1
|
Noh JH, Lee Y, Kim MS. 3D-printed scaffolds: Incorporating dexamethasone microspheres and BMP2 for enhanced osteogenic differentiation of human mesenchymal stem cells. Colloids Surf B Biointerfaces 2025; 253:114705. [PMID: 40267590 DOI: 10.1016/j.colsurfb.2025.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
This study investigates the fabrication and evaluation of 3D-printed scaffolds (G-scaffolds) incorporating dexamethasone-loaded microspheres (Dex-M) and bone morphogenetic protein 2 (BMP2) to enhance osteogenic differentiation of human mesenchymal stem cells (hMSCs). Dex-M was prepared using an ultrasonic atomizer, achieving a high encapsulation efficiency and uniform particle size. The G-scaffolds were precisely printed using photoactive bioprinting, creating Dex-M+BMP2 +G-scaffolds. In vitro release studies demonstrated sustained Dex release over 6 weeks, with the Dex-M+BMP2 +G-scaffold significantly reducing the initial burst release and maintaining stable levels of osteogenic factors. Cytotoxicity assays confirmed the biocompatibility of the scaffolds, showing no adverse effects on hMSC viability. Osteogenic differentiation was assessed via RT-PCR, revealing that the Dex-M+BMP2 +G-scaffold exhibited the highest expression levels of critical osteogenic markers (ON, OP, OC, and COL1A) compared with the other scaffold formulations. Calcium deposition and elemental analysis also demonstrated enhanced mineralization in the Dex-M+BMP2 +G-scaffold group, with calcium and phosphate levels 3.9-1.7 times higher than in the other groups. Overall, the Dex-M+BMP2 +G-scaffold effectively promoted osteogenic differentiation and mineralization of hMSCs, underscoring its potential as a promising biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon 16499, Korea; Research Institute, Medipolymer, Woncheon Dong 332-2, Yeongtong-Gu, Suwon 16522, Korea
| | - Yejin Lee
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon 16499, Korea; Research Institute, Medipolymer, Woncheon Dong 332-2, Yeongtong-Gu, Suwon 16522, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon 16499, Korea; Research Institute, Medipolymer, Woncheon Dong 332-2, Yeongtong-Gu, Suwon 16522, Korea.
| |
Collapse
|
2
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
3
|
Regmi M, Liu W, Liu S, Dai Y, Xiong Y, Yang J, Yang C. The evolution and integration of technology in spinal neurosurgery: A scoping review. J Clin Neurosci 2024; 129:110853. [PMID: 39348790 DOI: 10.1016/j.jocn.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Spinal disorders pose a significant global health challenge, affecting nearly 5% of the population and incurring substantial socioeconomic costs. Over time, spinal neurosurgery has evolved from basic 19th-century techniques to today's minimally invasive procedures. The recent integration of technologies such as robotic assistance and advanced imaging has not only improved precision but also reshaped treatment paradigms. This review explores key innovations in imaging, biomaterials, and emerging fields such as AI, examining how they address long-standing challenges in spinal care, including enhancing surgical accuracy and promoting tissue regeneration. Are we at the threshold of a new era in healthcare technology, or are these innovations merely enhancements that may not fundamentally advance clinical care? We aim to answer this question by offering a concise introduction to each technology and discussing in depth its status and challenges, providing readers with a clearer understanding of its actual potential to revolutionize surgical practices.
Collapse
Affiliation(s)
- Moksada Regmi
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Peking University Health Science Center, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China
| | - Weihai Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Shikun Liu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Yuwei Dai
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Ying Xiong
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jun Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Chenlong Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China; Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Peking University, Beijing 100191, China; Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou 450003, China.
| |
Collapse
|
4
|
Liu X, Astudillo Potes MD, Serdiuk V, Dashtdar B, Schreiber AC, Rezaei A, Miller AL, Hamouda AM, Shafi M, Elder BD, Lu L. Injectable bioactive poly(propylene fumarate) and polycaprolactone based click chemistry bone cement for spinal fusion in rabbits. J Biomed Mater Res A 2024; 112:1803-1816. [PMID: 38644548 PMCID: PMC11806930 DOI: 10.1002/jbm.a.37725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Degenerative spinal pathology is a widespread medical issue, and spine fusion surgeries are frequently performed. In this study, we fabricated an injectable bioactive click chemistry polymer cement for use in spinal fusion and bone regrowth. Taking advantages of the bioorthogonal click reaction, this cement can be crosslinked by itself eliminating the addition of a toxic initiator or catalyst, nor any external energy sources like UV light or heat. Furthermore, nano-hydroxyapatite (nHA) and microspheres carrying recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) were used to make the cement bioactive for vascular induction and osteointegration. After implantation into a rabbit posterolateral spinal fusion (PLF) model, the cement showed excellent induction of new bone formation and bridging bone, achieving results comparable to autograft control. This is largely due to the osteogenic properties of nano-hydroxyapatite (nHA) and the released rhBMP-2 and rhVEGF growth factors. Since the availability of autograft sources is limited in clinical settings, this injectable bioactive click chemistry cement may be a promising alternative for spine fusion applications in addressing various spinal conditions.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria D. Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Areonna C. Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mahnoor Shafi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin D. Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
6
|
Yoshizato H, Morimoto T, Nonaka T, Otani K, Kobayashi T, Nakashima T, Hirata H, Tsukamoto M, Mawatari M. Animal Model for Anterior Lumbar Interbody Fusion: A Literature Review. Spine Surg Relat Res 2024; 8:373-382. [PMID: 39131411 PMCID: PMC11310536 DOI: 10.22603/ssrr.2023-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 08/13/2024] Open
Abstract
Lumbar interbody fusion (LIF) is a surgical procedure for treating lumbar spinal stenosis and deformities. It removes a spinal disc and insert a cage or bone graft to promote solid fusion. Extensive research on LIF has been supported by numerous animal studies, which are being developed to enhance fusion rates and reduce the complications associated with the procedure. In particular, the anterior approach is significant in LIF research and regenerative medicine studies concerning intervertebral discs, as it utilizes the disc and the entire vertebral body. Several animal models have been used for anterior LIF (ALIF), each with distinct characteristics. However, a comprehensive review of ALIF models in different animals is currently lacking. Medium-sized and large animals, such as dogs and sheep, have been employed as ALIF models because of their suitable spine size for surgery. Conversely, small animals, such as rats, are rarely employed as ALIF models because of anatomical challenges. However, recent advancements in surgical implants and techniques have gradually allowed rats in ALIF models. Ambitious studies utilizing small animal ALIF models will soon be conducted. This review aims to review the advantages and disadvantages of various animal models, commonly used approaches, and bone fusion rate, to provide valuable insights to researchers studying the spine.
Collapse
Affiliation(s)
- Hiromu Yoshizato
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiro Nonaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Otani
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Takema Nakashima
- Department of Orthopaedic Surgery, JCHO Saga Central Hospital, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
7
|
Li J, Zhao B, Wang W, Xu Y, Wu H, Zhang W. Improved intervertebral fusion in LLIF rabbit model with a novel titanium cage. Spine J 2024; 24:1109-1120. [PMID: 38211901 DOI: 10.1016/j.spinee.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND CONTEXT There is no established small animal approach model for the strict simulation of lateral lumbar interbody fusion (LLIF) surgery. PURPOSE This study aims to establish a reliable LLIF rabbit model that strictly simulates the procedure and to preliminarily evaluate the differences in fusion outcomes with different graft materials. STUDY DESIGN A controlled laboratory. METHODS Fifty-four 4-month-old white New Zealand female and male rabbits were selected and divided into five groups: Group A (dissection group) consisted of 9 rabbits, Group B (normal approach group) consisted of 9 rabbits, Group C (autogenous iliac bone group) consisted of 12 rabbits, Group D (BMP-2 carrier material group) consisted of 12 rabbits, and Group E (allograft bone group) consisted of 12 rabbits. Based on data from Group A, a novel titanium metal fusion device was designed. Postoperatively, at the 12-week mark, manual palpation was employed to compare the interbody fusion status among Groups B, C, D, and E. Specimens from Groups C, D, and E were subjected to Micro-CT scanning to compare various parameters such as trabecular bone volume (BV), bone volume fraction (BV/TV, BVF), and bone surface area (BS). Furthermore, a tissue histopathological examination was performed to observe the structure and morphology of newly formed bone within the fusion mass as well as the remodeling of the graft in each group. RESULTS Based on the measurements obtained from the dissection group, we designed a U-shaped interbody fusion device with dimensions of 10 mm in length, 2.5 mm in width, and 1.3 mm in height. In Group B, 9 cases exhibited intervertebral mobility. In Group C, 1 case showed nonfusion. In Group D, all cases achieved fusion. In Group E, 4 cases did not achieve fusion. Additionally, the Micro-CT results showed that the interbody fusion index scores were 4.64±0.50 in Group C, 4.33±0.65 in Group D, and 3.36±0.81 in Group E. There was no statistically significant difference in fusion index scores between Groups C and D (p=.853). Notably, Groups C and D had higher scores than Group E (p<.001). The trabecular bone volume (BV) in Groups C and D also showed no significant difference but was significantly higher than in Group E (p<.001). Furthermore, the histopathological results revealed that the specimens from Group E had less newly formed cartilage and bone compared to Groups C and D. CONCLUSIONS This study successfully established a strict simulation of the clinical LLIF procedure in a rabbit model. Moreso, we conducted a preliminary validation indicating that the BMP-2 carrier material achieved interbody fusion outcomes similar to autogenous iliac bone. CLINICAL SIGNIFICANCE The findings of this investigation from animal models provide a theoretical basis for the clinical use of BMP-2 to promote early spinal fusion in LLIF procedures. Importantly, the study provides a small animal model foundation for research related to LLIF surgery.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bingyi Zhao
- Department of Reproductive and Genetic medicine, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Weijian Wang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yafei Xu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Haoyu Wu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
8
|
Li J, Cao S, Zhao B. Biomechanical comparison of polyetheretherketone rods and titanium alloy rods in transforaminal lumbar interbody fusion: a finite element analysis. BMC Surg 2024; 24:169. [PMID: 38811965 PMCID: PMC11134660 DOI: 10.1186/s12893-024-02462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Whether polyetheretherketone (PEEK) rods have potential as an alternative to titanium alloy (Ti) rods in transforaminal lumbar interbody fusion (TLIF) remains unclear, especially in cases with insufficient anterior support due to the absence of a cage. The purpose of this study was to investigate biomechanical differences between PEEK rods and Ti rods in TLIF with and without a cage. METHODS An intact L1-L5 lumbar finite element model was constructed and validated. Accordingly, four TLIF models were developed: (1) Ti rods with a cage; (2) PEEK rods with a cage; (3) Ti rods without a cage; and (4) PEEK rods without a cage. The biomechanical properties were then compared among the four TLIF constructs. RESULTS With or without a cage, no obvious differences were found in the effect of PEEK rods and Ti rods on the range of motion, adjacent disc stress, and adjacent facet joint force. Compared to Ti rods, PEEK rods increase the average bone graft strain (270.8-6055.2 µE vs. 319.0-8751.6 µE). Moreover, PEEK rods reduced the stresses on the screw-rod system (23.1-96.0 MPa vs. 7.2-48.4 MPa) but increased the stresses on the cage (4.6-35.2 MPa vs. 5.6-40.9 MPa) and endplates (5.7-32.5 MPa vs. 6.6-37.6 MPa). CONCLUSIONS Regardless of whether a cage was used for TLIF, PEEK rods theoretically have the potential to serve as an alternative to Ti rods because they may provide certain stability, increase the bone graft strain, and reduce the posterior instrumentation stress, which might promote bony fusion and decrease instrumentation failure.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, 710004, Shaanxi Province, China
| | - Shuai Cao
- Department of Orthopedics, Civil Aviation General Hospital, No. 1, Gaojing Stress, Chaoyang District, Beijing, 100123, China
| | - Bo Zhao
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
9
|
Liu X, Astudillo Potes MD, Serdiuk V, Dashtdar B, Schreiber AC, Rezaei A, Miller AL, Hamouda AM, Shafi M, Elder BD, Lu L. Bioactive Moldable Click Chemistry Polymer Cement with Nano-Hydroxyapatite and Growth Factor-Enhanced Posterolateral Spinal Fusion in a Rabbit Model. ACS APPLIED BIO MATERIALS 2024; 7:2450-2459. [PMID: 38500414 DOI: 10.1021/acsabm.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Spinal injuries or diseases necessitate effective fusion solutions, and common clinical approaches involve autografts, allografts, and various bone matrix products, each with limitations. To address these challenges, we developed an innovative moldable click chemistry polymer cement that can be shaped by hand and self-cross-linked in situ for spinal fusion. This self-cross-linking cement, enabled by the bioorthogonal click reaction, excludes the need for toxic initiators or external energy sources. The bioactivity of the cement was promoted by incorporating nanohydroxyapatite and microspheres loaded with recombinant human bone morphogenetic protein-2 and vascular endothelial growth factor, fostering vascular induction and osteointegration. The release kinetics of growth factors, mechanical properties of the cement, and the ability of the scaffold to support in vitro cell proliferation and differentiation were evaluated. In a rabbit posterolateral spinal fusion model, the moldable cement exhibited remarkable induction of bone regeneration and effective bridging of spine vertebral bodies. This bioactive moldable click polymer cement therefore presents a promising biomaterial for spinal fusion augmentation, offering advantages in safety, ease of application, and enhanced bone regrowth.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Abdelrahman M Hamouda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Mahnoor Shafi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
10
|
Truchan K, Osyczka AM. Noggin promotes osteogenesis in human adipose-derived mesenchymal stem cells via FGFR2/Src/Akt and ERK signaling pathway. Sci Rep 2024; 14:6724. [PMID: 38509118 PMCID: PMC10954655 DOI: 10.1038/s41598-024-56858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The balance between Noggin and bone morphogenetic proteins (BMPs) is important during early development and skeletal regenerative therapies. Noggin binds BMPs in the extracellular space, thereby preventing BMP signaling. However, Noggin may affect cell response not necessarily through the modulation of BMP signaling, raising the possibility of direct Noggin signaling through yet unspecified receptors. Here we show that in osteogenic cultures of adipose-derived stem cells (ASCs), Noggin activates fibroblast growth factor receptors (FGFRs), Src/Akt and ERK kinases, and it stabilizes TAZ proteins in the presence of dexamethasone. Overall, this leads ASCs to increased expression of osteogenic markers and robust mineral deposition. Our results also indicate that Noggin can induce osteogenic genes expression in normal human bone marrow stem cells and alkaline phosphatase activity in normal human dental pulp stem cells. Besides, Noggin can specifically activate FGFR2 in osteosarcoma cells. We believe our findings open new research avenues to further explore the involvement of Noggin in cell fate modulation by FGFR2/Src/Akt/ERK signaling and potential applications of Noggin in bone regenerative therapies.
Collapse
Affiliation(s)
- Karolina Truchan
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa St. 9, 30-387, Kraków, Poland.
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa St. 9, 30-387, Kraków, Poland.
| |
Collapse
|
11
|
Xu H, Liao H, Liu X, Miller AL, Elder BD, Lu L. Spinal fusion of biodegradable poly(propylene fumarate) and poly(propylene fumarate-co-caprolactone) copolymers in rabbits. J Orthop 2024; 48:52-59. [PMID: 38077473 PMCID: PMC10700862 DOI: 10.1016/j.jor.2023.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 02/12/2024] Open
Abstract
Background Autologous bone grafts are currently the standard in orthopedic surgery despite limited donor sources and the prevalence of donor site morbidity. Other alternatives such as allografts are more readily available than autografts but have lower rates of graft incorporation. Methods Here, we propose a novel graft alternative consisting of an injectable poly(propylene fumarate) (PPF) and poly(propylene fumarate-co-caprolactone) P(PF-co-CL) copolymer with a recombinant human bone morphogenetic protein-2 (rhBMP-2)/vascular epithelial growth factor (VEGF) release system accompanied by hydroxyapatite (HA). The efficacy of scaffold formulations was studied using a standard, bilateral, L-level (L5-L6) posterolateral transverse spinal fusion using New Zealand white rabbits. Rabbits were divided into 4 experimental groups: group I, negative control; group II, autograft (positive control); group III, injectable PPF scaffold with rhBMP-2/VEGF release system and HA; group IV, injectable P(PF-co-CL)scaffold with rhBMP-2/VEGF release system and HA. Spines were harvested at 6 weeks and 12 weeks after surgery, and spinal fusions were assessed using manual palpation, radiographic analysis, micro-computed tomography (μCT) assessment, and histologic analysis. Results Of the 4 experimental groups, the injectable P(PF-co-CL) scaffold displayed superior initial strength and faster degradation than scaffolds constructed from PPF alone and facilitated the fusion of lateral processes in the rabbit standard posterolateral spinal fusion model. The results obtained from manual palpation, radiology, and μCT showed no difference between the P(PF-co-CL) group and the PPF group. However, histologic sections showed more osteogenesis with the new injectable P(PF-co-CL) scaffold. Conclusion Injectable P(PF-co-CL) polymers showed promising spine fusion abilities in rabbits after 12 weeks of posterolateral implantation.
Collapse
Affiliation(s)
- Hao Xu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Liao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D. Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
12
|
Park S, Jeong YH, Ha BJ, Yoo BS, Kim SH, Lee CK, Yi S, Ha Y, Kim KN, Shin DA. Fusion rate of Escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with local bone autograft in posterior lumbar interbody fusion for degenerative lumbar disorders. Spine J 2023; 23:1877-1885. [PMID: 37516282 DOI: 10.1016/j.spinee.2023.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND CONTEXT The use of recombinant human bone morphogenetic proteins-2 (rhBMP-2) for spinal fusion has been reported to be effective. However, most studies have focused on posterolateral and anterior lumbar interbody fusion, and few have investigated posterior lumbar interbody fusion (PLIF). PURPOSE This study aimed to determine the effectiveness and safety of the delivery of Escherichia coli-derived rhBMP-2 (E.BMP-2) with hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) poloxamer hydrogel composite carriers for PLIF. STUDY DESIGN A retrospective study. PATIENT SAMPLE Patients who underwent 1 to 3 levels of PLIF for lumbar degenerative disc disorders between 2015 and 2020 with a follow-up of ≥1 year were enrolled. In total, 254 patients (357 levels) were included in the analysis. The evaluation was performed at each segment level. In the E.BMP-2 group, 160 patients (221 levels) received autologous local bone with E.BMP-2 (maximum 0.5 mg/level), and in the control group, 94 patients (136 levels) received only local bone graft. OUTCOME MEASURES The primary outcome of this study was to compare the X-ray and CT fusion rates between the two groups. Secondary outcomes included analysis of the patients' clinical outcomes and postoperative complications on CT scans. METHODS Clinical evaluations were performed using a visual analog scale for back pain, the Oswestry Disability Index for disability, and physical and mental component summaries of the Short Form 36-Item Form Health Survey to assess functional effects and quality of life. The fusion was evaluated using radiography and CT. On radiography, solid fusion was defined when the difference between extension and flexion was less than 5°. On CT, solid fusion was defined when the upper and lower vertebral bodies were connected by the trabecular bone (bone bridge formation). In addition, complications such as osteolysis, cage subsidence, and screw loosening were investigated using CT. RESULTS All clinical results for low back pain, disability, and quality of life in both groups were excellent and showed statistically significant improvements compared with baseline (p<.0001). According to the X-ray evaluations, fusion was achieved in 92.31% (204/221) of the patients in the E.BMP-2 group and 82.35% (112/136) of the patients in the control group (p=.0041). According to the CT evaluations, the fusion rates were 93.21% (206/221) and 88.24% (120/136) in the E.BMP-2 and control groups (p=.1048), respectively. Except for screw loosening, which had a significantly higher incidence in the control group (p=.0014), the rates of most postoperative complications were not significantly different between the groups. CONCLUSIONS This study demonstrated that the adjunctive use of a low dose of E.BMP-2 with HA and β-TCP hydrogel can effectively promote bone fusion, making it a promising option for patients with limited autograft availability or compromised bone quality in PLIF.
Collapse
Affiliation(s)
- Sangman Park
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Yeong Ha Jeong
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Byeong Jin Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Beom Seok Yoo
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Soo-Heon Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Chang Kyu Lee
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Seong Yi
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Keung Nyun Kim
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zheng D, Ruan H, Chen W, Zhang Y, Cui W, Chen H, Shen H. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioact Mater 2023; 25:500-526. [PMID: 37056271 PMCID: PMC10087114 DOI: 10.1016/j.bioactmat.2022.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-scale vesicles derived by cell secretion with unique advantages such as promoting cell proliferation, anti-inflammation, promoting blood vessels and regulating cell differentiation, which benefit their wide applications in regenerative medicine. However, the in vivo therapeutic effect of EVs still greatly restricted by several obstacles, including the off-targetability, rapid blood clearance, and undesired release. To address these issues, biomedical engineering techniques are vastly explored. This review summarizes different strategies to enhance EV functions from the perspective of drug loading, modification, and combination of biomaterials, and emphatically introduces the latest developments of functionalized EV-loaded biomaterials in different diseases, including cardio-vascular system diseases, osteochondral disorders, wound healing, nerve injuries. Challenges and future directions of EVs are also discussed.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, PR China
| |
Collapse
|
14
|
Matsubara T, Yamada K, Kanazawa T, Sato K, Yokosuka K, Shiba N. Improved intervertebral bone union in ALIF rat model with porous hydroxyapatite/collagen combined with platelet-rich plasma. Spine J 2023; 23:325-335. [PMID: 36064089 DOI: 10.1016/j.spinee.2022.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Platelet-rich plasma (PRP) can accelerate bone union in spinal fusion surgery with an autogenous bone graft. However, it is unclear whether bone union can be obtained by using artificial bone and PRP together in spinal interbody fusion surgery. PURPOSE This study aimed to determine whether interbody fusion can be achieved by transplanting porous hydroxyapatite/collagen(HAp/Col) which is an artificial bone material frequently used in spinal fusion surgery, together with PRP in the intervertebral disc space in rats. STUDY DESIGN AND SETTING A controlled laboratory study. METHODS A total of fourty 10-week old Sprague-Dawley rats were used in this study and assigned to three groups as follow: disc curettage only (control group, n=10), disc curettage + HAp/Col transplant (H group, n=10), and disc curettage + HAp/Col + PRP transplant (H+P group, n=10). The other 10 rats were sacrificed as blood donors for acquisition of PRP. Microcomputed tomography (μCT) examinations were performed to evaluate bone union, bone volume (BV), and bone mineral density (BMD) at 4, 8, and 12 weeks following surgery. Twelve weeks postoperatively, each group of three of L4-L5 spines was harvested to perform histological examination (hematoxylin & eosin stain) and the others were subjected to biomechanical testing (compression properties). RESULTS The platelet count in PRP was approximately 4.1 times greater than that in whole blood (260.6±26.2 × 104 mg/dL and 64.3±2.9 × 104 mg/dL in PRP and whole blood, respectively). All the L4-L5 lumbar discs were fused in the H+P group, whereas only one case was fused in the H group and none in the control group at 12 weeks after surgery. BV was significantly higher in the H+P group than in the H group or control groups (both p<.01), although BMD was not significantly different among the three groups. Upon histological analysis, mature bone formation was observed at the transplanted space in all cases in the H+P group, whereas fibrous tissue was observed at the location in the H and control groups. Regarding biomechanical properties, the ultimate load to failure was significantly higher in the H+P group than in the H group or control group (p=.021 and .013, respectively), although stiffness was not significantly different between the three groups. CONCLUSION The combination of porous HAp/Col and PRP at an appropriate concentration can promote bone union in the intervertebral disc space without using an autologous bone graft in the rat model. Bone tissue formation was histologically confirmed, and it was mechanically strong. CLINICAL SIGNIFICANCE This preclinical study showed that porous HAp/Col, when combined with PRP at an appropriate concentration, can induce bone union without autologous bone grafts. The results may eliminate the need for autologous bone collection for spinal fusion surgery in the future.
Collapse
Affiliation(s)
| | - Kei Yamada
- Department of Orthopedic Surgery, Kurume University, Fukuoka, Japan.
| | | | - Kimiaki Sato
- Department of Orthopedic Surgery, Kurume University, Fukuoka, Japan
| | - Kimiaki Yokosuka
- Department of Orthopedic Surgery, Kurume University, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University, Fukuoka, Japan
| |
Collapse
|
15
|
Wang H, Zhu J, Xia Y, Li Y, Fu C. Application of platelet-rich plasma in spinal surgery. Front Endocrinol (Lausanne) 2023; 14:1138255. [PMID: 37008931 PMCID: PMC10057539 DOI: 10.3389/fendo.2023.1138255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
With the aging of the population and changes in lifestyle, the incidence of spine-related diseases is increasing, which has become a major global public health problem; this results in a huge economic burden on the family and society. Spinal diseases and complications can lead to loss of motor, sensory, and autonomic functions. Therefore, it is necessary to identify effective treatment strategies. Currently, the treatment of spine-related diseases includes conservative, surgical, and minimally invasive interventional therapies. However, these treatment methods have several drawbacks such as drug tolerance and dependence, adjacent spondylosis, secondary surgery, infection, nerve injury, dural rupture, nonunion, and pseudoarthrosis. Further, it is more challenging to promote the regeneration of the interstitial disc and restore its biomechanical properties. Therefore, clinicians urgently need to identify methods that can limit disease progression or cure diseases at the etiological level. Platelet-rich plasma (PRP), a platelet-rich form of plasma extracted from venous blood, is a blood-derived product. Alpha granules contain a large number of cytokines, such as platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor, platelet factor 4 (PF-4), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β (TGF-β). These growth factors allow stem cell proliferation and angiogenesis, promote bone regeneration, improve the local microenvironment, and enhance tissue regeneration capacity and functional recovery. This review describes the application of PRP in the treatment of spine-related diseases and discusses the clinical application of PRP in spinal surgery.
Collapse
|
16
|
Chang KE, Mesregah MK, Fresquez Z, Stanton EW, Buser Z, Wang JC. Use of graft materials and biologics in spine deformity surgery: a state-of-the-art review. Spine Deform 2022; 10:1217-1231. [PMID: 35733056 DOI: 10.1007/s43390-022-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of the current review is to summarize the current evidence on graft materials used in fusion procedures for spinal deformity corrections. METHODS PubMed, Embase, and Cochrane Library were searched for relevant published observational studies and clinical trials using osteobiologics and biomaterials in spinal deformity surgery. RESULTS The use of autograft in deformity correction surgeries has been reported in a limited number of studies, with the harvest sites including iliac crest, ribs, and local bone. Various allografts and biologics have been used in the treatment of spinal deformities including idiopathic and degenerative scoliosis, either as stand alone or in combination with autograft. Limited number of studies reported no differences in fusion rates or outcomes. Use of rh-BMP2 in anterior, posterior or front/back approaches showed higher fusion rates than other graft materials in patients with spinal deformities. Due to the limited number of quality studies included in the review, as well as alternative factors, such as costs, availability, and surgeon expertise/preference, no definitive conclusion or recommendations can be made as to the ideal graft choice in spinal deformity surgery. CONCLUSIONS Most commonly used grafts included autograft, allograft and rh-BMP2, with new biologics and biomaterials constantly emerging in the market. Limited number of high-quality comparative studies and heterogeneity in study design prevented direct comparisons that can lead to meaningful recommendations. Further studies are needed to prove superiority of any single graft material and/or biologic that is also cost-effective and safe.
Collapse
Affiliation(s)
- Ki-Eun Chang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| | - Mohamed Kamal Mesregah
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
- Department of Orthopaedic Surgery, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - Zoe Fresquez
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| | - Eloise W Stanton
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| | - Zorica Buser
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA.
| | - Jeffrey C Wang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 San Pablo St., HC4, Suite 5400A, Los Angeles, CA, 90003, USA
| |
Collapse
|
17
|
Cho S, Choi H, Jeong H, Kwon SY, Roh EJ, Jeong KH, Baek I, Kim BJ, Lee SH, Han I, Cha JM. Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion. Stem Cells Transl Med 2022; 11:1072-1088. [PMID: 36180050 PMCID: PMC9585955 DOI: 10.1093/stcltm/szac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Collapse
Affiliation(s)
- Sumin Cho
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hun Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Inho Baek
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
18
|
Loenen ACY, Connor J, Johnson S, Davis K, Hannigan N, Barnes T, Arts JJ, van Rietbergen B. Peptide Enhanced Bone Graft Substitute Presents Improved Short-Term Increase in Bone Volume and Construct Stiffness Compared to Iliac Crest Autologous Bone in an Ovine Lumbar Interbody Fusion Model. Global Spine J 2022; 12:1330-1337. [PMID: 33406899 PMCID: PMC9393976 DOI: 10.1177/2192568220979839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Preclinical ovine model. OBJECTIVE To assess the in vivo efficacy and safety of the P-15 L bone graft substitute and compare its performance to autologous iliac crest bone graft (ICBG) for lumbar interbody fusion indications. METHODS Thirty skeletally mature sheep underwent lumbar interbody fusion surgery. Half of the sheep received autologous ICBG and the other half the peptide enhanced bone graft substitute (P-15 L). Following termination at 1, 3, and 6 months after surgery, the operated segments were analyzed using micro computed tomography (µCT), histology, and destructive mechanical testing. Additional systemic health monitoring was performed for the P-15 L group. RESULTS One month after surgery, there was only minor evidence of bone remodeling and residual graft material could be clearly observed within the cage. There was active bone remodeling between 1 and 3 months after surgery. At 3 months after surgery significantly denser and stiffer bone was found in the P-15 L group, whereas at 6 months, P-15 L and ICBG gave similar fusion results. The P-15 L bone graft substitute did not have any adverse effects on systemic health. CONCLUSIONS The drug device combination P-15 L was demonstrated to be effective and save for lumbar interbody fusion as evidenced by this ovine model. Compared to autologous ICBG, P-15 L seems to expedite bone formation and remodeling but in the longer-term fusion results were similar.
Collapse
Affiliation(s)
- Arjan C. Y. Loenen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | | | | | - Jacobus J. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Bert van Rietbergen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Bert van Rietbergen, Department of Biomedical Engineering, Eindhoven University of Technology, Buidling 15, Gemini-Zuid (4.118), PO Box 513, 5600 MB Eindhoven, the Netherlands; Groene Loper, TU Eindhoven, De Rondom 70, 5612AP Eindhoven, the Netherlands.
| |
Collapse
|
19
|
Loenen ACY, Peters MJM, Wierts R, Bevers RTJ, van Rhijn LW, Arts JJ, Willems PC. Local bone metabolism during the consolidation process of spinal interbody fusion. J Bone Miner Metab 2022; 40:220-228. [PMID: 34755216 DOI: 10.1007/s00774-021-01281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Although computed tomography (CT) can identify the presence of eventual bony bridges following lumbar interbody fusion (LIF) surgery, it does not provide information on the ongoing formation process of new bony structures. 18F sodium fluoride (18F-NaF) positron emission tomography (PET) could be used as complementary modality to add information on the bone metabolism at the fusion site. However, it remains unknown how bone metabolism in the operated segment changes early after surgery in uncompromised situations. This study aimed to quantify the changes in local bone metabolism during consolidation of LIF. MATERIALS AND METHODS Six skeletally mature sheep underwent LIF surgery. 18F-NaF PET/CT scanning was performed 6 and 12 weeks postoperatively to quantify the bone volume and metabolism in the operated segment. Bone metabolism was expressed as a function of bone volume. RESULTS Early in the fusion process, bone metabolism was increased at the endplates of the operated vertebrae. In a next phase, bone metabolism increased in the center of the interbody region, peaked, and declined to an equilibrium state. During the entire postoperative time period of 12 weeks, bone metabolism in the interbody region was higher than that of a reference site in the spinal column. CONCLUSION Following LIF surgery, there is a rapid increase in bone metabolism at the vertebral endplates that develops towards the center of the interbody region. Knowing the local bone metabolism during uncompromised consolidation of spinal interbody fusion might enable identification of impaired bone formation early after LIF surgery using 18F-NaF PET/CT scanning.
Collapse
Affiliation(s)
- Arjan C Y Loenen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marloes J M Peters
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raymond T J Bevers
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus J Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Paul C Willems
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Loenen ACY, Noailly J, Ito K, Willems PC, Arts JJ, van Rietbergen B. Patient-Specific Variations in Local Strain Patterns on the Surface of a Trussed Titanium Interbody Cage. Front Bioeng Biotechnol 2022; 9:750246. [PMID: 35087797 PMCID: PMC8786731 DOI: 10.3389/fbioe.2021.750246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: 3D printed trussed titanium interbody cages may deliver bone stimulating mechanobiological strains to cells attached at their surface. The exact size and distribution of these strains may depend on patient-specific factors, but the influence of these factors remains unknown. Therefore, this study aimed to determine patient-specific variations in local strain patterns on the surface of a trussed titanium interbody fusion cage.Materials and Methods: Four patients eligible for spinal fusion surgery with the same cage size were selected from a larger database. For these cases, patient-specific finite element models of the lumbar spine including the same trussed titanium cage were made. Functional dynamics of the non-operated lumbar spinal segments, as well as local cage strains and caudal endplate stresses at the operated segment, were evaluated under physiological extension/flexion movement of the lumbar spine.Results: All patient-specific models revealed physiologically realistic functional dynamics of the operated spine. In all patients, approximately 30% of the total cage surface experienced strain values relevant for preserving bone homeostasis and stimulating bone formation. Mean caudal endplate contact pressures varied up to 10 MPa. Both surface strains and endplate contact pressures varied more between loading conditions than between patients.Conclusions: This study demonstrates the applicability of patient-specific finite element models to quantify the impact of patient-specific factors such as bone density, degenerative state of the spine, and spinal curvature on interbody cage loading. In the future, the same framework might be further developed in order to establish a pipeline for interbody cage design optimizations.
Collapse
Affiliation(s)
- Arjan C. Y. Loenen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jérôme Noailly
- Department of Information and Communication Technologies, BCN MedTech, Universitat Pompeu Fabra, Barcelona, Spain
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Paul C. Willems
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jacobus J. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: Bert van Rietbergen,
| |
Collapse
|
21
|
Golubovsky JL, Ejikeme T, Winkelman R, Steinmetz MP. Osteobiologics. Oper Neurosurg (Hagerstown) 2021; 21:S2-S9. [PMID: 34128067 DOI: 10.1093/ons/opaa383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteobiologics are engineered materials that facilitate bone healing and have been increasingly used in spine surgery. Autologous iliac crest bone grafts have been used historically, but morbidity associated with graft harvesting has led surgeons to seek alternative solutions. Allograft bone, biomaterial scaffolds, growth factors, and stem cells have been explored as bone graft substitutes and supplements. OBJECTIVE To review current and emerging osteobiologic technologies. METHODS A literature review of English-language studies was performed in PubMed. Search terms included combinations of "spine," "fusion," "osteobiologics," "autologous," "allogen(e)ic," "graft," "scaffold," "bone morphogenic protein," and "stem cells." RESULTS Evidence supports allograft bone as an autologous bone supplement or replacement in scenarios where minimal autologous bone is available. There are promising data on ceramics and P-15; however, comparative human trials remain scarce. Growth factors, including recombinant human bone morphogenic proteins (rhBMPs) 2 and 7, have been explored in humans after successful animal trials. Evidence continues to support the use of rhBMP-2 in lumbar fusion in patient populations with poor bone quality or revision surgery, while there is limited evidence for rhBMP-7. Stem cells have been incredibly promising in promoting fusion in animal models, but human trials to this point have only involved products with questionable stem cell content, thereby limiting possible conclusions. CONCLUSION Engineered stem cells that overexpress osteoinductive factors are likely the future of spine fusion, but issues with applying viral vector-transduced stem cells in humans have limited progress.
Collapse
Affiliation(s)
- Joshua L Golubovsky
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Education Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tiffany Ejikeme
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robert Winkelman
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael P Steinmetz
- Center for Spine Health, Department of Neurosurgery, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Hunt JP, Begley MR, Block JE. Truss implant technology™ for interbody fusion in spinal degenerative disorders: profile of advanced structural design, mechanobiologic and performance characteristics. Expert Rev Med Devices 2021; 18:707-715. [PMID: 34160337 DOI: 10.1080/17434440.2021.1947244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Interbody fusion devices are customarily used in fusion of the anterior spinal column for treatment of degenerative disc disease. Their traditional role is to reestablish and maintain intervertebral disc height, contain bone graft and provide mechanical support for the spine while osseointegration takes place. Utilizing the principles of mechanobiology, a unique biokinetic interbody fusion device has been developed that employs an advanced structural design to facilitate and actively participate in the fusion consolidation process.Areas covered: This article profiles and characterizes 4WEB Medical's Truss Implant Technology™ which includes a range of 3D-printed titanium spinal interbody implants and non-spinal implants whose design is based on truss structures enabled by advances in additive manufacturing. Four main areas of the implant design and functionality are detailed: bio-architecture, mechanobiologic underpinnings, bioactive surface features, and subsidence resistance. Pre-clinical and clinical examples are provided to describe and specify the bioactive roles and contributions of each design feature.Expert opinion: The distinct and unique combination of features incorporated within the truss cage design results in a biokinetic implant that actively participates in the bone healing cascade and fusion process.
Collapse
Affiliation(s)
| | - Matthew R Begley
- Department of Engineering, University of California, Santa Barbara, Santa Barbara, USA
| | | |
Collapse
|
23
|
Fiani B, Jarrah R, Shields J, Sekhon M. Enhanced biomaterials: systematic review of alternatives to supplement spine fusion including silicon nitride, bioactive glass, amino peptide bone graft, and tantalum. Neurosurg Focus 2021; 50:E10. [PMID: 34062502 DOI: 10.3171/2021.3.focus201044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spinal fusions are among the most common and effective spinal surgical practices; however, the current model presents some cost and safety concerns within the patient population. Therefore, enhanced biomaterials have been presented to be an innovative yet underutilized tool to supplement the success of spinal fusion surgery. Herein, the authors discuss these biomaterials, their compositions, clinical outcomes, and cost analysis through a systematic review of the literature to date. METHODS This systematic review was conducted using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria and guidelines. Article selection was performed using the PubMed electronic bibliographic databases. The search yielded 1168 articles that were assessed and filtered for relevance by the four authors. Following the screening of titles and abstracts, 62 articles were deemed significant enough for final selection. RESULTS To date, silicon nitride, bioactive glass, amino peptide bone grafts, and tantalum are all biomaterials that could have significant roles in supporting spinal fusion. Their unique compositions allow them to be biocompatible in the spine, and their mechanisms of action stimulate osteoblast formation and support fusion success. Moreover, these biomaterials also present positive clinical and cost outcomes that support their application in spinal procedures. However, further studies with longer follow-ups are necessary to fully understand these biomaterials prior to their incorporation in mainstream spinal practice. CONCLUSIONS The combination of their positive clinical outcomes, biocompatibility, and cost-effectiveness makes these biomaterials valuable, innovative, and effective treatment modalities that could revolutionize the current model of spinal fusion.
Collapse
Affiliation(s)
- Brian Fiani
- 1Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California
| | - Ryan Jarrah
- 2College of Arts and Sciences, University of Michigan-Flint
| | - Jennifer Shields
- 3College of Human Medicine, Michigan State University, East Lansing; and
| | - Manraj Sekhon
- 4William Beaumont School of Medicine, Oakland University, Rochester, Michigan
| |
Collapse
|
24
|
Abstract
BACKGROUND Back pain is a common chief complaint within the United States and is caused by a multitude of etiologies. There are many different treatment modalities for back pain, with a frequent option being spinal fusion procedures. The success of spinal fusion greatly depends on instrumentation, construct design, and bone grafts used in surgery. Bone allografts are important for both structural integrity and providing a scaffold for bone fusion to occur. METHOD Searches were performed using terms "allografts" and "bone" as well as product names in peer reviewed literature Pubmed, Google Scholar, FDA-510k approvals, and clinicaltrials.gov. RESULTS This study is a review of allografts and focuses on currently available products and their success in both animal and clinical studies. CONCLUSION Bone grafts used in surgery are generally categorized into 3 main types: autogenous (from patient's own body), allograft (from cadaveric or living donor), and synthetic. This paper focuses on allografts and provides an overview on the different subtypes with an emphasis on recent product development and uses in spinal fusion surgery.
Collapse
Affiliation(s)
- Justin D. Cohen
- Department of
Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E. Kanim
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew J. Tronits
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W. Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
25
|
Sasaki JI, Abe GL, Li A, Matsumoto T, Imazato S. Large three-dimensional cell constructs for tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:571-582. [PMID: 34408551 PMCID: PMC8366663 DOI: 10.1080/14686996.2021.1945899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Much research has been conducted on fabricating biomimetic biomaterials in vitro. Tissue engineering approaches are often conducted by combining cells, scaffolds, and growth factors. However, the degradation rate of scaffolds is difficult to control and the degradation byproducts occasionally limit tissue regeneration. To overcome these issues, we have developed a novel system using a thermo-responsive hydrogel that forms scaffold-free, three-dimensional (3D) cell constructs with arbitrary size and morphology. 3D cell constructs prepared using bone marrow-derived stromal stem cells (BMSCs) exhibited self-organizing ability and formed bone-like tissue with endochondral ossification. Endothelial cells were then introduced into the BMSC construct and a vessel-like structure was formed within the constructs. Additionally, the bone formation ability was promoted by endothelial cells and cell constructs could be freeze-dried to improve their clinical application. A pre-treatment with specific protein protectant allowed for the fabrication of novel bone substitutes composed only of cells. This 3D cell construct technology using thermo-responsive hydrogels was then applied to other cell species. Cell constructs composed of dental pulp stem cells were fabricated, and the resulting construct regenerated pulp-like tissue within a human pulpless tooth. In this review, we demonstrate the approaches for the in vitro fabrication of bone and dental pulp-like tissue using thermo-responsive hydrogels and their potential applications.
Collapse
Affiliation(s)
- Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Gabriela L Abe
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Aonan Li
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Suita, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Suita, Japan
- CONTACT Satoshi Imazato Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
26
|
Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 30:22-33. [DOI: 10.1007/s00586-020-06596-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/31/2022]
|
27
|
Duarte RM, Correia-Pinto J, Reis RL, Duarte ARC. Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. J Tissue Eng Regen Med 2020; 14:1465-1475. [PMID: 32750216 DOI: 10.1002/term.3111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Spinal fusion (SF) surgery relies on medical hardware such as screws, cages and rods, complemented by bone graft or substitute, to stabilize the interventioned spine and achieve adequate bone ingrowth. SF is technically demanding, lengthy and expensive. Advances in material science and processing technologies, proposed herein, allowed the development of an adhesive polymeric foam with the potential to dismiss the need for invasive hardware in SF. Herein, 3D foams of polycaprolactone doped with polydopamine and polymethacrylic acid (PCL pDA pMAA) were created. For immediate bone stabilization, in situ hardening of the foam is required; therefore, a portable high-pressure device was developed to allow CO2 foaming within bone defects. Foams were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Adhesive properties of PCL pDA pMAA outperformed PCL when tested using glass surfaces (p < 0.001) or spinal plugs (p < 0.05). No cytotoxicity was observed, and bioactivity was confirmed by the CaP layer formed upon 7 days immersion in simulated body fluid. As proof of concept, PCL pDA pMAA was extruded in-between ex vivo porcine vertebrae, and micro-computed tomography revealed similar properties to those of trabecular bone. This novel system presents great promise for instrumentation-free interbody fusion.
Collapse
Affiliation(s)
- Rui M Duarte
- School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Orthopedic Surgery Department, Hospital de Braga, Sete Fontes-São Victor, Braga, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L Reis
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Ana Rita C Duarte
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| |
Collapse
|
28
|
Lin C, Zhang N, Waldorff EI, Punsalan P, Wang D, Semler E, Ryaby JT, Yoo J, Johnstone B. Comparing cellular bone matrices for posterolateral spinal fusion in a rat model. JOR Spine 2020; 3:e1084. [PMID: 32613160 PMCID: PMC7323463 DOI: 10.1002/jsp2.1084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Cellular bone matrices (CBM) are allograft products that provide three components essential to new bone formation: an osteoconductive scaffold, extracellular growth factors for cell proliferation and differentiation, and viable cells with osteogenic potential. This is an emerging technology being applied to augment spinal fusion procedures as an alternative to autografts. METHODS We aim to compare the ability of six commercially-available human CBMs (Trinity ELITE®, ViviGen®, Cellentra®, Osteocel® Pro, Bio4® and Map3®) to form a stable spinal fusion using an athymic rat model of posterolateral fusion. Iliac crest bone from syngeneic rats was used as a control to approximate the human gold standard. The allografts were implanted at L4-5 according to vendor specifications in male athymic rats, with 15 rats in each group. MicroCT scans were performed at 48 hours and 6 weeks post-implantation. The rats were euthanized 6 weeks after surgery and the lumbar spines were harvested for X-ray, manual palpation and histology analysis by blinded reviewers. RESULTS By manual palpation, five of 15 rats of the syngeneic bone group were fused at 6 weeks. While Trinity ELITE had eight of 15 and Cellentra 11 of 15 rats with stable fusion, only 2 of 15 of ViviGen-implanted spines were fused and zero of 15 of the Osteocel Pro, Bio4 and Map3 produced stable fusion. MicroCT analysis indicated that total bone volume increased from day 0 to week 6 for all groups except syngeneic bone group. Trinity ELITE (65%) and Cellentra (73%) had significantly greater bone volume increases over all other implants, which was consistent with the histological analysis. CONCLUSION Trinity ELITE and Cellentra were significantly better than other implants at forming new bone and achieving spinal fusion in this rat model at week 6. These results suggest that there may be large differences in the ability of different CBMs to elicit a successful fusion in the posterolateral spine.
Collapse
Affiliation(s)
- Cliff Lin
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | | | | | - Paolo Punsalan
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | | | | | | | - Jung Yoo
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| | - Brian Johnstone
- Department of Orthopaedics and RehabilitationOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
29
|
Murata K, Fujibayashi S, Otsuki B, Shimizu T, Matsuda S. Repair of Iliac Crest Defects with a Hydroxyapatite/Collagen Composite. Asian Spine J 2020; 14:808-813. [PMID: 32429017 PMCID: PMC7788373 DOI: 10.31616/asj.2019.0310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022] Open
Abstract
Study Design Retrospective study. Purpose This study aimed to assess the effect of refilling with hydroxyapatite/collagen (HAp/Col) composite on an iliac crest defect after spinal fusion. Overview of Literature The use of iliac crest bone graft has been the gold standard in spinal fusion for a long time because of its biological and non-immunologic properties. Few reports have addressed how bone defects recover after iliac crest bone harvest following spinal fusion. Methods Cancellous bone was collected from the anterior iliac crest during lateral interbody fusion (LIF), and the bone void of the ilium was refilled with a porous HAp/Col composite. We assessed bone recovery using computed tomography (CT). From the 74 patients who underwent LIF between January 2015 and December 2016, we included 49 patients whose iliac crest could be evaluated using CT at 3 months and 1 year after the surgery. Results Bone defects decreased in a time-dependent manner after the surgery. Cortical closure was observed in 28.5% of the cases 3 months after the surgery; at 1 year postoperatively, 95.9% of the patients had cortical closure. Complete repair of the cancellous bone was achieved in 57.1% of the patients at 3 months after the surgery and in 95.9% at 1 year after the surgery. There were no significant hematomas, infections, iliac crest fractures, or soft tissue herniation. Conclusions Radiographic recovery of cortical and cancellous bone defects was achieved with high probability via refilling with HAp/Col composite over the 1-year period.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
30
|
Cottrill E, Pennington Z, Lankipalle N, Ehresman J, Valencia C, Schilling A, Feghali J, Perdomo-Pantoja A, Theodore N, Sciubba DM, Witham T. The effect of bioactive glasses on spinal fusion: A cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data. J Clin Neurosci 2020; 78:34-46. [PMID: 32331941 DOI: 10.1016/j.jocn.2020.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/05/2020] [Indexed: 01/23/2023]
Abstract
Pseudarthrosis following spinal fusion is correlated with poorer patient outcomes and consequently is an area of continued interest within spinal research. Recently, bioactive glasses have been proposed as a means of augmenting fusion rates. Here, we present the first systematic review and meta-analysis of the existing preclinical and clinical literature on the effect of bioactive glasses on spinal fusion. Using the MEDLINE, Embase, and Web of Science databases, we queried all publications in the English-language literature examining the effect of bioactive glasses on spinal fusion. The primary endpoint was fusion rate at last follow-up and the secondary endpoint for clinical studies was the rate of deep wound infection. Random-effects meta-analyses were performed independently for the preclinical and clinical data. Twelve preclinical studies (267 animals) and 12 clinical studies (396 patients) evaluating a total of twelve unique bioactive glass formulations were included. Across clinical studies, fusion was seen in 84% treated with bioactive glass. On sub-analysis, fusion rates were similar for standalone autograft (91.6%) and bioactive glass-local autograft mixtures (89.6%). Standalone bioactive glass substrates produced inferior fusion rates relative to autograft alone (33.6% vs. 98.8%; OR 0.01, p < 0.02). Rates of deep wound infection did not differ between the bioactive glass and autograft groups (3.1%). The preclinical data similarly showed comparable rates of fusion between autograft and bioactive glass-treated animals. The available data suggest that bioactive glass-autograft mixtures confer similar rates of spinal fusion relative to standalone autograft without altering the risk of deep wound infection.
Collapse
Affiliation(s)
- Ethan Cottrill
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zach Pennington
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nithin Lankipalle
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Ehresman
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cara Valencia
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Schilling
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Nicholas Theodore
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy Witham
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Wei L, Yu D, Wang M, Deng L, Wu G, Liu Y. Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects. Tissue Eng Part A 2020; 26:120-129. [DOI: 10.1089/ten.tea.2019.0161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lingfei Wei
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Dedong Yu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Mingjie Wang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Liquan Deng
- Key Laboratory of Stomatology, School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| |
Collapse
|
32
|
Salamanna F, Giavaresi G, Contartese D, Bigi A, Boanini E, Parrilli A, Lolli R, Gasbarrini A, Barbanti Brodano G, Fini M. Effect of strontium substituted ß-TCP associated to mesenchymal stem cells from bone marrow and adipose tissue on spinal fusion in healthy and ovariectomized rat. J Cell Physiol 2019; 234:20046-20056. [PMID: 30950062 DOI: 10.1002/jcp.28601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 01/05/2023]
Abstract
Despite alternatives to autogenous bone graft for spinal fusion have been investigated, it has been shown that osteoconductive materials alone do not give a rate of fusion comparable with autogenous bone. This study analyzed a strontium substituted ß-tricalcium phosphate (Sr-ßTCP) associated with syngeneic, unexpanded, and undifferentiated mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ADSC) as a new tissue engineering approach for spinal fusion procedures. A posterolateral fusion was performed in 15 ovariectomized (OVX) and 15 sham-operated (SHAM) Inbred rats. Both SHAM and OVX animals were divided into three groups: Sr-ßTCP, Sr-ßTCP + BMCSs, and Sr-ßTCP + ADSCs. Animals were euthanized 8 weeks after surgery and the spines evaluated by manual palpation, micro-CT, and histology. For both SHAM and OVX animals, the fusion tissue in the Sr-ßTCP + BMSCs group was more solid. This effect was significantly higher in OVX animals by comparing the Sr-ßTCP + BMCSs group with Sr-ßTCP + ADSCs. Radiographical score, based on micro-CT 2D image, highlighted that the Sr-ßTCP + BMCSs group presented a similar fusion to Sr-ßTCP and higher than Sr-ßTCP + ADSCs in both SHAM and OVX animals. Micro-CT 3D parameters did not show significant differences among groups. Histological score showed significantly higher fusion in Sr-ßTCP + BMSCs group than Sr-ßTCP and Sr-ßTCP + ADSCs, for both SHAM and OVX animals. In conclusion, our results suggest that addition of BMSCs to a Sr-ßTCP improve bone formation and fusion, both in osteoporotic and nonosteoporotic animal, whereas spinal fusion is not enhanced in rats treated with Sr-ßTCP + ADSCs. Thus, for conducting cells therapy in spinal surgery BMSCs still seems to be a better choice compared with ADSCs.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "G.Ciamician", University of Bologna, Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry "G.Ciamician", University of Bologna, Bologna, Italy
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Roberta Lolli
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Laboratory of Biomechanics and Technological Innovation, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
33
|
Çetin E, Daldal İ, Eren A, Akarca Dizakar SÖ, Ömeroğlu S, Uzuner B, Çelik HH, Saygılı HH, Koçkar B, Şenköylü A. Epidermal growth factor enhances spinal fusion: Posterolateral lumbar fusion model on rats. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2019; 53:134-139. [PMID: 30738625 PMCID: PMC6506815 DOI: 10.1016/j.aott.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 01/17/2019] [Indexed: 12/31/2022]
Abstract
Objective The aim of this study was to investigate the effects of human recombinant epidermal growth factor (EGF) on posterolateral lumbar fusion in a rat model. Methods 36 male Sprague Dawley rats underwent posterolateral fusion at L4-5 level. They were randomly assigned to 3 groups: 1- Sham control group where no local augmentation was made, 2- Local Hydoxyapatite β-tricalcium phosphate (HA/β-TCP) augmentation group and 3- Local HA/β-TCP + EGF augmentation group. Rats were euthanized at 8 weeks post-surgery. 6 rats from each group were selected for manual palpation examination, micro-computed tomography analysis and histologic analysis; and the rest was used for biomechanical analysis. Results Based on manual palpation, there was no fusion in the sham control group. Fusion rate was 33.3% in the HA/β-TCP group and 66.7% in the HA/β-TCP + EGF group (p = 0.085). Micro-CT results revealed that new bone formation was higher in the HA/β-TCP + EGF group (BV/TV: 40% vs. 65%) (p = 0.004). Histologically newly formed bone tissue was more pronounced in the EGF group and compacted and bridging bone spicules were observed. The median maximum bending moment values were 0.51 Nmm (0.42–0.59), 0.73 Nmm (0.49–0.88) and 0.91 Nmm (0.66–1.03) in the sham control, HA/β-TCP and HA/β-TCP + EGF groups, respectively (p = 0.013). The median stiffness values were 1.69 N/mm (1.12–2.18), 1.68 N/mm (1.13–2.74) and 3.10 N/mm (1.66–4.40) as in the previous order (p = 0.087). Conclusion This study demonstrates that EGF enhances posterolateral lumbar fusion in the rat model. EGF in combination with ceramic grafts increased the fusion rates. Our findings may provide insights to further studies, investigating EGF's clinical usage as an alternative fusion enhancer.
Collapse
Affiliation(s)
- Engin Çetin
- Department of Orthopaedics and Traumatology, Gaziosmanpaşa Taksim Training and Research Hospital, Istanbul, Turkey.
| | - İsmail Daldal
- Department of Orthopaedics and Traumatology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Ali Eren
- Department of Orthopaedics and Traumatology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | - Suna Ömeroğlu
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - Bora Uzuner
- Department of Anatomy, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Hakan Hamdi Çelik
- Department of Anatomy, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | | | - Benat Koçkar
- Department of Mechanical Engineering, Hacettepe University, Ankara, Turkey.
| | - Alpaslan Şenköylü
- Department of Orthopaedics and Traumatology, Gazi University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
34
|
Liang P, Zheng J, Zhang Z, Hou Y, Wang J, Zhang C, Quan C. Bioactive 3D scaffolds self-assembled from phosphorylated mimicking peptide amphiphiles to enhance osteogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:34-48. [DOI: 10.1080/09205063.2018.1505264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiqing Liang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, PR China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhaoqing Zhang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, PR China
| | - Yulin Hou
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, PR China
| | - Jiayu Wang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, PR China
| | - Chao Zhang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, PR China
| | - Changyun Quan
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Recently, significant progress has been made in the research related to regenerative medicine. At the same time, biomedical implants in orthopedics and dentistry are facing many challenges and posing clinical concerns. The purpose of this chapter is to provide an overview of the clinical applications of current regenerative strategies to the fields of dentistry and orthopedic surgery. The main research question in this review is: What are the major advancement strategies in regenerative medicine that can be used for implant research? RECENT FINDINGS The implant surfaces can be modified through patient-specific stem cells and plasma coatings, which may provide methods to improve osseointegration and sustainability of the implant. Overall understanding from the review suggesting that the outcome from the studies could lead to identify optimum solutions for many concerns in biomedical implants and even in drug developments as a long-term solution to orthopedic and dental patients.
Collapse
Affiliation(s)
- Divya Rani Bijukumar
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL,, 61007, USA
| | - Clay McGeehan
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL,, 61007, USA
| | - Mathew T Mathew
- Regenerative Medicine and Disability Research (RMDR) Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL,, 61007, USA.
| |
Collapse
|
36
|
Spinal Biologics in Minimally Invasive Lumbar Surgery. Minim Invasive Surg 2018; 2018:5230350. [PMID: 29850240 PMCID: PMC5907390 DOI: 10.1155/2018/5230350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/25/2018] [Indexed: 12/28/2022] Open
Abstract
As the use of minimally invasive spine (MIS) fusion approaches continues to grow, increased scrutiny is being placed on its outcomes and efficacies against traditional open fusion surgeries. While there are many factors that contribute to the success of achieving spinal arthrodesis, selecting the optimal fusion biologic remains a top priority. With an ever-expanding market of bone graft substitutes, it is important to evaluate each of their use as it pertains to MIS techniques. This review will summarize the important characteristics and properties of various spinal biologics used in minimally invasive lumbar surgeries and compare their fusion rates via a systematic review of published literature.
Collapse
|
37
|
Bone Tissue Engineering Strategies in Co-Delivery of Bone Morphogenetic Protein-2 and Biochemical Signaling Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:233-244. [PMID: 30357626 DOI: 10.1007/978-981-13-0950-2_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Administration of bone morphogenetic protein-2 (BMP-2), which is commercially approved by the food and drug administration to damaged bone sites has been investigated for the purpose of bone tissue regeneration. BMP-2 can promote osteoblastic differentiation of mesenchymal stem cells as well as regeneration of bone formation in early phase. This review highlights various factors such as vitamin D, dexamethasone, platelet-derived growth factor, placental growth factor, BMP-7, and NEL-like protein-1 that enhance and stimulate angiogenesis, cell differentiation, and bone regeneration. These biochemical signals and growth factors (GFs) accelerate bone repair and remodeling either synergistically or individually. Delivery systems and scaffolds are used for sustained release of these cargo molecules and support at damaged bone sites. Compared with direct administration of BMP-2, current studies have demonstrated that a combination of multiple GFs and/or therapeutic chemical factors with delivery platforms synergistically facilitates bone regeneration. Therefore, in the future, multiple combinations of various GFs, chemicals, and materials could provide patients and surgeons with non-invasive treatment options without secondary surgery and pain. To the end, this review summarizes the biological functions and synergistic effects of dual administration modalities involving BMP-2 as well as recent developments in bone tissue engineering applications.
Collapse
|