers in addition to synthetic polymers are used concurrently. Therefore, in this study, aligned nanofibers composed of poly-d,l-lactide-co-glycolide (PLGA) and small intestine submucosa (SIS) were fabricated using electrospinning with rotating mandrel. The diameter of aligned PLGA/SIS nanofibers was 568.44 ± 135.594 nm, which closely resembles that of native collagen fibrils. Compared to the results of the control group, the mechanical strength exhibited by the aligned nanofibers was anisotropic in terms of break strain, ultimate tensile strength, and elastic modulus. Elongated cellular behavior was observed in the aligned PLGA/SIS nanofibers using confocal laser scanning microscopy, indicating that the aligned nanofibers were highly effective with regard to tendon tissue engineering. In conclusion, considering its mechanical properties and cellular behavior, aligned PLGA/SIS is a promising candidate for tendon tissue engineering.
Collapse
Affiliation(s)
- Kihoon Kim
- Department of Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyosung Kim
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunhee Do
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hwiyool Kim
- Department of Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
16
|
Wang L, Liu F, Zhai X, Dong W, Wei W, Hu Z. An adhesive gelatin-coated small intestinal submucosa composite hydrogel dressing aids wound healing. Int J Biol Macromol 2023; 241:124622. [PMID: 37119906 DOI: 10.1016/j.ijbiomac.2023.124622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
It is a challenging clinical task to determine how to repair large-area skin defects better. Traditional wound dressings (e.g., cotton and gauze) can only be used as a dressing; consequently, there is an increasing demand for wound dressings with additional properties (i.e., antibacterial and pro-repair) in clinical practice. In this study, a composite hydrogel with o-nitrobenzene-modified gelatin-coated decellularized small intestinal submucosa (GelNB@SIS) was designed for the repair of skin injuries. SIS is a natural extracellular matrix with a 3D microporous structure and also contains high levels of growth factors and collagen. GelNB provides this material photo-triggering tissue adhesive property. The structure, tissue adhesion, cytotoxicity, and bioactivity to cells were investigated. Based on in vivo study and histological analysis, we found the combination of GelNB and SIS improved the healing process by promoting vascular renewal, dermal remodeling, and epidermal regeneration. Based on our findings, GelNB@SIS is a promising candidate for tissue repair applications.
Collapse
Affiliation(s)
- Lu Wang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Fengling Liu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Xinrang Zhai
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Wei
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| | - Zhenhua Hu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| |
Collapse
|
17
|
Wang ZL, Zhang WQ, Jiang YL, Chen AJ, Pi JK, Hu JG, Zhang Y, Yang XJ, Huang FG, Xie HQ. Bioactive ECM-Loaded SIS Generated by the Optimized Decellularization Process Exhibits Skin Wound Healing Ability in Type I Diabetic Rats. ACS Biomater Sci Eng 2023; 9:1496-1509. [PMID: 36815316 DOI: 10.1021/acsbiomaterials.2c01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Patients with diabetes have 15-25% chance for developing diabetic ulcers as a severe complication and formidable challenge for clinicians. Conventional treatment for diabetic ulcers is to surgically remove the necrotic skin, clean the wound, and cover it with skin flaps. However, skin flap often has a limited efficacy, and its acquisition requires a second surgery, which may bring additional risk for the patient. Skin tissue engineering has brought a new solution for diabetic ulcers. Herein, we have developed a bioactive patch through a compound culture and the optimized decellularization strategy. The patch was prepared from porcine small intestinal submucosa (SIS) and modified by an extracellular matrix (ECM) derived from urine-derived stem cells (USCs), which have low immunogenicity while retaining cytokines for angiogenesis and tissue regeneration. The protocol included the optimization of the decellularization time and the establishment of the methods. Furthermore, the in vitro mechanism of wound healing ability of the patch was investigated, and its feasibility for skin wound healing was assessed through an antishrinkage full-thickness skin defect model in type I diabetic rats. As shown, the patch displayed comparable effectiveness to the USCs-loaded SIS. Our findings suggested that this optimized decellularization protocol may provide a strategy for cell-loaded scaffolds that require the removal of cellular material while retaining sufficient bioactive components in the ECM for further applications.
Collapse
Affiliation(s)
- Zhu-Le Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - An-Jing Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin-Kui Pi
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi-Jing Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fu-Guo Huang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Suzuki M, Kimura T, Nakano Y, Kobayashi M, Okada M, Matsumoto T, Nakamura N, Hashimoto Y, Kishida A. Preparation of mineralized pericardium by alternative soaking for soft-hard interregional tissue application. J Biomed Mater Res A 2023; 111:198-208. [PMID: 36069375 DOI: 10.1002/jbm.a.37445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
Recent applications of decellularized tissues include the ectopic use of sheets and powders for three-dimensional (3D) tissue reconstruction. Decellularized tissues are modified (or fabricated) with the desired functions for application to the target (transplanted or used) tissue, including soft-hard interregional tissues, such as ligaments, tendons, and periodontal ligaments. This study aimed to prepare a mineralized decellularized pericardium to construct a soft-hard interregional tissue by 3D fabrication of decellularized pericardium, for example, rolling up to a cylindrical form. The decellularized pericardial tissue was prepared using the high hydrostatic pressurization (HHP) and surfactants method. The pericardium consisted of bundles of aligned fibers, and the bundles were slightly disordered when prepared with the surfactant decellularization method compared with that prepared using the HHP decellularization method. Mineralization of the decellularized pericardium was performed using an alternate soaking process with various cycles. The surface of the decellularized pericardium was covered with calcium phosphate precipitates, which accumulated on the surface with an increasing number of soaking cycles. The inside of the HHP decellularized pericardium was mineralized uniformly, whereas the mineralization of the decellularized pericardium decreased toward the interior. These findings suggest that the decellularization method strongly affects the structure and mineralized parts of the decellularized pericardium. The mineralized decellularized pericardium could be a candidate material for reconstructing alternative interregional tissues, such as ligaments and tendons.
Collapse
Affiliation(s)
- Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuta Nakano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University, Okayama, Japan
| | | | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Tokyo, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Liu Z, Yu X, Ma B, Yang Y, Mu Y, Lu X, Li M, Jing W, Wei P, Ma S, Zhao B, Deng J. SIS membrane modification to improve antimicrobial and osteogenic properties for guide bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-23. [PMID: 36607605 DOI: 10.1080/09205063.2023.2166337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The guided bone regeneration (GBR) technique is the most common and durable approach to repairing bone defects in periodontal surgery. However, membrane exposure causes bacterial infiltration, which lowers the functional integrity of the barrier membrane and destroys bone repair. Here, an antibacterial peptide-modified small intestinal submucosa (SIS) membrane is used as a new GBR membrane for effective bone regeneration. The peptide JH8194 was placed into chitosan microspheres to preserve its stability and allow for sustained release, which realizes rapid and efficient functional modification of the SIS membrane. Biocompatibility and certain antibacterial activities were found in the modified SIS membrane (SIS@CS-JH8194). Additionally, in vitro experiments showed that SIS@CS-JH8194 promoted the expression of osteogenic-related factors and decreased the secretion of inflammatory factors in rat bone mesenchymal stem cells. In vivo experiments showed that SIS@CS-JH8194 could effectively promote bone regeneration in rat skull defects. In this work, we created a new antibacterial GBR membrane to help avoid postoperative infection and improve bone tissue regeneration.
Collapse
Affiliation(s)
- Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xinying Yu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Beibei Ma
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yilin Yang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xuemei Lu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Minting Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, China.,Foshan (Southern China) Institute for New Materials, Foshan, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, China
| | - Shiqing Ma
- Department of Stomotology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Priddy LB, Krishnan L, Hettiaratchi MH, Karthikeyakannan S, Gupte N, Guldberg RE. Amniotic membrane attenuates heterotopic ossification following high-dose bone morphogenetic protein-2 treatment of segmental bone defects. J Orthop Res 2023; 41:130-140. [PMID: 35340049 PMCID: PMC9512937 DOI: 10.1002/jor.25324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Treatment of large bone defects with supraphysiological doses of bone morphogenetic protein-2 (BMP-2) has been associated with complications including heterotopic ossification (HO), inflammation, and pain, presumably due to poor spatiotemporal control of BMP-2. We have previously recapitulated extensive HO in our rat femoral segmental defect model by treatment with high-dose BMP-2 (30 μg). Using this model and BMP-2 dose, our objective was to evaluate the utility of a clinically available human amniotic membrane (AM) around the defect space for guided bone regeneration and reduction of HO. We hypothesized that AM surrounding collagen sponge would attenuate heterotopic ossification compared with collagen sponge alone. In vitro, AM retained more BMP-2 than a synthetic poly(ε-caprolactone) membrane through 21 days. In vivo, as hypothesized, the collagen + AM resulted in significantly less heterotopic ossification and correspondingly, lower total bone volume (BV), compared with collagen sponge alone. Although bone formation within the defect was delayed with AM around the defect, by 12 weeks, defect BVs were equivalent. Torsional stiffness was significantly reduced with AM but was equivalent to that of intact bone. Collagen + AM resulted in the formation of dense fibrous tissue and mineralized tissue, while the collagen group contained primarily mineralized tissue surrounded by marrow-like structures. Especially in conjunction with high doses of growth factor delivered via collagen sponge, these findings suggest AM may be effective as an overlay adjacent to bone healing sites to spatially direct bone regeneration and minimize heterotopic ossification.
Collapse
Affiliation(s)
- Lauren B. Priddy
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA 30332, USA
- Current affiliation: Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS 39762, USA
| | - Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Marian H. Hettiaratchi
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA 30332, USA
- Current affiliation: Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA
| | - Sukhita Karthikeyakannan
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Nikhil Gupte
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332, USA
- Current affiliation: Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
21
|
Tuveri M, Paiella S, Boschi F, Luchini C, Perri G, Gasparini C, Aresta A, Scarpa A, Salvia R, Bassi C. Evidence of glucose absorption in a neoformed intestine. Updates Surg 2022; 74:1705-1713. [PMID: 35050488 PMCID: PMC9481485 DOI: 10.1007/s13304-022-01241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/08/2022] [Indexed: 12/04/2022]
Abstract
Recent advances in the field of tissue regeneration are offering promising therapeutic options for the treatment of short bowel syndrome. This study aimed to evaluate the glucose absorptive capacity of a neoformed intestine obtained from a biological scaffold in a rodent model and the steadiness of the engrafted segment area. Twenty-four male Sprague-Dawley rats were used for this study. Under anesthesia, a patch of biological material (2.2 × 1.5 cm) was engrafted in the anti-mesenteric border of the small bowels of 12 rats. Twelve rats were sham-operated. Animals were studied at 4, 8, and 10 months postengraftment. Functional and histological analyses were performed. The functional analysis was performed using an 18F-FDG analog as a probe and the results were acquired with an optical imager. The intensity of the fluorescent signal emitted by the neointestine was comparable with that emitted by the native intestine in all animals and was visible after injection in the preserved mesentery. The mean intestinal volume at time of engraftment and after 10 months was 4.08 cm3 (95% CI [3.58-4.58]) and 3.26 cm3 (CI 95% [3.23-3.29]), respectively, with a mean shrinkage of 17.3% (range 10.6-23.8%), without any evidence of stenosis. Morphological analysis revealed the progression of the biological material toward a neoformed intestine similar to the native intestine, especially at 8 and 10 months. In a rodent model, we demonstrated that a neointestine, obtained from a biological scaffold showed glucose absorption and a durable increase in diameter.
Collapse
Affiliation(s)
- Massimiliano Tuveri
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, P.le L.A. Scuro n° 10, 37134 Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, P.le L.A. Scuro n° 10, 37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Claudio Luchini
- Section of Pathology, Department of Diagnostics and Public Health, Pancreas Institute, University of Verona, Verona, Italy
| | - Giampaolo Perri
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, P.le L.A. Scuro n° 10, 37134 Verona, Italy
| | - Clizia Gasparini
- Radiology Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Alex Aresta
- Section of Pathology, Department of Diagnostics and Public Health, Pancreas Institute, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Section of Pathology, Department of Diagnostics and Public Health, Pancreas Institute, University of Verona, Verona, Italy
- ARC-Net Research Center, University of Verona, Verona, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, P.le L.A. Scuro n° 10, 37134 Verona, Italy
| | - Claudio Bassi
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, P.le L.A. Scuro n° 10, 37134 Verona, Italy
| |
Collapse
|
22
|
Enhancement of Tendon Repair Using Tendon-Derived Stem Cells in Small Intestinal Submucosa via M2 Macrophage Polarization. Cells 2022; 11:cells11172770. [PMID: 36078178 PMCID: PMC9454771 DOI: 10.3390/cells11172770] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Reconstruction of Achilles tendon defects and prevention of postoperative tendon adhesions were two serious clinical problems. In the treatment of Achilles tendon defects, decellularized matrix materials and mesenchymal stem cells (MSCs) were thought to address both problems. (2) Methods: In vitro, cell adhesion, proliferation, and tenogenic differentiation of tendon-derived stem cells (TDSCs) on small intestinal submucosa (SIS) were evaluated. RAW264.7 was induced by culture medium of TDSCs and TDSCs–SIS scaffold groups. A rat Achilles tendon defect model was used to assess effects on tendon regeneration and antiadhesion in vivo. (3) Results: SIS scaffold facilitated cell adhesion and tenogenic differentiation of TDSCs, while SIS hydrogel coating promoted proliferation of TDSCs. The expression of TGF-β and ARG-1 in the TDSCs-SIS scaffold group were higher than that in the TDSCs group on day 3 and 7. In vivo, the tendon regeneration and antiadhesion capacity of the implanted TDSCs–SIS scaffold was significantly enhanced. The expression of CD163 was significantly highest in the TDSCs–SIS scaffold group; meanwhile, the expression of CD68 decreased more significantly in the TDSCs–SIS scaffold group than the other two groups. (4) Conclusion: This study showed that biologically prepared SIS scaffolds synergistically promote tendon regeneration with TDSCs and achieve antiadhesion through M2 polarization of macrophages.
Collapse
|
23
|
In Vitro Tissue Reconstruction Using Decellularized Pericardium Cultured with Cells for Ligament Regeneration. Polymers (Basel) 2022; 14:polym14122351. [PMID: 35745927 PMCID: PMC9229290 DOI: 10.3390/polym14122351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Recent applications of decellularized tissues have included the ectopic use of their sheets and powders for three-dimensional (3D) tissue reconstruction. Decellularized tissues are fabricated with the desired functions to employ them to a target tissue. The aim of this study was to develop a 3D reconstruction method using a recellularized pericardium to overcome the difficulties in cell infiltration into tight and dense tissues, such as ligament and tendon tissues. Decellularized pericardial tissues were prepared using the high hydrostatic pressurization (HHP) and surfactant methods. The pericardium consisted of bundles of aligned fibers. The bundles were slightly disordered in the surfactant decellularization method compared to the HHP decellularization method. The mechanical properties of the pericardium were maintained after the HHP and surfactant decellularizations. The HHP-decellularized pericardium was rolled up into a cylindrical formation. Its mechanical behavior was similar to that of a porcine anterior cruciate ligament in tensile testing. NIH3T3, C2C12, and mesenchymal stem cells were adhered with elongation and alignment on the HHP- and surfactant-decellularized pericardia, with dependences on the cell type and decellularization method. When the recellularized pericardium was rolled up into a cylinder formation and cultured by hanging circulation for 2 days, the cylinder formation and cellular elongation and alignment were maintained on the decellularized pericardium, resulting in a layer structure of cells in a cross-section. According to these results, the 3D-reconstructed decellularized pericardium with cells has the potential to be an attractive alternative to living tissues, such as ligament and tendon tissues.
Collapse
|
24
|
Browe DC, Díaz-Payno PJ, Freeman FE, Schipani R, Burdis R, Ahern DP, Nulty JM, Guler S, Randall LD, Buckley CT, Brama PA, Kelly DJ. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair. Acta Biomater 2022; 143:266-281. [PMID: 35278686 DOI: 10.1016/j.actbio.2022.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
While some clinical advances in cartilage repair have occurred, osteochondral (OC) defect repair remains a significant challenge, with current scaffold-based approaches failing to recapitulate the complex, hierarchical structure of native articular cartilage (AC). To address this need, we fabricated bilayered extracellular matrix (ECM)-derived scaffolds with aligned pore architectures. By modifying the freeze-drying kinetics and controlling the direction of heat transfer during freezing, it was possible to produce anisotropic scaffolds with larger pores which supported homogenous cellular infiltration and improved sulfated glycosaminoglycan deposition. Neo-tissue organization in vitro could also be controlled by altering scaffold pore architecture, with collagen fibres aligning parallel to the long-axis of the pores within scaffolds containing aligned pore networks. Furthermore, we used in vitro and in vivo assays to demonstrate that AC and bone ECM derived scaffolds could preferentially direct the differentiation of mesenchymal stromal cells (MSCs) towards either a chondrogenic or osteogenic lineage respectively, enabling the development of bilayered ECM scaffolds capable of spatially supporting unique tissue phenotypes. Finally, we implanted these scaffolds into a large animal model of OC defect repair. After 6 months in vivo, scaffold implantation was found to improve cartilage matrix deposition, with collagen fibres preferentially aligning parallel to the long axis of the scaffold pores, resulting in a repair tissue that structurally and compositionally was more hyaline-like in nature. These results demonstrate how scaffold architecture and composition can be spatially modulated to direct the regeneration of complex interfaces such as the osteochondral unit, enabling their use as cell-free, off-the-shelf implants for joint regeneration. STATEMENT OF SIGNIFICANCE: The architecture of the extracellular matrix, while integral to tissue function, is often neglected in the design and evaluation of regenerative biomaterials. In this study we developed a bilayered scaffold for osteochondral defect repair consisting of tissue-specific extracellular matrix (ECM)-derived biomaterials to spatially direct stem/progenitor cell differentiation, with a tailored pore microarchitecture to promote the development of a repair tissue that recapitulates the hierarchical structure of native AC. The use of this bilayered scaffold resulted in improved tissue repair outcomes in a large animal model, specifically the ability to guide neo-tissue organization and therefore recapitulate key aspects of the zonal structure of native articular cartilage. These bilayer scaffolds have the potential to become a new therapeutic option for osteochondral defect repair.
Collapse
|
25
|
Ma S, Hu H, Wu J, Li X, Ma X, Zhao Z, Liu Z, Wu C, Zhao B, Wang Y, Jing W. Functional extracellular matrix hydrogel modified with MSC-derived small extracellular vesicles for chronic wound healing. Cell Prolif 2022; 55:e13196. [PMID: 35156747 PMCID: PMC9055911 DOI: 10.1111/cpr.13196] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Diabetic wound healing remains a global challenge in the clinic and in research. However, the current medical dressings are difficult to meet the demands. The primary goal of this study was to fabricate a functional hydrogel wound dressing that can provide an appropriate microenvironment and supplementation with growth factors to promote skin regeneration and functional restoration in diabetic wounds. MATERIALS AND METHODS Small extracellular vesicles (sEVs) were bound to the porcine small intestinal submucosa-based hydrogel material through peptides (SC-Ps-sEVs) to increase the content and achieve a sustained release. NIH3T3 cell was used to evaluate the biocompatibility and the promoting proliferation, migration and adhesion abilities of the SC-Ps-sEVs. EA.hy926 cell was used to evaluate the stimulating angiogenesis of SC-Ps-sEVs. The diabetic wound model was used to investigate the function/role of SC-Ps-sEVs hydrogel in promoting wound healing. RESULTS A functional hydrogel wound dressing with good mechanical properties, excellent biocompatibility and superior stimulating angiogenesis capacity was designed and facilely fabricated, which could effectively enable full-thickness skin wounds healing in diabetic rat model. CONCLUSIONS This work led to the development of SIS, which shows an unprecedented combination of mechanical, biological and wound healing properties. This functional hydrogel wound dressing may find broad utility in the field of regenerative medicine and may be similarly useful in the treatment of wounds in epithelial tissues, such as the intestine, lung and liver.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of StomatologyThe Second Hospital of Tianjin Medical UniversityHexi DistrictTianjinChina
| | - Han Hu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Jinzhe Wu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xuewen Li
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Xinying Ma
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Zhezhe Zhao
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Zihao Liu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Chenxuan Wu
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd.BeijingChina
| | - Yonglan Wang
- School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd.BeijingChina
| |
Collapse
|
26
|
Sun X, Liu Y, Wei Y, Wang Y. Chirality-induced bionic scaffolds in bone defects repair-a review. Macromol Biosci 2022; 22:e2100502. [PMID: 35246939 DOI: 10.1002/mabi.202100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Due to lack of amino sugar with aging, people will suffer from various epidemic bone diseases called "undead cancer" by the World Health Organization. The key problem in bone tissue engineering that has not been completely resolved is the repair of critical large-scale bone and cartilage defects. The chirality of the extracellular matrix plays a decisive role in the physiological activity of bone cells and the occurrence of bone tissue, but the mechanism of chirality in regulating cell adhesion and growth is still in the early stage of exploration. This paper reviews the application progress of chirality-induced bionic scaffolds in bone defects repair based on "soft" and "hard" scaffolds. The aim is to summarize the effects of different chiral structures (L-shaped and D-shaped) in the process of inducing bionic scaffolds in bone defects repair. In addition, many technologies and methods as well as issues worthy of special consideration for preparing chirality-induced bionic scaffolds are also introduced. We expect that this work can provide inspiring ideas for designing new chirality-induced bionic scaffolds and promote the development of chirality in bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yue Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
27
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
28
|
Zhang C, Xia D, Li J, Zheng Y, Weng B, Mao H, Mei J, Wu T, Li M, Zhao J. BMSCs and Osteoblast-Engineered ECM Synergetically Promotes Osteogenesis and Angiogenesis in an Ectopic Bone Formation Model. Front Bioeng Biotechnol 2022; 10:818191. [PMID: 35127662 PMCID: PMC8814575 DOI: 10.3389/fbioe.2022.818191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) have been extensively used in bone tissue engineering because of their potential to differentiate into multiple cells, secrete paracrine factors, and attenuate immune responses. Biomaterials are essential for the residence and activities of BMSCs after implantation in vivo. Recently, extracellular matrix (ECM) modification with a favorable regenerative microenvironment has been demonstrated to be a promising approach for cellular activities and bone regeneration. The aim of the present study was to evaluate the effects of BMSCs combined with cell-engineered ECM scaffolds on osteogenesis and angiogenesis in vivo. The ECM scaffolds were generated by osteoblasts on the small intestinal submucosa (SIS) under treatment with calcium (Ca)-enriched medium and icariin (Ic) after decellularization. In a mouse ectopic bone formation model, the SIS scaffolds were demonstrated to reduce the immune response, and lower the levels of immune cells compared with those in the sham group. Ca/Ic-ECM modification inhibited the degradation of the SIS scaffolds in vivo. The generated Ca/Ic-SIS scaffolds ectopically promoted osteogenesis according to the results of micro-CT and histological staining. Moreover, BMSCs on Ca/Ic-SIS further increased the bone volume percentage (BV/TV) and bone density. Moreover, angiogenesis was also enhanced by the Ca/Ic-SIS scaffolds, resulting in the highest levels of neovascularization according to the data ofCD31 staining. In conclusion, osteoblast-engineered ECM under directional induction is a promising strategy to modify biomaterials for osteogenesis and angiogenesis. BMSCs synergetically improve the properties of ECM constructs, which may contribute to the repair of large bone defects.
Collapse
Affiliation(s)
- Chi Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
- Medical Research Center, Ningbo City First Hospital, Ningbo, China
| | - Dongdong Xia
- Orthopedic Department, Ningbo City First Hospital, Ningbo, China
| | - Jiajing Li
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Yanan Zheng
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Bowen Weng
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Jing Mei
- Medical Research Center, Ningbo City First Hospital, Ningbo, China
| | - Tao Wu
- Cardiovascular Center, the Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Mei Li
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
- Ningbo Institute of Medical Sciences, Ningbo, China
- *Correspondence: Mei Li, ; Jiyuan Zhao,
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
- *Correspondence: Mei Li, ; Jiyuan Zhao,
| |
Collapse
|
29
|
Zhang L, Ma S, Wei P, Zhao Y, Mu Y, Wu J, Jing W, Zhao B, Deng J, Liu Z. Small Intestinal Submucosa Membrane Modified by Fusion Peptide-Mediated Extracellular Vesicles to Promote Tissue Regeneration. Adv Healthc Mater 2021; 10:e2101298. [PMID: 34569179 DOI: 10.1002/adhm.202101298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Indexed: 12/17/2022]
Abstract
Tissue injury, which often occurs in daily life, remains challenging in clinical medicine. Developing a novel biomaterial with the capability to provide an ideal microenvironment and homeostasis around the wound is highly desirable for effective tissue regenerative medicine. The small intestinal submucosa (SIS) membrane possesses a precise spatial structure with excellent biocompatibility. Extracellular vesicles (EVs) derived from umbilical cord mesenchymal stem cells can achieve rapid cell proliferation and migration with little immune response by creating a satisfactory microenvironment. In this study, fusion peptide-mediated EVs are able to modify the surface of the SIS membrane via specific combination. In vitro studies prove that modified SIS membranes can promote cell migration and spreading. This phenomenon may be because of the activation of TEADs, which regulate cell behavior. By constructing a rat abdominal wall defect model, it is further demonstrated that the modified SIS membrane is more conducive to tissue regeneration. Collectively, these results suggest that SIS membranes modified by fusion peptide-mediated EVs achieve excellent biofunction and provide promising prospects for tissue regeneration.
Collapse
Affiliation(s)
- Lei Zhang
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Shiqing Ma
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Yifan Zhao
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Yuzhu Mu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Jinzhe Wu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Jiayin Deng
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Zihao Liu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| |
Collapse
|
30
|
Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR. Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics 2021; 13:1796. [PMID: 34834211 PMCID: PMC8620109 DOI: 10.3390/pharmaceutics13111796] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| |
Collapse
|
31
|
Jelodari S, Sadroddiny E. Decellularization of Small Intestinal Submucosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:71-84. [PMID: 34582015 DOI: 10.1007/978-3-030-82735-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Small intestinal submucosa (SIS) is the most studied extracellular matrix (ECM) for repair and regeneration of different organs and tissues. Promising results of SIS-ECM as a vascular graft, led scientists to examine its applicability for repairing other tissues. Overall results indicated that SIS grafts induce tissue regeneration and remodeling to almost native condition. Investigating immunomodulatory effects of SIS is another interesting field of research. SIS can be utilized in different forms for multiple clinical and experimental studies. The aim of this chapter is to investigate the decellularization process of SIS and its common clinical application.
Collapse
Affiliation(s)
- Sahar Jelodari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Zheng Y, Pierce AF, Wagner WL, Khalil HA, Chen Z, Funaya C, Ackermann M, Mentzer SJ. Biomaterial-Assisted Anastomotic Healing: Serosal Adhesion of Pectin Films. Polymers (Basel) 2021; 13:2811. [PMID: 34451349 PMCID: PMC8401717 DOI: 10.3390/polym13162811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Anastomotic leakage is a frequent complication of intestinal surgery and a major source of surgical morbidity. The timing of anastomotic failures suggests that leaks are the result of inadequate mechanical support during the vulnerable phase of wound healing. To identify a biomaterial with physical and mechanical properties appropriate for assisted anastomotic healing, we studied the adhesive properties of the plant-derived structural heteropolysaccharide called pectin. Specifically, we examined high methoxyl citrus pectin films at water contents between 17-24% for their adhesivity to ex vivo porcine small bowel serosa. In assays of tensile adhesion strength, pectin demonstrated significantly greater adhesivity to the serosa than either nanocellulose fiber (NCF) films or pressure sensitive adhesives (PSA) (p < 0.001). Similarly, in assays of shear resistance, pectin demonstrated significantly greater adhesivity to the serosa than either NCF films or PSA (p < 0.001). Finally, the pectin films were capable of effectively sealing linear enterotomies in a bowel simulacrum as well as an ex vivo bowel segment. We conclude that pectin is a biomaterial with physical and adhesive properties capable of facilitating anastomotic healing after intestinal surgery.
Collapse
Affiliation(s)
- Yifan Zheng
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (A.F.P.); (W.L.W.); (H.A.K.); (Z.C.)
| | - Aidan F. Pierce
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (A.F.P.); (W.L.W.); (H.A.K.); (Z.C.)
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (A.F.P.); (W.L.W.); (H.A.K.); (Z.C.)
- Department of Diagnostic and Interventional Radiology, Translational Lung Research Center, University of Heidelberg, 69117 Heidelberg, Germany
| | - Hassan A. Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (A.F.P.); (W.L.W.); (H.A.K.); (Z.C.)
| | - Zi Chen
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (A.F.P.); (W.L.W.); (H.A.K.); (Z.C.)
| | - Charlotta Funaya
- Electron Microscopy Core Facility, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, 55122 Mainz, Germany;
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.Z.); (A.F.P.); (W.L.W.); (H.A.K.); (Z.C.)
| |
Collapse
|
33
|
Singh H, Purohit SD, Bhaskar R, Yadav I, Bhushan S, Gupta MK, Gautam S, Showkeen M, Mishra NC. Biomatrix from goat-waste in sponge/gel/powder form for tissue engineering and synergistic effect of nanoceria. Biomed Mater 2021; 16:025008. [PMID: 33440366 DOI: 10.1088/1748-605x/abdb74] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For tissue engineering (TE), decellularized matrices gained huge potential as they consist of natural biomolecules which help in cell attachment and proliferation. Among various animal tissues, goat tissue has gained least attention in spite of the fact that goat tissue is less susceptible to disease transmission as compared to cadaveric porcine and bovine tissue. In this study, goat small intestine submucosa (G-SIS) was isolated from goat small intestine (G-SI), a waste from goat-slaughterhouse, and decellularized to obtain decellularized G-SIS (DG-SIS) biomatrix in the form of powder, gel and sponge form, so that it can be used for healing various types of wounds. Further, nanoceria (NC), owing to its free radical scavenging, anti-inflammatory, antibacterial and angiogenic properties, was incorporated in the DG-SIS in to fabricate DG-SIS/NC nanobiocomposite scaffold, which may exhibit synergistic effects to accelerate tissue regeneration. The scaffolds were found to be hydrophilic, biodegradable, haemocompatible, biocompatible, antibacterial and showed free radical scavenging capability. The scaffold containing NC concentration (500 µg ml-1) depicted highest cell (fibroblast cells) adhesion, MTT activity and free radical scavenging as compared to the DG-SIS and other nanobiocomposite scaffolds. Thus, DG-SIS/NC3 (NC with concentration 500 µg ml-1) scaffold could be a potential scaffold biomaterial for skin TE application.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sakchi Bhushan
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Sneh Gautam
- Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Muzamil Showkeen
- Division of Veterinary Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
34
|
Zhao LM, Gong M, Wang R, Yuan QJ, Zhang Y, Pi JK, Lv XH, Xie Y, Xie HQ. Accelerating ESD-induced gastric ulcer healing using a pH-responsive polyurethane/small intestinal submucosa hydrogel delivered by endoscopic catheter. Regen Biomater 2021; 8:rbaa056. [PMID: 33732501 PMCID: PMC7947578 DOI: 10.1093/rb/rbaa056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) is the standard treatment for early-stage gastric cancer, but the large post-operative ulcers caused by ESD often lead to serious side effects. Post-ESD mucosal repair materials provide a new option for the treatment of post-ESD ulcers. In this study, we developed a polyurethane/small intestinal submucosa (PU/SIS) hydrogel and investigated its efficacy for accelerating ESD-induced ulcer healing in a canine model. PU/SIS hydrogel possessed great biocompatibility and distinctive pH-sensitive swelling properties and protected GES-1 cells from acid attack through forming a dense film in acidic conditions in vitro. Besides, PU/SIS gels present a strong bio-adhesion to gastric tissues under acidic conditions, thus ensuring the retention time of PU/SIS gels in vivo. In a canine model, PU/SIS hydrogel was easily delivered via endoscopy and adhered to the ulcer sites. PU/SIS hydrogel accelerated gastric ulcer healing at an early stage with more epithelium regeneration and slight inflammation. Our findings reveal PU/SIS hydrogel is a promising and attractive candidate for ESD-induced ulcer repair.
Collapse
Affiliation(s)
- Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Mei Gong
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Qi-Juan Yuan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yi Zhang
- Research Core Facility, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jin-Kui Pi
- Research Core Facility, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiu-He Lv
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yan Xie
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Taghavi H, Soleimani Rad J, Mehdipour A, Ferdosi Khosroshahi A, Kheirjou R, Hasanpour M, Roshangar L. Effect of Mineral Pitch on the Proliferation of Human Adipose Derived Stem Cells on Acellular Scaffold. Adv Pharm Bull 2020; 10:623-629. [PMID: 33072541 PMCID: PMC7539320 DOI: 10.34172/apb.2020.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/01/2022] Open
Abstract
Purpose: Acellular scaffold extracted from extracellular matrix (ECM) have been used for constructive and regenerative medicine. Adipose derived stem cells (ADSCs) can enhance the vascularization capacity of scaffolds. High mobility group box 1 (HMGB1) and stromal derived factor1 (SDF1) are considered as two important factors in vascularization and immunologic system. In this study, the effect of mineral pitch on the proliferation of human ADSCs was evaluated. In addition to HMGB1 and SDF1, factors expression in acellular scaffold was also assessed. Methods: To determine acellular scaffold morphology and the degree of decellularization, hematoxylin & eosin (H&E), 6-diamidino-2-phenylindole (DAPI), and Masson’s trichrome staining were applied. The scaffolds were treated with mineral pitch. Also, ADSCs were seeded on the scaffolds, and adhesion of the cells to the scaffolds were assessed using field emission scanning electron microscopy (FE-SEM). In addition, the efficiency of mineral pitch to induce the proliferation of ADSCs on the scaffolds was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. To measure HMGB1 and SDF1 mRNA expression, real-time polymerase chain reactions (RT-PCR) was used. Results: FE-SEM showed that decellularized matrix possesses similar matrix morphology with a randomly oriented fibrillar structure and interconnecting pores. No toxicity was observed in all treatments, and cell proliferation were supported in scaffolds. The important point is that, the proliferation capacity of ADSCs on Mineral pitch loaded scaffolds significantly increased after 48 h incubation time compared to the unloaded scaffold (P<0.001). Conclusion: The results of this study suggest that mineral pitch has potentials to accelerate proliferation of ADSCs on the acellular scaffolds.
Collapse
Affiliation(s)
- Hossein Taghavi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Ferdosi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Hasanpour
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
[Preparation and osteogenic effect study of small intestinal submucosa sponge]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52. [PMID: 33047736 PMCID: PMC7653438 DOI: 10.19723/j.issn.1671-167x.2020.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To prepare and evaluate the basic properties in vitro of a novel small intestinal submucosa (SIS) sponge, and to describe the bone formation ability of the SIS sponge in vivo. METHODS The SIS sponge was prepared by freeze-drying method. To evaluate the physicochemical properties of the sponge, electron microscope observation, porosity test, water absorption ability and mechanical property were conducted in vitro. The cytotoxicity of the SIS sponge was performed by cell counting kit-8 method. In vivo experiments, eighteen extraction sockets of premolar of three Beagle dogs were randomly divided into three groups: SIS sponge group (SIS sponge), positive control group (Bio-Oss granules and Bio-Gide membrane) and control group(no treatment). The animals were sacrificed 4 weeks and 12 weeks after operation, and micro computed tomography (Micro-CT) was applied to measure the bone volume fraction (BV/TV) and bone mineralized density (BMD). The data were analyzed with one-way ANOVA. RESULTS The average pore diameter of the SIS sponge was (194.90±30.39) μm, the porosity was 92.31%±0.24%, the water absorption rate was 771.50%±40.90%, and the compressive elastic modulus was (2.20±0.19) kPa. There was no significant difference in cell proliferation ability between SIS sponge and control group (P>0.05). Micro-CT quantitative results showed that BV/TV of SIS sponge group (52.81%±3.21%) and positive control group (58.30%±9.36%) were significantly higher than that of control group (38.65%±4.80%) 4 weeks after operation (P < 0.05). The BMD of SIS sponge group [(887.09±61.02) mg/cm3], positive control group [(952.05±132.78) mg/cm3] and control group [(879.29±74.27) mg/cm3] showed no statistical difference 4 weeks after operation (P>0.05). The BV/TV of positive control group (60.57%± 6.56%) was significantly higher than that of SIS sponge group (47.89%±3.59%) and control group (42.99%±2.54%) 12 weeks after operation (P < 0.05). BMD of SIS sponge group [(1047±89.95) mg/cm3] and positive control group [(1101.37±98.85) mg/cm3] were significantly higher than that of control group [(890.36±79.79) mg/cm3] 12 weeks after operation (P < 0.05). CONCLUSION The SIS sponge has satisfying physicochemical properties and biocompatibility. The SIS sponge significantly increased bone volume fraction in the early stage of bone formation (4 weeks) and bone mineralized density in the late stage of bone formation (12 weeks).
Collapse
|
37
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
38
|
Steinway SN, Saleh J, Koo BK, Delacour D, Kim DH. Human Microphysiological Models of Intestinal Tissue and Gut Microbiome. Front Bioeng Biotechnol 2020; 8:725. [PMID: 32850690 PMCID: PMC7411353 DOI: 10.3389/fbioe.2020.00725] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a complex system responsible for nutrient absorption, digestion, secretion, and elimination of waste products that also hosts immune surveillance, the intestinal microbiome, and interfaces with the nervous system. Traditional in vitro systems cannot harness the architectural and functional complexity of the GI tract. Recent advances in organoid engineering, microfluidic organs-on-a-chip technology, and microfabrication allows us to create better in vitro models of human organs/tissues. These micro-physiological systems could integrate the numerous cell types involved in GI development and physiology, including intestinal epithelium, endothelium (vascular), nerve cells, immune cells, and their interplay/cooperativity with the microbiome. In this review, we report recent progress in developing micro-physiological models of the GI systems. We also discuss how these models could be used to study normal intestinal physiology such as nutrient absorption, digestion, and secretion as well as GI infection, inflammation, cancer, and metabolism.
Collapse
Affiliation(s)
- Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jad Saleh
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Deok-Ho Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Bi X, Li L, Mao Z, Liu B, Yang L, He W, Fan Y, Li X. The effects of silk layer-by-layer surface modification on the mechanical and structural retention of extracellular matrix scaffolds. Biomater Sci 2020; 8:4026-4038. [PMID: 32573617 DOI: 10.1039/d0bm00448k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Naturally derived extracellular matrix scaffolds can effectively promote tissue repair and regeneration due to their remarkable bioactivity. However, their rapid degradation leads to the decrease of mechanical retention and the failure of physical support in vivo which limit their applications. In this paper, we modified a classic extracellular matrix scaffold - small intestinal submucosa (SIS) - by a silk fibroin (SF) layer-by-layer (LbL) assembly to replace the existing chemical crosslinking methods for improving its mechanical and structural stability. Experimental results showed that the SF LbL surface functionalized SIS scaffold had tunable mechanical properties and degradation rate by adjusting the number of layers of the SF deposited on the surface. For biological responses, in vitro NIH3T3 fibroblast culture studies demonstrated that SF surface modification did not affect the excellent biocompatibility of the SIS. In vivo subcutaneous implantation results showed that the SF modification could effectively extend the residence time of the SIS in the body, and elicit a more moderate inflammatory response compared to the traditional glutaraldehyde chemical crosslinking. Furthermore, we found that SF modification could maintain the ability of bioactive components of the SIS to regulate the transformation of M1 into M2 in macrophages in vivo. This SF LbL modification strategy offers a green process for the development of high-performance extracellular matrix-based scaffolds with tunable biodegradability.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang F, Song Q, Du L, Wu X. Development and Characterization of an Acellular Porcine Small Intestine Submucosa Scaffold for Use in Corneal Epithelium Tissue Engineering. Curr Eye Res 2020; 45:134-143. [PMID: 31514545 DOI: 10.1080/02713683.2019.1663386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/14/2023]
Abstract
Purpose: To produce an acellular small intestine submucosa (SIS) that would be a suitable scaffold for corneal epithelium tissue engineering.Methods: The SIS was decellularized by immersion in 0.1% (wt/vol) sodium dodecyl sulfate (SDS). The efficacy of acellularization was confirmed by histological observation and DNA quantification. The mechanical properties were evaluated by uniaxial tensile testing. ELISA was performed to assess the growth factor contents. The cytotoxicity of SIS scaffolds and extracts to rabbit corneal epithelial cells was determined by CCK-8 assay. We also investigated the inflammatory reaction of SIS implanted subcutaneously in a rat. The biocompatibility was studied by rabbit interlamellar corneal transplantation and reseeding assay with cornea-derived cells. Immunofluorescent staining was used to detect the expression of CK3, ZO-1 and K13.Results: Histological analyses showed that complete cell removal was achieved, and the DNA quantity, which reflects the presence of cellular materials, was significantly diminished in acellular SIS. Collagen fibers were properly preserved and appeared in an orderly fashion. The tissue structure, the mechanical properties and the growth factor contents within the acellular SIS were well retained. The CCK8 assay demonstrated that the acellular SIS scaffolds and extracts had no cytotoxicity to rabbit corneal epithelial cells. There was no sign that an immune reaction occurred with acellular SIS implanted subcutaneously in a rat. In fact, in vivo implantation to rabbit interlamellar stromal pockets showed good biocompatibility. We also observed that clusters of rabbit corneal epithelial cells were growing well on the surface of the SIS in vitro and the distinctive CK3, ZO-1 for corneal epithelial cells was detected.Conclusions: The decellularized SIS retained the major structural components. The matrix is biocompatible with cornea-derived cells and might be a suitable scaffold for corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Fuyan Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Department of Ophthalmology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Qi Song
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
41
|
El-Taliawi OG, Taguchi T, Dong F, Battig J, Griffon DJ. Biocompatibility of allogenic canine fascia lata: In vitro evaluation and small case series. Vet Surg 2019; 49:310-320. [PMID: 31863601 DOI: 10.1111/vsu.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/06/2019] [Accepted: 10/30/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To evaluate the biocompatibility of canine fascia lata (FL) in vitro and after FL allograft implantation in dogs with clinical disease. STUDY DESIGN In vitro experiment and small case series. SAMPLE POPULATION Six dogs treated with allogenic freeze-dried FL. METHODS Fibroblasts were cultured on disks of FL, polypropylene mesh (PM; negative control), and porcine small intestinal submucosa (SIS; positive control). Constructs were compared at 3, 7, and 14 days for water content, DNA amounts, scanning electron microscopy, and histology. Records of dogs treated with FL allografts with follow-up examination were reviewed for signalment, indication for surgery, surgical procedure, and outcomes. All owners were invited to complete a standardized questionnaire for long-term follow-up. RESULTS Water content was greater in FL and SIS than in PM (P = .03). Fascia lata constructs contained more DNA compared with PM constructs at days 7 and 14 (P < .05), whereas SIS constructs did not differ from FL or PM. Fibroblasts appeared spherical and distributed throughout FL constructs, whereas they appeared stellate and remained on the surface of SIS and PM. Fascia lata allografts were implanted in six dogs with surgical conditions. No incisional complications were noted. All dogs had good to excellent long-term outcomes, except one that experienced recurrence of a perineal hernia 2 years after repair. CONCLUSION In vitro, canine FL allowed attachment and proliferation of fibroblasts throughout layers of the graft. Canine allogenic FL was clinically well tolerated in this small population of dogs. CLINICAL SIGNIFICANCE Allogenic FL is biocompatible and can be considered an alternative to SIS for soft tissue augmentation in dogs.
Collapse
Affiliation(s)
| | - Takashi Taguchi
- Western University of Health Sciences, College of Veterinary Medicine, Pomona, California
| | - Fanglong Dong
- Western University of Health Sciences, Graduate College of Biomedical Sciences, Pomona, California
| | - Jean Battig
- Animal Dental Clinic NW, Lake Oswego, Oregon
| | - Dominique J Griffon
- Western University of Health Sciences, College of Veterinary Medicine, Pomona, California
| |
Collapse
|
42
|
Bone Augmentation of Peri-Implant Dehiscence Defects Using Multilaminated Small Intestinal Submucosa as a Barrier Membrane: An Experimental Study in Dogs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8962730. [PMID: 31828142 PMCID: PMC6885186 DOI: 10.1155/2019/8962730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/14/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022]
Abstract
Objective The aim of the study is to evaluate the effects of multilaminated small intestinal submucosa (mSIS) combined with bone substitute material to repair peri-implant defects during guided bone regeneration procedures. Methods Twelve implants were placed in bilateral lower premolars of three beagle dogs, and a peri-implant buccal bone defect (3 mm width and 4 mm height) was created at each implant site. A total of 12 sites were filled with a particulate bone substitute material and then randomly divided into three treatment groups: covered by mSIS membrane (mSIS group), covered by collagen membrane (BG group), and no treatment (control group), each group of four sites. After 12 weeks of healing, all of the animals were euthanized and dissected blocks were obtained for micro-computed tomography (micro-CT) and histological analyses. Results Micro-CT results revealed similar horizontal width of augmented tissue and new bone formation between mSIS and BG groups (P < 0.05). Histological analyses revealed that the differences in horizontal widths of newly formed bone and bone-to-implant contact between mSIS and BG groups were not significant (P > 0.05). All of these parameters were significantly different from those in the control group (P < 0.05). Conclusions These findings confirmed that mSIS combined with the bone substitute material enhanced bone regeneration in peri-implant defects, in a manner similar to that of a collagen membrane.
Collapse
|
43
|
Silva MJ, Gonçalves CP, Galvão KM, D'Alpino PHP, Nascimento FD. Synthesis and Characterizations of a Collagen-Rich Biomembrane with Potential for Tissue-Guided Regeneration. Eur J Dent 2019; 13:295-302. [PMID: 31476776 PMCID: PMC6890486 DOI: 10.1055/s-0039-1693751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objectives
In this study, a collagen-rich biomembrane obtained from porcine intestinal submucosa for application in guided bone regeneration was developed and characterized. Then, its biological and mechanical properties were compared with that of commercial products (
GenDerm
[Baumer],
Lumina-Coat
[Critéria],
Surgitime PTFE
[Bionnovation], and
Surgidry Dental F
[Technodry]).
Materials and Methods
The biomembrane was extracted from porcine intestinal submucosa. Scanning electron microscopy, spectroscopic dispersive energy, glycosaminoglycan quantification, and confocal microscopy by intrinsic fluorescence were used to evaluate the collagen structural patterns of the biomembrane. Mechanical tensile and deformation tests were also performed.
Statistical Analysis
The results of the methods used for experimental membrane characterizations were compared with that obtained by the commercial membranes and statistically analyzed (significance of 5%).
Results
The collagen-rich biomembrane developed also exhibited a more organized, less porous collagen fibril network, with the presence of glycosaminoglycans. The experimental biomembrane exhibited mechanical properties, tensile strength, and deformation behavior with improved average stress/strain when compared with other commercial membranes tested. Benefits also include a structured, flexible, and bioresorbable characteristics scaffold.
Conclusions
The experimental collagen-rich membrane developed presents physical–chemical, molecular, and mechanical characteristics similar to or better than that of the commercial products tested, possibly allowing it to actively participating in the process of bone neoformation.
Collapse
Affiliation(s)
- Marcos J Silva
- Universidade Anhanguera de São Paulo-UNIAN, Osasco, SP, Brazil.,Universidade de Araraquara, Núcleo de Pesquisa em Biotecnologia, Centro, Araraquara, SP, Brazil.,Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN/SP), São Paulo, SP, Brazil
| | | | - Kleber M Galvão
- Universidade Anhanguera de São Paulo-UNIAN, Osasco, SP, Brazil
| | - Paulo H P D'Alpino
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN/SP), São Paulo, SP, Brazil
| | - Fábio D Nascimento
- Universidade de Mogi das Cruzes, Centro de Ciências Biomédicas, Mogi das Cruzes, SP, Brazil
| |
Collapse
|
44
|
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B 2019; 7:5038-5055. [PMID: 31432871 DOI: 10.1039/c9tb00530g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few decades, small intestinal submucosa (SIS), a naturally occurring decellularized extracellular matrix (ECM), has attracted much attention in tissue repair because it can provide plentiful bioactive factors and a biomimetic three-dimensional microenvironment to induce desired cellular functions. In this article, the state-of-the-art research studies on SIS are reviewed, which are mainly centered on three aspects: (1) main superiority such as remarkable bioactivity, low immunogenicity, satisfactory resorbability and promising recellularization; (2) current efforts to overcome its limitations mainly focusing on reducing the naturally occurring heterogeneity, controlling the degradation rate and improving the mechanical properties; (3) great potential in solving the bottleneck problems encountered in repairing various tissues with particular emphasis on cardiovascular, urogenital, abdominal wall, skin, musculotendinous, gastrointestinal, vaginal, and bone tissues. In addition, future research trends are proposed in the conclusion and perspectives section.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
45
|
Engineered delivery strategies for enhanced control of growth factor activities in wound healing. Adv Drug Deliv Rev 2019; 146:190-208. [PMID: 29879493 DOI: 10.1016/j.addr.2018.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Growth factors (GFs) are versatile signalling molecules that orchestrate the dynamic, multi-stage process of wound healing. Delivery of exogenous GFs to the wound milieu to mediate healing in an active, physiologically-relevant manner has shown great promise in laboratories; however, the inherent instability of GFs, accompanied with numerous safety, efficacy and cost concerns, has hindered the clinical success of GF delivery. In this article, we highlight that the key to overcoming these challenges is to enhance the control of the activities of GFs throughout the delivering process. We summarise the recent strategies based on biomaterials matrices and molecular engineering, which aim to improve the conditions of GFs for delivery (at the 'supply' end of the delivery), increase the stability and functions of GFs in extracellular matrix (in transportation to target cells), as well as enhance the GFs/receptor interaction on the cell membrane (at the 'destination' end of the delivery). Many of these investigations have led to encouraging outcomes in various in vitro and in vivo regenerative models with considerable translational potential.
Collapse
|
46
|
Cunniffe GM, Díaz-Payno PJ, Sheehy EJ, Critchley SE, Almeida HV, Pitacco P, Carroll SF, Mahon OR, Dunne A, Levingstone TJ, Moran CJ, Brady RT, O'Brien FJ, Brama PA, Kelly DJ. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials 2019; 188:63-73. [DOI: 10.1016/j.biomaterials.2018.09.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023]
|
47
|
Zhang Y, Shi S, Xu Q, Zhang Q, Shanti RM, Le AD. SIS-ECM Laden with GMSC-Derived Exosomes Promote Taste Bud Regeneration. J Dent Res 2018; 98:225-233. [PMID: 30335555 DOI: 10.1177/0022034518804531] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oral cancer has a high annual incidence rate all over the world, and the tongue is the most frequently affected anatomic structure. The current standard care is ablative surgery of malignant neoplasm, followed by tongue reconstruction with free flap. However, such reconstructive modalities with postsurgery radiotherapy or chemotherapy can hardly support the functional recovery of the tongue-particularly, functional taste bud regeneration-in reconstructed areas, thus seriously affecting patients' prognosis and life quality. Using a critical-sized tongue defect model in rats, we show that combinatory transplantation of small intestinal submucosa-extracellular matrix (SIS-ECM) with gingival mesenchymal stem cells (GMSCs) or their derivative exosomes promoted tongue lingual papillae recovery and taste bud regeneration as evidenced by increased expression of CK14, CK8, and markers for type I, II, and III taste bud cells (NTPdase 2, PLC-β2, and AADC, respectively). In addition, our results indicate that GMSCs or their derivative exosomes could increase BDNF expression, a growth factor that plays an important role in the proliferation and differentiation of epithelial basal progenitor cells into taste bud cells. Meanwhile, we showed an elevated expression level of Shh-which is essential for development, homeostasis, and maintenance of the taste bud organ-in wounded areas of the tongue among animals treated with GMSC/SIS-ECM or exosome/SIS-ECM as compared with SIS-ECM control. Moreover, our data show that GMSCs or their derivative exosomes promoted innervation of regenerated taste buds, as evidenced by elevated expressions of neurofilament and P2X3 at the injury areas. Together, our findings indicate that GMSC/SIS-ECM and exosome/SIS-ECM constructs can facilitate taste bud regeneration and reinnervation with promising potential application in postsurgery tongue reconstruction of patients with tongue cancer.
Collapse
Affiliation(s)
- Y Zhang
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,2 Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - S Shi
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Xu
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Zhang
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R M Shanti
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,3 Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- 1 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,4 Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The envisioned routine application of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for therapies and industry-compliant screening approaches will require efficient and highly reproducible processes for the mass production of well-characterized CM batches.On their way toward beating CMs, hPSCs initially undergo an epithelial-to-mesenchymal transition into a primitive-streak (PS)-like population that later gives rise to all endodermal and mesodermal lineages, including cardiovascular progenies (CVPs). CVPs are multipotent and possess the capability to give rise to all major cell types of the heart, including CMs, endothelial cells, cardiac fibroblasts, and smooth muscle cells. This article provides an historical overview and describes the stepwise development of protocols that typically result in the appearance of beating CMs within 7-12 days of hPSC differentiation.We describe the development of directed and closely controlled cardiomyogenic differentiation, which now enables the induction of >90% CM purity without further lineage enrichment. Although secreted lineage specifiers (revealed from developmental biology) were initially used, we outline the advantages of chemical pathway modulators, as defined by more recent screening approaches. Subsequently, we discuss the use of defined culture media for upscaling the production of hPSC-CMs in controlled bioreactors and how this, in principle, unlimited source of human CMs can be used to progress heart regeneration and stimulate the drug discovery pipeline. Graphical Abstract.
Collapse
|
49
|
Iop L, Palmosi T, Dal Sasso E, Gerosa G. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J Thorac Dis 2018; 10:S2390-S2411. [PMID: 30123578 PMCID: PMC6081367 DOI: 10.21037/jtd.2018.04.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
The treatment of cardiac alterations is still nowadays a dramatic issue in the cardiosurgical practice. Synthetic materials applied in this surgery have failed in their long-term therapeutic efficacy due to low biocompatibility and compliance, especially when used in contractile sites. In order to overcome these treatment pitfalls, novel solutions have been developed based on biological tissues. Patches in pericardium, small intestinal submucosa, as well as engineered tissues of myocardium, heart valves and blood vessels have undergone a large preclinical investigation in regenerative medicine studies. Clinical translation has been started or reached by several of these new bioengineered treatment alternatives. This review will describe the preclinical and clinical experiences realized so far with the application of biological tissues in cardiovascular surgery. It will depict the progressive steps realized in the evolution of this research, as well as it will point out the challenges yet to face in order to generate the ideal biomaterial for cardiovascular repair, corrective and reconstructive surgery.
Collapse
Affiliation(s)
- Laura Iop
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Tiziana Palmosi
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Eleonora Dal Sasso
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gino Gerosa
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
50
|
Effect of Multilaminate Small Intestinal Submucosa as a Barrier Membrane on Bone Formation in a Rabbit Mandible Defect Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3270293. [PMID: 30018978 PMCID: PMC6029487 DOI: 10.1155/2018/3270293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/19/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022]
Abstract
A barrier membrane (BM) is essential for guided bone regeneration (GBR) procedures. Absorbable BMs based on collagen have been widely applied clinically due to their excellent biocompatibility. The extracellular matrix (ECM) provides certain advantages that can compensate for the rapid degradation and insufficient mechanical strength of pure collagen membrane due to the porous scaffold structure. Recently, small intestinal submucosa (SIS), one of the most widely used ECM materials, has drawn much attention in bone tissue engineering. In this study, we adopted multilaminate SIS (mSIS) as a BM and evaluated its in vivo and in vitro properties. mSIS exhibited a multilaminate structure with a smooth upper surface and a significantly coarser bottom layer according to microscopic observation. Tensile strength was 13.10 ± 2.56 MPa. In in vivo experiments, we selected a rabbit mandibular defect model and subcutaneous implantation to compare osteogenesis and biodegradation properties with one of the most commonly used commercial collagen membranes. mSIS was retained for up to 3 months and demonstrated longer biodegradation time than commercial collagen membrane. Quantification of bone regeneration revealed significant differences in each group. Micro-computed tomography (micro-CT) revealed that the quantity and maturity of bones in the mSIS group were significantly higher than those in the blank control group (P < 0.05) and were similar to those in a commercial collagen membrane group (P > 0.05) at 4 and 12 weeks after surgery. Hematoxylin and eosin staining revealed large amounts of mature lamellar bone at 12 weeks in mSIS and commercial collagen membrane groups. Therefore, we conclude that mSIS has potential as a future biocompatible BM in GBR procedures.
Collapse
|