1
|
Nochalabadi A, Khazaei M, Rezakhani L. Exosomes and tissue engineering: A novel therapeutic strategy for nerve regenerative. Tissue Cell 2025; 93:102676. [PMID: 39693896 DOI: 10.1016/j.tice.2024.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Damage to nerves negatively impacts quality of life and causes considerable morbidity. Self-regeneration is a special characteristic of the nervous system, yet how successful regeneration is accomplished remains unclear. Research on nerve regeneration is advancing and accelerating successful nerve recovery with potential new approaches. Eukaryote cells release extracellular vesicles (EVs), which control intercellular communication in both health and disease. More and more, EVs such as microvesicles and exosomes (EXOs) are being recognized as viable options for cell-free therapies that address complex tissue regeneration. The present study highlights the functional relevance of EVs in regenerative medicine for nerve-related regeneration. A subclass of EVs, EXOs were first identified as a way for cells to expel undesirable cell products. These nanovesicles have a diameter of 30-150 nm and are secreted by a variety of cells in conditions of both health and illness. Their benefits include the ability to promote endothelial cell growth, inhibit inflammation, encourage cell proliferation, and regulate cell differentiation. They are also known to transport functional proteins, metabolites, and nucleic acids to recipient cells, thus playing a significant role in cellular communication. EXOs impact an extensive array of physiological functions, including immunological responses, tissue regeneration, stem cell conservation, communication within the central nervous system, and pathological processes involving cardiovascular disorders, neurodegeneration, cancer, and inflammation. Their biocompatibility and bi-layered lipid structure (which shields the genetic consignment from deterioration and reduces immunogenicity) make them appealing as therapeutic vectors. They can pass through the blood brain barrier and other major biological membranes because of their small size and membrane composition. The creation of modified EXOs is a dynamic area of research that supports the evaluation of diverse therapeutic freights, improvement of target selectivity, and manufacturing optimization.
Collapse
Affiliation(s)
- Azadeh Nochalabadi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Hayashi Y, Kim S, Fujii T, Pedersen DD, Ozeki T, Jiang H, D’Amore A, Wagner WR. Placement of an elastic, biohybrid patch in a model of right heart failure with pulmonary artery banding. Front Bioeng Biotechnol 2025; 12:1485740. [PMID: 39902173 PMCID: PMC11788599 DOI: 10.3389/fbioe.2024.1485740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction In a model of right heart failure secondary to pulmonary artery banding (PAB), a mechanical approach using an elastic, biodegradable epicardial patch with integrated extracellular matrix digest was evaluated for its potential to inhibit disease progression. Methods Adult male syngeneic Lewis rats aged 6-7 weeks old were used. Biohybrid cardiac patches were generated by co-processing biodegradable poly(ester carbonate urethane) urea (PECUU) and a digest of the porcine cardiac extracellular matrix. Three weeks after PAB, the cardiac patch was attached to the epicardium of the right ventricle (RV). Cardiac function was evaluated using echocardiography and catheterization for 9 weeks after PAB, comparing the patch (n = 7) and sham (n = 10) groups. Results Nine weeks after PAB, the RV wall was thickened, the RV cavity was enlarged with a reduced left ventricular cavity, and RV wall interstitial fibrosis was increased. However, these effects were diminished in the patch group. Left ventricular ejection fraction in the patch group was higher than in the sham group (p < 0.001), right end-systolic pressure was lower (p = 0.045), and tricuspid annular plane systolic excursion improved in the patch group (p = 0.007). In addition, von Willebrand factor expression was significantly greater in the patch group (p = 0.007). Conclusions The placement of a degradable, biohybrid patch onto the RV in a right ventricular failure model with fixed afterload improved myocardial output, moderated pressure stress, and was associated with reduced right ventricular fibrosis.
Collapse
Affiliation(s)
- Yasunari Hayashi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, United States
| | - Taro Fujii
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Drake Dalton Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Takahiro Ozeki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongbin Jiang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Fondazione RiMED, Palermo, Italy
- Medicina di Precisione in Area Medica, Chirurgica e Critica, University of Palermo, Palermo, Italy
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Sun M, LaSala VR, Giuglaris C, Blitzer D, Jackman S, Ustunel S, Rajesh K, Kalfa D. Cardiovascular patches applied in congenital cardiac surgery: Current materials and prospects. Bioeng Transl Med 2025; 10:e10706. [PMID: 39801761 PMCID: PMC11711229 DOI: 10.1002/btm2.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 01/16/2025] Open
Abstract
Congenital Heart Defects (CHDs) are the most common congenital anomalies, affecting between 4 and 75 per 1000 live births. Cardiovascular patches (CVPs) are frequently used as part of the surgical armamentarium to reconstruct cardiovascular structures to correct CHDs in pediatric patients. This review aims to evaluate the history of cardiovascular patches, currently available options, clinical applications, and important features of these patches. Performance and outcomes of different patch materials are assessed to provide reference points for clinicians. The target audience includes clinicians seeking data on clinical performance as they make choices between different patch products, as well as scientists and engineers working to develop patches or synthesize new patch materials.
Collapse
Affiliation(s)
- Mingze Sun
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | | | - Caroline Giuglaris
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- UMR 168 Laboratoire Physique des Cellules et CancerInstitut Curie, PSL Research University, Sorbonne Université, CNRSParisFrance
| | - David Blitzer
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Sophia Jackman
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Senay Ustunel
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Kavya Rajesh
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - David Kalfa
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac SurgeryNew‐York Presbyterian—Morgan Stanley Children's Hospital, Columbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
4
|
Carvalho T, Bártolo R, Correia A, Vilela C, Wang S, Santos HA, Freire CSR. Implantable Patch of Oxidized Nanofibrillated Cellulose and Lysozyme Amyloid Nanofibrils for the Regeneration of Infarcted Myocardium Tissue and Local Delivery of RNA-Loaded Nanoparticles. Macromol Rapid Commun 2024; 45:e2400129. [PMID: 38778746 DOI: 10.1002/marc.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.
Collapse
Affiliation(s)
- Tiago Carvalho
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Raquel Bártolo
- Department of Biomaterials and Biomedical Technology, PRECISION - Personalized medicine Research Institute, University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carla Vilela
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, PRECISION - Personalized medicine Research Institute, University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
5
|
Tan Y, Nie Y, ZhengWen L, Zheng Z. Comparative effectiveness of myocardial patches and intramyocardial injections in treating myocardial infarction with a MitoQ/hydrogel system. J Mater Chem B 2024; 12:5838-5847. [PMID: 38771306 DOI: 10.1039/d4tb00573b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In cardiac tissue engineering, myocardial surface patches and hydrogel intramyocardial injections represent the two primary hydrogel-based strategies for myocardial infarction (MI) treatment. However, the comparative effectiveness of these two treatments remains uncertain. Therefore, this study aimed to compare the effects of the two treatment modalities by designing a simple and reproducible hydrogel cross-linked with γ-PGA and 4-arm-PEG-SG. To improve mitochondrial damage in cardiomyocytes (CMs) during early MI, we incorporated the mitochondria-targeting antioxidant MitoQ into the hydrogel network. The hydrogel exhibited excellent biodegradability, biocompatibility, adhesion, and injectability in vitro. The hydrogel was utilized for rat MI treatment through both patch adhesion and intramyocardial injections. In vivo results demonstrated that the slow release of MitoQ peptide from the hydrogel hindered ROS production in CM, alleviated mitochondrial damage, and enhanced CM activity within 7 days, effectively inhibiting MI progression. Both hydrogel intramyocardial injections and patches exhibited positive therapeutic effects, with intramyocardial injections demonstrating superior efficacy in terms of cardiac function and structure in equivalent treatment cycles. In conclusion, we developed a MitoQ/hydrogel system that is easily prepared and can serve as both a myocardial patch and an intramyocardial injection for MI treatment, showing significant potential for clinical applications.
Collapse
Affiliation(s)
- Ying Tan
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases &Department of Cardiology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases &Department of Cardiology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lei ZhengWen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi Zheng
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases &Department of Cardiology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Asl SK, Rahimzadegan M, Asl AK. Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds. Int J Biol Macromol 2024; 261:129924. [PMID: 38311143 DOI: 10.1016/j.ijbiomac.2024.129924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases, particularly myocardial infarction (MI), remain a leading cause of morbidity and mortality worldwide. Current treatments for MI, more palliative than curative, have limitations in reversing the disease completely. Tissue engineering (TE) has emerged as a promising strategy to address this challenge and may lead to improved therapeutic approaches for MI. Gelatin-based scaffolds, including gelatin and its derivative, gelatin methacrylate (GelMA), have attracted significant attention in cardiac tissue engineering (CTE) due to their optimal physical and biochemical properties and capacity to mimic the native extracellular matrix (ECM). CTE mainly recruits two classes of gelatin/GelMA-based scaffolds: hydrogels and nanofibrous. This article reviews state-of-the-art gelatin/GelMA-based hybrid scaffolds currently applied for CTE and regenerative therapy. Hybrid scaffolds, fabricated by combining gelatin/GelMA hydrogel or nanofibrous scaffolds with other materials such as natural/synthetic polymers, nanoparticles, protein-based biomaterials, etc., are explored for enhanced cardiac tissue regeneration functionality. The engraftment of stem/cardiac cells, bioactive molecules, or drugs into these hybrid systems shows great promise in cardiac tissue repair and regeneration. Finally, the role of gelatin/GelMA scaffolds combined with the 3D bioprinting strategy in CTE will also be briefly highlighted.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran.
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Han D, Wang F, Qiao Z, Wang B, Zhang Y, Jiang Q, Liu M, Zhuang Y, An Q, Bai Y, Shangguan J, Zhang J, Liang G, Shen D. Neutrophil membrane-camouflaged nanoparticles alleviate inflammation and promote angiogenesis in ischemic myocardial injury. Bioact Mater 2023; 23:369-382. [DOI: 10.1016/j.bioactmat.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
|
8
|
Samie M, Khan AF, Rahman SU, Iqbal H, Yameen MA, Chaudhry AA, Galeb HA, Halcovitch NR, Hardy JG. Drug/bioactive eluting chitosan composite foams for osteochondral tissue engineering. Int J Biol Macromol 2023; 229:561-574. [PMID: 36587649 DOI: 10.1016/j.ijbiomac.2022.12.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Joint defects associated with a variety of etiologies often extend deep into the subchondral bone leading to functional impairment and joint immobility, and it is a very challenging task to regenerate the bone-cartilage interface offering significant opportunities for biomaterial-based interventions to improve the quality of life of patients. Herein drug-/bioactive-loaded porous tissue scaffolds incorporating nano-hydroxyapatite (nHAp), chitosan (CS) and either hydroxypropyl methylcellulose (HPMC) or Bombyx mori silk fibroin (SF) are fabricated through freeze drying method as subchondral bone substitute. A combination of spectroscopy and microscopy (Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and X-ray fluorescence (XRF) were used to analyze the structure of the porous biomaterials. The compressive mechanical properties of these scaffolds are biomimetic of cancellous bone tissues and capable of releasing drugs/bioactives (exemplified with triamcinolone acetonide, TA, or transforming growth factor-β1, TGF-β1, respectively) over a period of days. Mouse preosteoblast MC3T3-E1 cells were observed to adhere and proliferate on the tissue scaffolds as confirmed by the cell attachment, live-dead assay and alamarBlue™ assay. Interestingly, RT-qPCR analysis showed that the TA downregulated inflammatory biomarkers and upregulated the bone-specific biomarkers, suggesting such tissue scaffolds have long-term potential for clinical application.
Collapse
Affiliation(s)
- Muhammad Samie
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom; Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan.
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Saeed Ur Rahman
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Haffsah Iqbal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Arfat Yameen
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Hanaa A Galeb
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, 21577 Jeddah, Saudi Arabia
| | - Nathan R Halcovitch
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YW, United Kingdom.
| |
Collapse
|
9
|
Zheng Z, Lei C, Liu H, Jiang M, Zhou Z, Zhao Y, Yu CY, Wei H. A ROS-Responsive Liposomal Composite Hydrogel Integrating Improved Mitochondrial Function and Pro-Angiogenesis for Efficient Treatment of Myocardial Infarction. Adv Healthc Mater 2022; 11:e2200990. [PMID: 35848825 DOI: 10.1002/adhm.202200990] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Mitochondrial dysfunction of cardiomyocytes (CMs) has been identified as a significant pathogenesis of early myocardial infarction (MI). However, only a few agents or strategies have been developed to improve mitochondrial dysfunction for the effective MI treatment. Herein, a reactive oxygen species (ROS)-responsive PAMB-G-TK/4-arm-PEG-SG hydrogel is developed for localized drug-loaded liposome delivery. Notably, the liposomes contain both elamipretide (SS-31) and sphingosine-1-phosphate (S1P), where SS-31 acts as an inhibitor of mitochondrial oxidative damage and S1P as a signaling molecule for activating angiogenesis. Liposome-encapsulated PAMB-G-TK/4-arm-PEG-SG hydrogels demonstrate myocardium-like mechanical strength and electrical conductivity, and ROS-sensitive release of SS-31 and S1P-loaded liposomes. Further liposomal release of SS-31, which can target cytochrome c in the mitochondrial inner membrane of damaged CMs, inhibits pathological ROS production, improving mitochondrial dysfunction. Meanwhile, S1P released from the liposome induces endothelial cell angiogenesis by activating the S1PR1/PI3K/Akt pathway. In a rat MI model, the resulting liposomal composite hydrogel improves cardiac function by scavenging excess ROS, improving mitochondrial dysfunction, and promoting angiogenesis. This study reports for the first time a liposomal composite hydrogel that can directly target mitochondria of damaged CMs for a feedback-regulated release of encapsulated liposomes to consume the overproduced pathological ROS for improved CM activity and enhanced MI treatment.
Collapse
Affiliation(s)
- Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Cai Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Hongbing Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Mingchao Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Zongtao Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang, Hunan, 421001, China
| |
Collapse
|
10
|
Csöbönyeiová M, Beerová N, Klein M, Debreová-Čeháková M, Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci 2022; 23:10314. [PMID: 36142245 PMCID: PMC9499607 DOI: 10.3390/ijms231810314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Because of cardiomyocyte death or dysfunction frequently caused by myocardial infarction (MI), heart failure is a leading cause of morbidity and mortality in modern society. Paradoxically, only limited and non-curative therapies for heart failure or MI are currently available. As a result, over the past two decades research has focused on developing cell-based approaches promoting the regeneration of infarcted tissue. Cell-based therapies for myocardial regeneration include powerful candidates, such as multipotent stem cells (mesenchymal stem cells (MSCs), bone-marrow-derived stem cells, endothelial progenitor cells, and hematopoietic stem cells) and induced pluripotent stem cells (iPSCs). These possess unique properties, such as potency to differentiate into desired cell types, proliferation capacity, and patient specificity. Preclinical and clinical studies have demonstrated modest improvement in the myocardial regeneration and reduced infarcted areas upon transplantation of pluripotent or multipotent stem cells. Another cell population that need to be considered as a potential source for cardiac regeneration are telocytes found in different organs, including the heart. Their therapeutic effect has been studied in various heart pathologies, such as MI, arrhythmias, or atrial amyloidosis. The most recent cell-free therapeutic tool relies on the cardioprotective effect of complex cargo carried by small membrane-bound vesicles-exosomes-released from stem cells via exocytosis. The MSC/iPSC-derived exosomes could be considered a novel exosome-based therapy for cardiovascular diseases thanks to their unique content. There are also other cell-free approaches, e.g., gene therapy, or acellular cardiac patches. Therefore, our review provides the most recent insights into the novel strategies for myocardial repair based on the regenerative potential of different cell types and cell-free approaches.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Nikoleta Beerová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Michaela Debreová-Čeháková
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
11
|
Sharifi M, Kheradmandi R, Salehi M, Alizadeh M, Ten Hagen TLM, Falahati M. Criteria, Challenges, and Opportunities for Acellularized Allogeneic/Xenogeneic Bone Grafts in Bone Repairing. ACS Biomater Sci Eng 2022; 8:3199-3219. [PMID: 35816626 DOI: 10.1021/acsbiomaterials.2c00194] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As bone grafts become more commonly needed by patients and as donors become scarcer, acellularized bone grafts (ABGs) are becoming more popular for restorative purposes. While autogeneic grafts are reliable as a gold standard, allogeneic and xenogeneic ABGs have been shown to be of particular interest due to the limited availability of autogeneic resources and reduced patient well-being in long-term surgeries. Because of the complete similarity of their structures with native bone, excellent mechanical properties, high biocompatibility, and similarities of biological behaviors (osteoinductive and osteoconductive) with local bones, successful outcomes of allogeneic and xenogeneic ABGs in both in vitro and in vivo research have raised hopes of repairing patients' bone injuries in clinical applications. However, clinical trials have been delayed due to a lack of standardized protocols pertaining to acellularization, cell seeding, maintenance, and diversity of ABG evaluation criteria. This study sought to uncover these factors by exploring the bone structures, ossification properties of ABGs, sources, benefits, and challenges of acellularization approaches (physical, chemical, and enzymatic), cell loading, and type of cells used and effects of each of the above items on the regenerative technologies. To gain a perspective on the repair and commercialization of products before implementing new research activities, this study describes the differences between ABGs created by various techniques and methods applied to them. With a comprehensive understanding of ABG behavior, future research focused on treating bone defects could provide a better way to combine the treatment approaches needed to treat bone defects.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, 3614773955 Shahroud, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, The Netherlands
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, The Netherlands
| |
Collapse
|
12
|
Ghofrani A, Taghavi L, Khalilivavdareh B, Rohani Shirvan A, Nouri A. Additive manufacturing and advanced functionalities of cardiac patches: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Tajabadi M, Goran Orimi H, Ramzgouyan MR, Nemati A, Deravi N, Beheshtizadeh N, Azami M. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions. Biomed Pharmacother 2021; 146:112584. [PMID: 34968921 DOI: 10.1016/j.biopha.2021.112584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Heart muscle injury and an elevated troponin level signify myocardial infarction (MI), which may result in defective and uncoordinated segments, reduced cardiac output, and ultimately, death. Physicians apply thrombolytic therapy, coronary artery bypass graft (CABG) surgery, or percutaneous coronary intervention (PCI) to recanalize and restore blood flow to the coronary arteries, albeit they were not convincingly able to solve the heart problems. Thus, researchers aim to introduce novel substitutional therapies for regenerating and functionalizing damaged cardiac tissue based on engineering concepts. Cell-based engineering approaches, utilizing biomaterials, gene, drug, growth factor delivery systems, and tissue engineering are the most leading studies in the field of heart regeneration. Also, understanding the primary cause of MI and thus selecting the most efficient treatment method can be enhanced by preparing microdevices so-called heart-on-a-chip. In this regard, microfluidic approaches can be used as diagnostic platforms or drug screening in cardiac disease treatment. Additionally, bioprinting technique with whole organ 3D printing of human heart with major vessels, cardiomyocytes and endothelial cells can be an ideal goal for cardiac tissue engineering and remarkable achievement in near future. Consequently, this review discusses the different aspects, advancements, and challenges of the mentioned methods with presenting the advantages and disadvantages, chronological indications, and application prospects of various novel therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
| | - Hanif Goran Orimi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Roya Ramzgouyan
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Nemati
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
14
|
Zeimaran E, Pourshahrestani S, Fathi A, Razak NABA, Kadri NA, Sheikhi A, Baino F. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater 2021; 136:1-36. [PMID: 34562661 DOI: 10.1016/j.actbio.2021.09.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Successful tissue regeneration requires a scaffold with tailorable biodegradability, tissue-like mechanical properties, structural similarity to extracellular matrix (ECM), relevant bioactivity, and cytocompatibility. In recent years, injectable hydrogels have spurred increasing attention in translational medicine as a result of their tunable physicochemical properties in response to the surrounding environment. Furthermore, they have the potential to be implanted via minimally invasive procedures while enabling deep penetration, which is considered a feasible alternative to traditional open surgical procedures. However, polymeric hydrogels may lack sufficient stability and bioactivity in physiological environments. Composite hydrogels containing bioactive glass (BG) particulates, synergistically combining the advantages of their constituents, have emerged as multifunctional biomaterials with tailored mechanical properties and biological functionalities. This review paper highlights the recent advances in injectable composite hydrogel systems based on biodegradable polymers and BGs. The influence of BG particle geometry, composition, and concentration on gel formation, rheological and mechanical behavior as well as hydration and biodegradation of injectable hydrogels have been discussed. The applications of these composite hydrogels in tissue engineering are additionally described, with particular attention to bone and skin. Finally, the prospects and current challenges in the development of desirable injectable bioactive hydrogels for tissue regeneration are discussed to outline a roadmap for future research. STATEMENT OF SIGNIFICANCE: Developing a biomaterial that can be readily available for surgery, implantable via minimally invasive procedures, and be able to effectively stimulate tissue regeneration is one of the grand challenges in modern biomedicine. This review summarizes the state-of-the-art of injectable bioactive glass-polymer composite hydrogels to address several challenges in bone and soft tissue repair. The current limitations and the latest evolutions of these composite biomaterials are critically examined, and the roles of design parameters, such as composition, concentration, and size of the bioactive phase, and polymer-glass interactions on the rheological, mechanical, biological, and overall functional performance of hydrogels are detailed. Existing results and new horizons are discussed to provide a state-of-the-art review that may be useful for both experienced and early-stage researchers in the biomaterials community.
Collapse
|
15
|
Siehr A, Flory C, Callaway T, Schumacher RJ, Siegel RA, Shen W. Implantable and Degradable Thermoplastic Elastomer. ACS Biomater Sci Eng 2021; 7:5598-5610. [PMID: 34788004 DOI: 10.1021/acsbiomaterials.1c01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biodegradable and implantable materials having elastomeric properties are highly desirable for many biomedical applications. Here, we report that poly(lactide)-co-poly(β-methyl-δ-valerolactone)-co-poly(lactide) (PLA-PβMδVL-PLA), a thermoplastic triblock poly(α-ester), has combined favorable properties of elasticity, biodegradability, and biocompatibility. This material exhibits excellent elastomeric properties in both dry and aqueous environments. The elongation at break is approximately 1000%, and stretched specimens completely recover to their original shape after force is removed. The material is degradable both in vitro and in vivo; it degrades more slowly than poly(glycerol sebacate) and more rapidly than poly(caprolactone) in vivo. Both the polymer and its degradation product show high cytocompatibility in vitro. The histopathological analysis of PLA-PβMδVL-PLA specimens implanted in the gluteal muscle of rats for 1, 4, and 8 weeks revealed similar tissue responses as compared with poly(glycerol sebacate) and poly(caprolactone) controls, two widely accepted implantable polymers, suggesting that PLA-PβMδVL-PLA can potentially be used as an implantable material with favorable in vivo biocompatibility. The thermoplastic nature allows this elastomer to be readily processed, as demonstrated by the facile fabrication of the substrates with topographical cues to enhance muscle cell alignment. These properties collectively make this polymer potentially highly valuable for applications such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Craig Flory
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States
| | - Trenton Callaway
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States.,Experimental and Clinical Pharmacology, University of Minnesota, 7-115 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Khan K, Makhoul G, Yu B, Jalani G, Derish I, Rutman AK, Cerruti M, Schwertani A, Cecere R. Amniotic stromal stem cell-loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators. J Tissue Eng Regen Med 2021; 16:110-127. [PMID: 34726328 DOI: 10.1002/term.3262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
The use of stem cells to repair the heart after a myocardial infarction (MI) remains promising, yet clinical trials over the past 20 years suggest that cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function. Here, we demonstrate the cardioprotective potential of a composite inserting human amniotic stromal mesenchymal stem cells (ASMCs) in a chitosan and hyaluronic acid (C/HA) based hydrogel in a rat MI model. Mechanical characterization of the C/HA platform indicated a swift elastic conversion at 40°C and a rapid sol-gel transition time at 37°C. Cell viability assay presented active and proliferating AMSCs in the C/HA. The ASMCs + C/HA injected composite significantly increased left ventricular ejection fraction, fractional shortening, and neovessel formation. The encapsulated AMSCs were abundantly detected in the infarcted myocardium 6 weeks post-administration and co-expressed cardiac proteins and notably proliferative markers. Proteomic profiling revealed that extracellular vesicles released from hypoxia preconditioned ASMCs contained proteins involved in cytoprotection, angiogenesis, cardiac differentiation and non-canonical Wnt-signaling. Independent activation of non-canonical Wnt-signaling pathways in ASMCs induced cardiogenesis. Despite a low injected cellular density at baseline, the encapsulated AMSCs were abundantly retained and increased cardiac function. Furthermore, the C/HA hydrogel provided an active milieu for the AMSCs to proliferate, co-express cardiac proteins, and induce new vessel formation. Hence, this novel composite of AMSCs + C/HA scaffold is a conceivable candidate that could restore cardiac function and reduce remodeling.
Collapse
Affiliation(s)
- Kashif Khan
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Georges Makhoul
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bin Yu
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Ida Derish
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marta Cerruti
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Adel Schwertani
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Renzo Cecere
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada.,The Royal Victoria Hospital Montreal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Khazaei S, Soleimani M, Tafti SHA, Aghdam RM, Hojati Z. Improvement of Heart Function After Transplantation of Encapsulated Stem Cells Induced with miR-1/Myocd in Myocardial Infarction Model of Rat. Cell Transplant 2021; 30:9636897211048786. [PMID: 34606735 PMCID: PMC8493326 DOI: 10.1177/09636897211048786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease is one of the most common causes of death worldwide. Mesenchymal stem cells (MSCs) are one of the most common sources in cell-based therapies in heart regeneration. There are several methods to differentiate MSCs into cardiac-like cells, such as gene induction. Moreover, using a three-dimensional (3D) culture, such as hydrogels increases efficiency of differentiation. In the current study, mouse adipose-derived MSCs were co-transduced with lentiviruses containing microRNA-1 (miR-1) and Myocardin (Myocd). Then, expression of cardiac markers, such as NK2 homeobox 5(Nkx2-5), GATA binding protein 4 (Gata4), and troponin T type 2 (Tnnt2) was investigated, at both gene and protein levels in two-dimensional (2D) culture and chitosan/collagen hydrogel (CS/CO) as a 3D culture. Additionally, after induction of myocardial infarction (MI) in rats, a patch containing the encapsulated induced cardiomyocytes (iCM/P) was implanted to MI zone. Subsequently, 30 days after MI induction, echocardiography, immunohistochemistry staining, and histological examination were performed to evaluate cardiac function. The results of quantitative real -time polymerase chain reaction (qRT-PCR) and immunocytochemistry showed that co-induction of miR-1 and Myocd in MSCs followed by 3D culture of transduced cells increased expression of cardiac markers. Besides, results of in vivo study implicated that heart function was improved in MI model of rats in iCM/P-treated group. The results suggested that miR-1/Myocd induction combined with encapsulation of transduced cells in CS/CO hydrogel increased efficiency of MSCs differentiation into iCMs and could improve heart function in MI model of rats after implantation.
Collapse
Affiliation(s)
- Samaneh Khazaei
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| | - Masoud Soleimani
- Tissue Engineering and Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Tissue Engineering and Nanomedicine Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Hojati
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, Isfahan University, Isfahan, Iran
| |
Collapse
|
18
|
Lou L, Lopez KO, Nautiyal P, Agarwal A. Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lihua Lou
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Kazue Orikasa Lopez
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Pranjal Nautiyal
- Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA 19104 USA
| | - Arvind Agarwal
- Plasma Forming Laboratory Advanced Materials Engineering Research Institute (AMERI) Mechanical and Materials Engineering College of Engineering and Computing Florida International University Miami FL 33174 USA
| |
Collapse
|
19
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
20
|
Feng Y, Zhao G, Xu M, Xing X, Yang L, Ma Y, Qi M, Zhang X, Gao D. rGO/Silk Fibroin-Modified Nanofibrous Patches Prevent Ventricular Remodeling via Yap/Taz-TGFβ1/Smads Signaling After Myocardial Infarction in Rats. Front Cardiovasc Med 2021; 8:718055. [PMID: 34485415 PMCID: PMC8415403 DOI: 10.3389/fcvm.2021.718055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: After acute myocardial infarction (AMI), the loss of cardiomyocytes and dysregulation of extracellular matrix homeostasis results in impaired cardiac function and eventually heart failure. Cardiac patches have emerged as a potential therapeutic strategy for AMI. In this study, we fabricated and produced reduced graphene oxide (rGO)/silk fibroin-modified nanofibrous biomaterials as a cardiac patch to repair rat heart tissue after AMI and investigated the potential role of rGO/silk patch on reducing myocardial fibrosis and improving cardiac function in the infarcted rats. Method: rGO/silk nanofibrous biomaterial was prepared by electrospinning and vacuum filtration. A rat model of AMI was used to investigate the ability of patches with rGO/silk to repair the injured heart in vivo. Echocardiography and stress-strain analysis of the left ventricular papillary muscles was used to assess the cardiac function and mechanical property of injured hearts treated with this cardiac patch. Masson's trichrome staining and immunohistochemical staining for Col1A1 was used to observe the degree of myocardial fibrosis at 28 days after patch implantation. The potential direct mechanism of the new patch to reduce myocardial fibrosis was explored in vitro and in vivo. Results: Both echocardiography and histopathological staining demonstrated improved cardiac systolic function and ventricular remodeling after implantation of the rGO/silk patch. Additionally, cardiac fibrosis and myocardial stiffness of the infarcted area were improved with rGO/silk. On RNA-sequencing, the gene expression of matrix-regulated genes was altered in cardiofibroblasts treated with rGO. Western blot analysis revealed decreased expression of the Yap/Taz-TGFβ1/Smads signaling pathway in heart tissue of the rGO/silk patch group as compared with controls. Furthermore, the rGO directly effect on Col I and Col III expression and Yap/Taz-TGFβ1/Smads signaling was confirmed in isolated cardiofibroblasts in vitro. Conclusion: This study suggested that rGO/silk improved cardiac function and reduced cardiac fibrosis in heart tissue after AMI. The mechanism of the anti-fibrosis effect may involve a direct regulation of rGO on Yap/Taz-TGFβ1/Smads signaling in cardiofibroblasts.
Collapse
Affiliation(s)
- Yanjing Feng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an, China
| | - Min Xu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xin Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lijun Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Ma
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Mengyao Qi
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Alagarsamy KN, Mathan S, Yan W, Rafieerad A, Sekaran S, Manego H, Dhingra S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact Mater 2021; 6:2261-2280. [PMID: 33553814 PMCID: PMC7829079 DOI: 10.1016/j.bioactmat.2020.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Heart attack and stroke cause irreversible tissue damage. The currently available treatment options are limited to "damage-control" rather than tissue repair. The recent advances in nanomaterials have offered novel approaches to restore tissue function after injury. In particular, carbon nanomaterials (CNMs) have shown significant promise to bridge the gap in clinical translation of biomaterial based therapies. This family of carbon allotropes (including graphenes, carbon nanotubes and fullerenes) have unique physiochemical properties, including exceptional mechanical strength, electrical conductivity, chemical behaviour, thermal stability and optical properties. These intrinsic properties make CNMs ideal materials for use in cardiovascular theranostics. This review is focused on recent efforts in the diagnosis and treatment of heart diseases using graphenes and carbon nanotubes. The first section introduces currently available derivatives of graphenes and carbon nanotubes and discusses some of the key characteristics of these materials. The second section covers their application in drug delivery, biosensors, tissue engineering and immunomodulation with a focus on cardiovascular applications. The final section discusses current shortcomings and limitations of CNMs in cardiovascular applications and reviews ongoing efforts to address these concerns and to bring CNMs from bench to bedside.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sajitha Mathan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Weiang Yan
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Alireza Rafieerad
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Saravanan Sekaran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Hanna Manego
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
22
|
Dwyer KD, Coulombe KL. Cardiac mechanostructure: Using mechanics and anisotropy as inspiration for developing epicardial therapies in treating myocardial infarction. Bioact Mater 2021; 6:2198-2220. [PMID: 33553810 PMCID: PMC7822956 DOI: 10.1016/j.bioactmat.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanical environment and anisotropic structure of the heart modulate cardiac function at the cellular, tissue and organ levels. During myocardial infarction (MI) and subsequent healing, however, this landscape changes significantly. In order to engineer cardiac biomaterials with the appropriate properties to enhance function after MI, the changes in the myocardium induced by MI must be clearly identified. In this review, we focus on the mechanical and structural properties of the healthy and infarcted myocardium in order to gain insight about the environment in which biomaterial-based cardiac therapies are expected to perform and the functional deficiencies caused by MI that the therapy must address. From this understanding, we discuss epicardial therapies for MI inspired by the mechanics and anisotropy of the heart focusing on passive devices, which feature a biomaterials approach, and active devices, which feature robotic and cellular components. Through this review, a detailed analysis is provided in order to inspire further development and translation of epicardial therapies for MI.
Collapse
Affiliation(s)
- Kiera D. Dwyer
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L.K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
23
|
Parchehbaf-Kashani M, Ansari H, Mahmoudi E, Barekat M, Sepantafar M, Rajabi S, Pahlavan S. Heart Repair Induced by Cardiac Progenitor Cell Delivery within Polypyrrole-Loaded Cardiogel Post-ischemia. ACS APPLIED BIO MATERIALS 2021; 4:4849-4861. [PMID: 35007034 DOI: 10.1021/acsabm.1c00133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myocardial infarction (MI) irreversibly injures the heart tissue. Cardiovascular tissue engineering has been developed as a promising therapeutic approach for post-MI repair. Previously, we discovered the ability of a polypyrrole (PPy)-incorporated cardiogel (CG) for improvement of maturity and functional synchrony of rat neonatal cardiomyocytes. Here, we used the cross-linked form of PPy-incorporated CG (CG-PPy), in order to improve electromechanical properties of scaffold, for application in cardiac progenitor cell (CPC) transplantation on post-MI rat hearts. Improved mechanical property and electrical conductivity (sixfold) were evident in the cross-linked CG-PPy (P1) compared to cross-linked CG (C1) scaffolds. Transplantation of CPC-loaded P1 (P1-CPC) resulted in substantial improvement of cardiac functional properties. Furthermore, lower fibrotic tissue and higher CPC retention were observed. The grafted cells showed cardiomyocyte characteristics when stained with human cardiac troponin T and connexin43 antibodies, while neovessel formation was similarly prominent. These findings highlight the therapeutic promise of the P1 scaffold as a CPC carrier for functional restoration of the heart post-MI.
Collapse
Affiliation(s)
- Melika Parchehbaf-Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Elena Mahmoudi
- Massachusetts General Hospital, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Mohammadmajid Sepantafar
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
24
|
Raposo L, Lourenço AP, Nascimento DS, Cerqueira R, Cardim N, Leite-Moreira A. Human umbilical cord tissue-derived mesenchymal stromal cells as adjuvant therapy for myocardial infarction: a review of current evidence focusing on pre-clinical large animal models and early human trials. Cytotherapy 2021; 23:974-979. [PMID: 34112613 DOI: 10.1016/j.jcyt.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022]
Abstract
Although biologically appealing, the concept of tissue regeneration underlying first- and second-generation cell therapies has failed to translate into consistent results in clinical trials. Several types of cells from different origins have been tested in pre-clinical models and in patients with acute myocardial infarction (AMI). Mesenchymal stromal cells (MSCs) have gained attention because of their potential for immune modulation and ability to promote endogenous tissue repair, mainly through their secretome. MSCs can be easily obtained from several human tissues, the umbilical cord being the most abundant source, and further expanded in culture, making them attractive as an allogeneic "of-the-shelf" cell product, suitable for the AMI setting. The available evidence concerning umbilical cord-derived MSCs in AMI is reviewed, focusing on large animal pre-clinical studies and early human trials. Molecular and cellular mechanisms as well as current limitations and possible translational solutions are also discussed.
Collapse
Affiliation(s)
- Luís Raposo
- Cardiology Department, Santa Cruz Hospital, West Lisbon Hospital Center, Lisbon, Portugal; Hospital da Luz Lisboa, Luz Saúde, Lisbon, Portugal; Nova Medical School, Lisbon, Portugal.
| | - André P Lourenço
- Department of Cardiac Surgery, University Hospital Centre São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diana S Nascimento
- Institute for Research and Innovation in Health, University of Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal; Instituto Nacional de Engenharia Biomédica, University of Porto, Portugal
| | - Rui Cerqueira
- Department of Cardiac Surgery, University Hospital Centre São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Nuno Cardim
- Hospital da Luz Lisboa, Luz Saúde, Lisbon, Portugal; Nova Medical School, Lisbon, Portugal
| | - Adelino Leite-Moreira
- Department of Cardiac Surgery, University Hospital Centre São João, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
26
|
Lee H, Kim W, Lee J, Park KS, Yoo JJ, Atala A, Kim GH, Lee SJ. Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration. APPLIED PHYSICS REVIEWS 2021; 8:021405. [PMID: 34084255 PMCID: PMC8117312 DOI: 10.1063/5.0039639] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
To achieve rapid skeletal muscle function restoration, many attempts have been made to bioengineer functional muscle constructs by employing physical, biochemical, or biological cues. Here, we develop a self-aligned skeletal muscle construct by printing a photo-crosslinkable skeletal muscle extracellular matrix-derived bioink together with poly(vinyl alcohol) that contains human muscle progenitor cells. To induce the self-alignment of human muscle progenitor cells, in situ uniaxially aligned micro-topographical structure in the printed constructs is created by a fibrillation/leaching of poly(vinyl alcohol) after the printing process. The in vitro results demonstrate that the synergistic effect of tissue-specific biochemical signals (obtained from the skeletal muscle extracellular matrix-derived bioink) and topographical cues [obtained from the poly(vinyl alcohol) fibrillation] improves the myogenic differentiation of the printed human muscle progenitor cells with cellular alignment. Moreover, this self-aligned muscle construct shows the accelerated integration with neural networks and vascular ingrowth in vivo, resulting in rapid restoration of muscle function. We demonstrate that combined biochemical and topographic cues on the 3D bioprinted skeletal muscle constructs can effectively reconstruct the extensive muscle defect injuries.
Collapse
Affiliation(s)
- Hyeongjin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
27
|
Behmer Hansen RA, Wang X, Kaw G, Pierre V, Senyo SE. Accounting for Material Changes in Decellularized Tissue with Underutilized Methodologies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6696295. [PMID: 34159202 PMCID: PMC8187050 DOI: 10.1155/2021/6696295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Tissue decellularization has rapidly developed to be a practical approach in tissue engineering research; biological tissue is cleared of cells resulting in a protein-rich husk as a natural scaffold for growing transplanted cells as a donor organ therapy. Minimally processed, acellular extracellular matrix reproduces natural interactions with cells in vitro and for tissue engineering applications in animal models. There are many decellularization techniques that achieve preservation of molecular profile (proteins and sugars), microstructure features such as organization of ECM layers (interstitial matrix and basement membrane) and organ level macrofeatures (vasculature and tissue compartments). While structural and molecular cues receive attention, mechanical and material properties of decellularized tissues are not often discussed. The effects of decellularization on an organ depend on the tissue properties, clearing mechanism, chemical interactions, solubility, temperature, and treatment duration. Physical characterization by a few labs including work from the authors provides evidence that decellularization protocols should be tailored to specific research questions. Physical characterization beyond histology and immunohistochemistry of the decellularized matrix (dECM) extends evaluation of retained functional features of the original tissue. We direct our attention to current technologies that can be employed for structure function analysis of dECM using underutilized tools such as atomic force microscopy (AFM), cryogenic electron microscopy (cryo-EM), dynamic mechanical analysis (DMA), Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, and rheometry. Structural imaging and mechanical functional testing combined with high-throughput molecular analyses opens a new approach for a deeper appreciation of how cellular behavior is influenced by the isolated microenvironment (specifically dECM). Additionally, the impact of these features with different decellularization techniques and generation of synthetic material scaffolds with desired attributes are informed. Ultimately, this mechanical profiling provides a new dimension to our understanding of decellularized matrix and its role in new applications.
Collapse
Affiliation(s)
- Ryan A. Behmer Hansen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gitanjali Kaw
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
28
|
Hassanpour M, Fathi Karkan S, Rahbarghazi R, Nouri M, Amini H, Saghati S, Baradar Khoshfetrat A. Culture of rabbit bone marrow mesenchymal stem cells on polyurethane/pyrrole surface promoted differentiation into endothelial lineage. Artif Organs 2021; 45:E324-E334. [PMID: 33908072 DOI: 10.1111/aor.13971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022]
Abstract
Due to the electrical conductivity, pyrrole-based scaffolds are one of the attractive biomaterials in the regeneration of electrically active tissues like the heart and brain. Here, we investigated the impact of polyurethane/pyrrole scaffold on the angiogenesis differentiation of rabbit mesenchymal stem cells toward endothelial lineage in vitro. Nanoelectrospun polyurethane/pyrrole fibers were synthesized and characterized using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectrum analysis, scanning electron microscope (SEM) imaging. Mechanical properties, electroconductivity, and hydrophobicity were also measured. The viability of cells was monitored 72 hours after being plated on the polyurethane/pyrrole surface. The endothelial differentiation of stem cells was explored using western blotting. ATR-FTIR revealed that the pyrrole was successfully polymerized to polypyrrole and blend with polyurethane fibers. The addition of pyrrole to polyurethane increased the tensile strength compared to the polyurethane group. These features coincided with the reduction of the hydrophilic properties of polyurethane. Based on our data, the electro-conductivity of polyurethane/pyrrole was superior compared to the polyurethane group. SEM imaging showed an appropriate cell attachment to the surface of polyurethane/pyrrole and polyurethane groups synthesized membranes. MTT assay revealed a significantly increased survival rate in the polyurethane/pyrrole group compared to the polyurethane group (P < .05). We noted a statistically significant increase of endothelial-associated proteins, CD31, von Willebrand factor, and CD34, in cells expanded on polyurethane/pyrrole compared to the polyurethane group (P < .05). As a more general note, it could be hypothesized that the polyurethane/pyrrole blend could improve the angiogenesis potency of rabbit bone marrow mesenchymal stem cells for regenerative purposes.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
29
|
Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D Bioprinting of Vascularized Tissues for in vitro and in vivo Applications. Front Bioeng Biotechnol 2021; 9:664188. [PMID: 34055761 PMCID: PMC8158943 DOI: 10.3389/fbioe.2021.664188] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a limited supply of organ donors and available organs for transplantation, the aim of tissue engineering with three-dimensional (3D) bioprinting technology is to construct fully functional and viable tissue and organ replacements for various clinical applications. 3D bioprinting allows for the customization of complex tissue architecture with numerous combinations of materials and printing methods to build different tissue types, and eventually fully functional replacement organs. The main challenge of maintaining 3D printed tissue viability is the inclusion of complex vascular networks for nutrient transport and waste disposal. Rapid development and discoveries in recent years have taken huge strides toward perfecting the incorporation of vascular networks in 3D printed tissue and organs. In this review, we will discuss the latest advancements in fabricating vascularized tissue and organs including novel strategies and materials, and their applications. Our discussion will begin with the exploration of printing vasculature, progress through the current statuses of bioprinting tissue/organoids from bone to muscles to organs, and conclude with relevant applications for in vitro models and drug testing. We will also explore and discuss the current limitations of vascularized tissue engineering and some of the promising future directions this technology may bring.
Collapse
Affiliation(s)
- Earnest P Chen
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Yale College, Yale University, New Haven, CT, United States
| | - Zeren Toksoy
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Yale College, Yale University, New Haven, CT, United States
| | - Bruce A Davis
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States
| | - John P Geibel
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
30
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
31
|
Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, Cui H, Chan AHP, Costantini M, Onesto V, Di Natale C, Huang NF, Makvandi P, Shabani M, Maiti TK, Zhang LG, De Maria C. Recent advances in bioprinting technologies for engineering cardiac tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112057. [PMID: 33947551 DOI: 10.1016/j.msec.2021.112057] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Gabriele Maria Fortunato
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Kiran Yellappa Vajanthri
- School of Biomedical Engineering, Indian Institute of Technology Banaras Hindu University Varanasi, Uttar Pradesh 221005, India
| | - Dario Presutti
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Alex H P Chan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Marco Costantini
- Institute of Physical Chemistry - Polish Academy of Sciences, Warsaw, Poland
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, Naples 80125, Italy
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pooyan Makvandi
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Majid Shabani
- Center for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| | - Carmelo De Maria
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| |
Collapse
|
32
|
Aydin A, Cebi G, Demirtas ZE, Erkus H, Kucukay A, Ok M, Sakalli L, Alpdagtas S, Gunduz O, Ustundag CB. Combating COVID-19 with tissue engineering: a review. EMERGENT MATERIALS 2020; 4:329-349. [PMID: 33235976 PMCID: PMC7677604 DOI: 10.1007/s42247-020-00138-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 05/04/2023]
Abstract
The ongoing COVID-19 pandemic triggered by SARS-CoV-2 emerged from Wuhan, China, firstly in December 2019, as well spread to almost all around the world rapidly. The main reason why this disease spreads so many people in a short time is that the virus could be transmitted from an infected person to another by infected droplets. The new emergence of diseases usually may affect multiple organs; moreover, this disease is such an example. Numerous reported studies focus on acute or chronic organ damage caused by the virus. At this point, tissue engineering (TE) strategies can be used to treat the damages with its interdisciplinary approaches. Tissue engineers could design drug delivery systems, scaffolds, and especially biomaterials for the damaged tissue and organs. In this review, brief information about SARS-CoV-2, COVID-19, and epidemiology of the disease will be given at first. After that, the symptoms, the tissue damages in specific organs, and cytokine effect caused by COVID-19 will be described in detail. Finally, it will be attempted to summarize and suggest the appropriate treatments with suitable biomaterials for the damages via TE approaches. The aim of this review is to serve as a summary of currently available tissue damage treatments after COVID-19.
Collapse
Affiliation(s)
- Ayca Aydin
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Gizem Cebi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Zeynep Ezgi Demirtas
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Huseyin Erkus
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Aleyna Kucukay
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Merve Ok
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Latife Sakalli
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Saadet Alpdagtas
- Department of Biology, Van Yuzuncu Yil University, 65080 Van, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| |
Collapse
|
33
|
Vigneswari S, Chai JM, Kamarudin KH, Amirul AAA, Focarete ML, Ramakrishna S. Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB- co-4HB) for H9c2 Myoblast Cell Proliferation. Front Bioeng Biotechnol 2020; 8:567693. [PMID: 33195129 PMCID: PMC7653028 DOI: 10.3389/fbioe.2020.567693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jun Meng Chai
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Khadijah Hilmun Kamarudin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, George Town, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
34
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
35
|
Nguyen-Truong M, Li YV, Wang Z. Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering (Basel) 2020; 7:E122. [PMID: 33022929 PMCID: PMC7711753 DOI: 10.3390/bioengineering7040122] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials to facilitate the restoration of cardiac tissue is of emerging importance. While there are many aspects to consider in the design of biomaterials, mechanical properties can be of particular importance in this dynamically remodeling tissue. This review focuses on one specific processing method, electrospinning, that is employed to generate materials with a fibrous microstructure that can be combined with material properties to achieve the desired mechanical behavior. Current methods used to fabricate mechanically relevant micro-/nanofibrous scaffolds, in vivo studies using these scaffolds as therapeutics, and common techniques to characterize the mechanical properties of the scaffolds are covered. We also discuss the discrepancies in the reported elastic modulus for physiological and pathological myocardium in the literature, as well as the emerging area of in vitro mechanobiology studies to investigate the mechanical regulation in cardiac tissue engineering. Lastly, future perspectives and recommendations are offered in order to enhance the understanding of cardiac mechanobiology and foster therapeutic development in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Michael Nguyen-Truong
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
| | - Yan Vivian Li
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
36
|
|
37
|
Roche CD, Brereton RJL, Ashton AW, Jackson C, Gentile C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg 2020; 58:500-510. [PMID: 32391914 PMCID: PMC8456486 DOI: 10.1093/ejcts/ezaa093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Previous attempts in cardiac bioengineering have failed to provide tissues for cardiac regeneration. Recent advances in 3-dimensional bioprinting technology using prevascularized myocardial microtissues as 'bioink' have provided a promising way forward. This review guides the reader to understand why myocardial tissue engineering is difficult to achieve and how revascularization and contractile function could be restored in 3-dimensional bioprinted heart tissue using patient-derived stem cells.
Collapse
Affiliation(s)
- Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Russell J L Brereton
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Anthony W Ashton
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher Jackson
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
38
|
Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A, Saparov A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. Int J Mol Sci 2020; 21:E5952. [PMID: 32824966 PMCID: PMC7504169 DOI: 10.3390/ijms21175952] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarction causes cardiac tissue damage and the release of damage-associated molecular patterns leads to activation of the immune system, production of inflammatory mediators, and migration of various cells to the site of infarction. This complex response further aggravates tissue damage by generating oxidative stress, but it eventually heals the infarction site with the formation of fibrotic tissue and left ventricle remodeling. However, the limited self-renewal capability of cardiomyocytes cannot support sufficient cardiac tissue regeneration after extensive myocardial injury, thus, leading to an irreversible decline in heart function. Approaches to improve cardiac tissue regeneration include transplantation of stem cells and delivery of inflammation modulatory and wound healing factors. Nevertheless, the harsh environment at the site of infarction, which consists of, but is not limited to, oxidative stress, hypoxia, and deficiency of nutrients, is detrimental to stem cell survival and the bioactivity of the delivered factors. The use of biomaterials represents a unique and innovative approach for protecting the loaded factors from degradation, decreasing side effects by reducing the used dosage, and increasing the retention and survival rate of the loaded cells. Biomaterials with loaded stem cells and immunomodulating and tissue-regenerating factors can be used to ameliorate inflammation, improve angiogenesis, reduce fibrosis, and generate functional cardiac tissue. In this review, we discuss recent findings in the utilization of biomaterials to enhance cytokine/growth factor and stem cell therapy for cardiac tissue regeneration in small animals with myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (S.S.); (Y.K.); (A.S.); (K.R.); (A.N.)
| |
Collapse
|
39
|
Matsuzaki Y, Miyamoto S, Miyachi H, Sugiura T, Reinhardt JW, Yu-Chun C, Zbinden J, Breuer CK, Shinoka T. The evaluation of a tissue-engineered cardiac patch seeded with hips derived cardiac progenitor cells in a rat left ventricular model. PLoS One 2020; 15:e0234087. [PMID: 32511282 PMCID: PMC7279601 DOI: 10.1371/journal.pone.0234087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ventricular septal perforation and left ventricular aneurysm are examples of potentially fatal complications of myocardial infarction. While various artificial materials are used in the repair of these issues, the possibility of associated infection and calcification is non-negligible. Cell-seeded biodegradable tissue-engineered patches may be a potential solution. This study evaluated the feasibility of a new left ventricular patch rat model to study neotissue formation in biodegradable cardiac patches. METHODS Human induced pluripotent stem cell-derived cardiac progenitor cells (hiPS-CPCs) were cultured onto biodegradable patches composed of polyglycolic acid and a 50:50 poly (l-lactide-co-ε-caprolactone) copolymer for one week. After culturing, patches were implanted into left ventricular walls of male athymic rats. Unseeded controls were also used (n = 10/group). Heart conditions were followed by echocardiography and patches were subsequently explanted at 1, 2, 6, and 9 months post-implantation for histological evaluation. RESULT Throughout the study, no patches ruptured demonstrating the ability to withstand the high pressure left ventricular system. One month after transplantation, the seeded patch did not stain positive for human nuclei. However, many new blood vessels formed within patches with significantly greater vessels in the seeded group at the 6 month time point. Echocardiography showed no significant difference in left ventricular contraction rate between the two groups. Calcification was found inside patches after 6 months, but there was no significant difference between groups. CONCLUSION We have developed a surgical method to implant a bioabsorbable scaffold into the left ventricular environment of rats with a high survival rate. Seeded hiPS-CPCs did not differentiate into cardiomyocytes, but the greater number of new blood vessels in seeded patches suggests the presence of cell seeding early in the remodeling process might provide a prolonged effect on neotissue formation. This experiment will contribute to the development of a treatment model for left ventricular failure using iPS cells in the future.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Shinka Miyamoto
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Hideki Miyachi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - James W. Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Chang Yu-Chun
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Jacob Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States of America
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States of America
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States of America
| |
Collapse
|
40
|
Javaid M, Haleem A. 3D printed tissue and organ using additive manufacturing: An overview. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Cattelan G, Guerrero Gerbolés A, Foresti R, Pramstaller PP, Rossini A, Miragoli M, Caffarra Malvezzi C. Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration. Front Bioeng Biotechnol 2020; 8:414. [PMID: 32457887 PMCID: PMC7226066 DOI: 10.3389/fbioe.2020.00414] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases, including myocardial infarction (MI), represent the main worldwide cause of mortality and morbidity. In this scenario, to contrast the irreversible damages following MI, cardiac regeneration has emerged as a novel and promising solution for in situ cellular regeneration, preserving cell behavior and tissue cytoarchitecture. Among the huge variety of natural, synthetic, and hybrid compounds used for tissue regeneration, alginate emerged as a good candidate for cellular preservation and delivery, becoming one of the first biomaterial tested in pre-clinical research and clinical trials concerning cardiovascular diseases. Although promising results have been obtained, recellularization and revascularization of the infarcted area present still major limitations. Therefore, the demand is rising for alginate functionalization and its combination with molecules, factors, and drugs capable to boost the regenerative potential of the cardiac tissue. The focus of this review is to elucidate the promising properties of alginate and to highlight its benefits in clinical trials in relation to cardiac regeneration. The definition of hydrogels, the alginate characteristics, and recent biomedical applications are herewith described. Afterward, the review examines in depth the ongoing developments to refine the material relevance in cardiac recovery and regeneration after MI and presents current clinical trials based on alginate.
Collapse
Affiliation(s)
- Giada Cattelan
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Amparo Guerrero Gerbolés
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | | |
Collapse
|
42
|
Reconstitution of the Ventricular Endocardium Within Acellular Hearts. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-019-00099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Zanjanizadeh Ezazi N, Ajdary R, Correia A, Mäkilä E, Salonen J, Kemell M, Hirvonen J, Rojas OJ, Ruskoaho HJ, Santos HA. Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6899-6909. [PMID: 31967771 PMCID: PMC7450488 DOI: 10.1021/acsami.9b21066] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.
Collapse
Affiliation(s)
- Nazanin Zanjanizadeh Ezazi
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical
Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Alexandra Correia
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Marianna Kemell
- Department of Chemistry, University of
Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, School of Chemical
Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
- Departments of Chemical
& Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Heikki J. Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A. Santos
- Drug Research Program,
Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
- E-mail: .
Tel: +358 2941 59661
| |
Collapse
|
44
|
van den Boomen M, Kause HB, van Assen HC, Dankers PYW, Bouten CVC, Vandoorne K. Triple-marker cardiac MRI detects sequential tissue changes of healing myocardium after a hydrogel-based therapy. Sci Rep 2019; 9:19366. [PMID: 31852978 PMCID: PMC6920418 DOI: 10.1038/s41598-019-55864-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Regenerative therapies based on injectable biomaterials, hold an unparalleled potential for treating myocardial ischemia. Yet, noninvasive evaluation of their efficacy has been lagging behind. Here, we report the development and longitudinal application of multiparametric cardiac magnetic resonance imaging (MRI) to evaluate a hydrogel-based cardiac regenerative therapy. A pH-switchable hydrogel was loaded with slow releasing insulin growth factor 1 and vascular endothelial growth factor, followed by intramyocardial injection in a mouse model of ischemia reperfusion injury. Longitudinal cardiac MRI assessed three hallmarks of cardiac regeneration: angiogenesis, resolution of fibrosis and (re)muscularization after infarction. The multiparametric approach contained dynamic contrast enhanced MRI that measured improved vessel features by assessing fractional blood volume and permeability*surface area product, T1-mapping that displayed reduced fibrosis, and tagging MRI that showed improved regional myocardial strain in hydrogel treated infarcts. Finally, standard volumetric MRI demonstrated improved left ventricular functioning in hydrogel treated mice followed over time. Histology confirmed MR-based vessel features and fibrotic measurements. Our novel triple-marker strategy enabled detection of ameliorated regeneration in hydrogel treated hearts highlighting the translational potential of these longitudinal MRI approaches.
Collapse
Affiliation(s)
- Maaike van den Boomen
- Department of Biomedical Engineering, Cell-Matrix Interaction for Cardiovascular Tissue Regeneration, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Hanne B Kause
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hans C van Assen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Cell-Matrix Interaction for Cardiovascular Tissue Regeneration, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Katrien Vandoorne
- Department of Biomedical Engineering, Cell-Matrix Interaction for Cardiovascular Tissue Regeneration, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
45
|
Simon LR, Masters KS. Disease-inspired tissue engineering: Investigation of cardiovascular pathologies. ACS Biomater Sci Eng 2019; 6:2518-2532. [PMID: 32974421 DOI: 10.1021/acsbiomaterials.9b01067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused exclusively on the creation of tissues to repair or replace diseased or damaged organs, the field of tissue engineering has undergone an important evolution in recent years. Namely, tissue engineering techniques are increasingly being applied to intentionally generate pathological conditions. Motivated in part by the wide gap between 2D cultures and animal models in the current disease modeling continuum, disease-inspired tissue-engineered platforms have numerous potential applications, and may serve to advance our understanding and clinical treatment of various diseases. This review will focus on recent progress toward generating tissue-engineered models of cardiovascular diseases, including cardiac hypertrophy, fibrosis, and ischemia reperfusion injury, atherosclerosis, and calcific aortic valve disease, with an emphasis on how these disease-inspired platforms can be used to decipher disease etiology. Each pathology is discussed in the context of generating both disease-specific cells as well as disease-specific extracellular environments, with an eye toward future opportunities to integrate different tools to yield more complex and physiologically relevant culture platforms. Ultimately, the development of effective disease treatments relies upon our ability to develop appropriate experimental models; as cardiovascular diseases are the leading cause of death worldwide, the insights yielded by improved in vitro disease modeling could have substantial ramifications for public health and clinical care.
Collapse
Affiliation(s)
- LaTonya R Simon
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705.,Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
46
|
Polycaprolactone/gelatin-based scaffolds with tailored performance: in vitro and in vivo validation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110296. [PMID: 31761169 DOI: 10.1016/j.msec.2019.110296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Nanofibrous scaffolds composed of polycaprolactone (PCL) and gelatin (Ge) were obtained through a hydrolytic assisted electrospinning process. The PCL-to-Ge proportion (100/0 to 20/80), as well as the dissolution time (24, 48, 72, 96, 120 h) into a 1:1 formic/acetic acid solvent before electrospinning were modified to obtain the different samples. A strong influence of these factors on the physicochemical properties of the scaffolds was observed. Higher Ge percentage reduced crystallinity, allowed a uniform morphology and increased water contact angle. The increase in the dissolution time considerably reduced the molar mass and, subsequently, fibre diameter and crystallinity were affected. During in vitro biocompatibility tests, higher cell adhesion and proliferation were found for the 60/40, 50/50 and 40/60 PCL/Ge compositions that was corroborated by MTT assay, fluorescence and microscopy. A weakened structure, more labile to the in vitro degradation in physiologic conditions was found for these compositions with higher dissolution times (72 and 96 h). Particularly, the 40/60 PCL/Ge scaffolds revealed an interesting progressive degradation behaviour as a function of the dissolution time. Moreover, these scaffolds were non-inflammatory, as revealed by the pyrogen test and after the 15-day subcutaneous in vivo implantation in mice. Finally, a reduction of the scar tissue area after infarction was found for the 40/60 PCL/Ge scaffolds electrospun after 72 h implanted in rat hearts. These results are especially interesting and represent a feasible way to avoid undesired inflammatory reactions during the scaffold assimilation.
Collapse
|
47
|
Pooria A, Pourya A, Gheini A. Animal- and human-based evidence for the protective effects of stem cell therapy against cardiovascular disorders. J Cell Physiol 2019; 234:14927-14940. [PMID: 30811030 DOI: 10.1002/jcp.28330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The increasing rate of mortality and morbidity because of cardiac diseases has called for efficient therapeutic needs. With the advancement in cell-based therapies, stem cells are abundantly studied in this area. Nearly, all sources of stem cells are experimented to treat cardiac injuries. Tissue engineering has also backed this technique by providing an advantageous platform to improve stem cell therapy. After in vitro studies, primary treatment-based research studies comprise small and large animal studies. Furthermore, these studies are implemented in human models in the form of clinical trials. Purpose of this review is to highlight the animal- and human-based studies, exploiting various stem cell sources, to treat cardiovascular disorders.
Collapse
Affiliation(s)
- Ali Pooria
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Afsoun Pourya
- Student of Research committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gheini
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| |
Collapse
|
48
|
Cardiac Fibroblasts and the Extracellular Matrix in Regenerative and Nonregenerative Hearts. J Cardiovasc Dev Dis 2019; 6:jcdd6030029. [PMID: 31434209 PMCID: PMC6787677 DOI: 10.3390/jcdd6030029] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling and cardiac cells progressively lose their embryonic characteristics. At the same time, notable changes in the extracellular matrix (ECM) composition occur with a reduction in the components considered facilitators of cellular proliferation, including fibronectin and periostin, and an increase in collagen fiber organization. Not much is known about the postnatal cardiac fibroblast which is responsible for producing the majority of the ECM, but during the days after birth, mammalian hearts can regenerate after injury with only a transient scar formation. This phenomenon has also been described in adult urodeles and teleosts, but relatively little is known about their cardiac fibroblasts or ECM composition. Here, we review the pre-existing knowledge about cardiac fibroblasts and the ECM during the postnatal period in mammals as well as in regenerative environments.
Collapse
|
49
|
Pattar SS, Fatehi Hassanabad A, Fedak PWM. Application of Bioengineered Materials in the Surgical Management of Heart Failure. Front Cardiovasc Med 2019; 6:123. [PMID: 31482096 PMCID: PMC6710326 DOI: 10.3389/fcvm.2019.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
The epicardial surface of the heart is readily accessible during cardiac surgery and presents an opportunity for therapeutic intervention for cardiac repair and regeneration. As an important anatomic niche for endogenous mechanisms of repair, targeting the epicardium using decellularized extracellular matrix (ECM) bioscaffold therapy may provide the necessary environmental cues to promote functional recovery. Following ischemic injury to the heart caused by myocardial infarction (MI), epicardium derived progenitor cells (EPDCs) become activated and migrate to the site of injury. EPDC differentiation has been shown to contribute to endothelial cell, cardiac fibroblast, cardiomyocyte, and vascular smooth muscle cell populations. Post-MI, it is largely the activation of cardiac fibroblasts and the resultant dysregulation of ECM turnover which leads to maladaptive structural cardiac remodeling and loss of cardiac function. Decellularized ECM bioscaffolds not only provide structural support, but have also been shown to act as a bioactive reservoir for growth factors, cytokines, and matricellular proteins capable of attenuating maladaptive cardiac remodeling. Targeting the epicardium post-MI using decellularized ECM bioscaffold therapy may provide the necessary bioinductive cues to promote differentiation toward a pro-regenerative phenotype and attenuate cardiac fibroblast activation. There is an opportunity to leverage the clinical benefits of this innovative technology with an aim to improve the prognosis of patients suffering from progressive heart failure. An enhanced understanding of the utility of decellularized ECM bioscaffolds in epicardial repair will facilitate their growth and transition into clinical practice. This review will provide a summary of decellularized ECM bioscaffolds being developed for epicardial infarct repair in coronary artery bypass graft (CABG) surgery.
Collapse
Affiliation(s)
- Simranjit S Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
50
|
Broughton KM. Prevalence of comorbidities in heart failure patients and those treated with cellular therapeutics. Expert Rev Cardiovasc Ther 2019; 17:597-604. [PMID: 31382789 DOI: 10.1080/14779072.2019.1653185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Changes in our daily living, particularly in work routines, diet, and physical exercise, have influenced a worldwide crisis for life-threatening comorbidities and the likelihood of cardiovascular disease diagnosis. Cardiovascular regenerative medicine researchers continue to investigate new therapeutic approaches and reexamine completed clinical trials to design more effective future studies. As the frequency of cardiovascular disease diagnosis continues to rise, investigations of how to repair and regenerate the failing myocardium remains an essential mission for human health. Areas covered: This review first examines the aging process, the rising rate of comorbidities, and the likelihood of developing heart disease. In the ongoing efforts to recapitulate human health needs in clinical trials, a review of clinical trials involving cellular therapeutics for cardiac repair, with a focus on the patient population and patients' complex medical records, is presented. Expert opinion: The expert opinion first draws attention to the changing demographics of patients diagnosed with diseases that lead to heart failure and focusing on obesity as a primary driver for increased cardiovascular disease. The opinion focuses on the importance of designing preclinical models and experimentation that better mimic the patient population and clinical situations to evaluate the effectiveness of potential future therapeutic interventions.
Collapse
Affiliation(s)
- Kathleen M Broughton
- SDSU Heart Institute and Department of Biology, San Diego State University , San Diego , CA , USA
| |
Collapse
|