1
|
Surman F, Asadikorayem M, Weber P, Weber D, Zenobi-Wong M. Ionically annealed zwitterionic microgels for bioprinting of cartilaginous constructs. Biofabrication 2024; 16:025004. [PMID: 38176081 DOI: 10.1088/1758-5090/ad1b1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Foreign body response (FBR) is a pervasive problem for biomaterials used in tissue engineering. Zwitterionic hydrogels have emerged as an effective solution to this problem, due to their ultra-low fouling properties, which enable them to effectively inhibit FBRin vivo. However, no versatile zwitterionic bioink that allows for high resolution extrusion bioprinting of tissue implants has thus far been reported. In this work, we introduce a simple, novel method for producing zwitterionic microgel bioink, using alginate methacrylate (AlgMA) as crosslinker and mechanical fragmentation as a microgel fabrication method. Photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) are mechanically fragmented through meshes with aperture diameters of 50 and 90µm to produce microgel bioink. The bioinks made with both microgel sizes showed excellent rheological properties and were used for high-resolution printing of objects with overhanging features without requiring a support structure or support bath. The AlgMA crosslinker has a dual role, allowing for both primary photocrosslinking of the bulk hydrogel as well as secondary ionic crosslinking of produced microgels, to quickly stabilize the printed construct in a calcium bath and to produce a microporous scaffold. Scaffolds showed ∼20% porosity, and they supported viability and chondrogenesis of encapsulated human primary chondrocytes. Finally, a meniscus model was bioprinted, to demonstrate the bioink's versatility at printing large, cell-laden constructs which are stable for furtherin vitroculture to promote cartilaginous tissue production. This easy and scalable strategy of producing zwitterionic microgel bioink for high resolution extrusion bioprinting allows for direct cell encapsulation in a microporous scaffold and has potential forin vivobiocompatibility due to the zwitterionic nature of the bioink.
Collapse
Affiliation(s)
- František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Daniel Weber
- Division of Hand Surgery, University Children's Hospital, 8032 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Kim SJ, Lee G, Park JK. Hybrid Biofabrication of Heterogeneous 3D Constructs Using Low-Viscosity Bioinks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41247-41257. [PMID: 37615296 DOI: 10.1021/acsami.3c05750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The application of cytocompatible hydrogels supporting extensive cellular activities to three-dimensional (3D) bioprinting is crucial for recreating complex physiological environments with high biomimicry. However, the poor printability and tunability of such natural hydrogels diminish the versatility and resolution of bioprinters. In this study, we propose a novel approach for the hybrid biofabrication of complex and heterogeneous 3D constructs using low-viscosity bioinks. Poly(lactic acid) (PLA) filament is extruded by fused deposition modeling on a micromesh to create PLA-framed micromesh substrates onto which fibrinogen is printed by microextrusion bioprinting. The micromesh supports the printed hydrogel with a capillary pinning effect to enable high-resolution bioprinting. Accordingly, the micromesh-bioink layers are aligned and stacked to form volumetric constructs. This approach, called the 3D micromesh-bioink overlaid structure and interlocked culture (3D MOSAIC) platform, enables the fabrication of complicated and multimaterial 3D structures, including overhangs and voids. Endothelial cells cultured under vasculogenic conditions in the platform self-organize within the biologically functional hydrogel to form vascular networks, and cancer cell migration can be observed across the layers. The multidisciplinary 3D MOSAIC platform is an important step toward the biofabrication of complex constructs with high biological and structural significance and functionality.
Collapse
Affiliation(s)
- Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for the Nanocentury, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Nasehi R, Schieren J, Grannemann C, Palkowitz AL, Babendreyer A, Schwarz N, Aveic S, Ludwig A, Leube RE, Fischer H. Bioprinting-associated pulsatile hydrostatic pressure elicits a mild proinflammatory response in epi- and endothelial cells. BIOMATERIALS ADVANCES 2023; 147:213329. [PMID: 36801795 DOI: 10.1016/j.bioadv.2023.213329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
During nozzle-based bioprinting, like inkjet and microextrusion, cells are subjected to hydrostatic pressure for up to several minutes. The modality of the bioprinting-related hydrostatic pressure is either constant or pulsatile depending on the technique. We hypothesized that the difference in the modality of hydrostatic pressure affects the biological response of the processed cells differently. To test this, we used a custom-made setup to apply either controlled constant or pulsatile hydrostatic pressure on endothelial and epithelial cells. Neither bioprinting procedure visibly altered the distribution of selected cytoskeletal filaments, cell-substrate adhesions, and cell-cell contacts in either cell type. In addition, pulsatile hydrostatic pressure led to an immediate increase of intracellular ATP in both cell types. However, the bioprinting-associated hydrostatic pressure triggered a pro-inflammatory response in only the endothelial cells, with an increase of interleukin 8 (IL-8) and a decrease of thrombomodulin (THBD) transcripts. These findings demonstrate that the settings adopted during nozzle-based bioprinting cause hydrostatic pressure that can trigger a pro-inflammatory response in different barrier-forming cell types. This response is cell-type and pressure-modality dependent. The immediate interaction of the printed cells with native tissue and the immune system in vivo might potentially trigger a cascade of events. Our findings, therefore, are of major relevance in particular for novel intra-operative, multicellular bioprinting approaches.
Collapse
Affiliation(s)
- Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jana Schieren
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Caroline Grannemann
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release 2023; 353:147-165. [PMID: 36423869 DOI: 10.1016/j.jconrel.2022.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Homeostasis is the most fundamental mechanism of physiological processes, occurring simultaneously as the production and outcomes of pathological procedures. Accompanied by manufacture and maturation of intricate and highly hierarchical architecture obtained from 3D bioprinting (three-dimension bioprinting), homeostasis has substantially determined the quality of printed tissues and organs. Instead of only shape imitation that has been the remarkable advances, fabrication for functionality to make artificial tissues and organs that act as real ones in vivo has been accepted as the optimized strategy in 3D bioprinting for the next several years. Herein, this review aims to provide not only an overview of 3D bioprinting, but also the main strategies used for homeostasis bioprinting. This paper briefly introduces the principles of 3D bioprinting system applied in homeostasis regulations firstly, and then summarizes the specific strategies and potential trend of homeostasis regulations using multiple types of stimuli-response biomaterials to maintain auto regulation, specifically displaying a brilliant prospect in hormone regulation of homeostasis with the most recently outbreak of vasculature fabrication. Finally, we discuss challenges and future prospects of homeostasis fabrication based on 3D bioprinting in regenerative medicine, hoping to further inspire the development of functional fabrication in 3D bioprinting.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
6
|
Augustine R, Gezek M, Seray Bostanci N, Nguyen A, Camci-Unal G. Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 455:140783. [PMID: 36644784 PMCID: PMC9835968 DOI: 10.1016/j.cej.2022.140783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Angelina Nguyen
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Dani S, Windisch J, Valencia Guerrero XM, Bernhardt A, Gelinsky M, Krujatz F, Lode A. Selection of a suitable photosynthetically active microalgae strain for the co-cultivation with mammalian cells. Front Bioeng Biotechnol 2022; 10:994134. [PMID: 36199362 PMCID: PMC9528974 DOI: 10.3389/fbioe.2022.994134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing hypoxic zones in 3D bioprinted mammalian cell-laden constructs using an internal oxygen supply could enable a more successful cultivation both in vitro and in vivo. In this study, the suitability of green microalgae as photosynthetic oxygen generators within bioprinted constructs was evaluated by defining and investigating important parameters for a successful co-culture. First, we assessed the impact of light–necessary for photosynthesis–on two non-light adapted mammalian cell types and defined red-light illumination and a temperature of 37°C as essential factors in a co-culture. The four thermotolerant microalgae strains Chlorella sorokiniana, Coelastrella oocystiformis, Coelastrella striolata, and Scenedesmus sp. were cultured both in suspension culture and 3D bioprinted constructs to assess viability and photosynthetic activity under these defined co-culture conditions. Scenedesmus sp. proved to be performing best under red light and 37°C as well as immobilized in a bioprinted hydrogel based on alginate. Moreover, the presence of the antibiotic ampicillin and the organic carbon-source glucose, both required for mammalian cell cultures, had no impact on bioprinted Scenedesmus sp. cultures regarding growth, viability, and photosynthetic activity. This study is the first to investigate the influence of mammalian cell requirements on the metabolism and photosynthetic ability of different microalgal strains. In a co-culture, the strain Scenedesmus sp. could provide a stable oxygenation that ensures the functionality of the mammalian cells.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Xally Montserrat Valencia Guerrero
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Anja Lode,
| |
Collapse
|
8
|
Shinkar K, Rhode K. Could 3D extrusion bioprinting serve to be a real alternative to organ transplantation in the future? ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Samandari M, Quint J, Rodríguez-delaRosa A, Sinha I, Pourquié O, Tamayol A. Bioinks and Bioprinting Strategies for Skeletal Muscle Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105883. [PMID: 34773667 PMCID: PMC8957559 DOI: 10.1002/adma.202105883] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/28/2021] [Indexed: 05/16/2023]
Abstract
Skeletal muscles play important roles in critical body functions and their injury or disease can lead to limitation of mobility and loss of independence. Current treatments result in variable functional recovery, while reconstructive surgery, as the gold-standard approach, is limited due to donor shortage, donor-site morbidity, and limited functional recovery. Skeletal muscle tissue engineering (SMTE) has generated enthusiasm as an alternative solution for treatment of injured tissue and serves as a functional disease model. Recently, bioprinting has emerged as a promising tool for recapitulating the complex and highly organized architecture of skeletal muscles at clinically relevant sizes. Here, skeletal muscle physiology, muscle regeneration following injury, and current treatments following muscle loss are discussed, and then bioprinting strategies implemented for SMTE are critically reviewed. Subsequently, recent advancements that have led to improvement of bioprinting strategies to construct large muscle structures, boost myogenesis in vitro and in vivo, and enhance tissue integration are discussed. Bioinks for muscle bioprinting, as an essential part of any bioprinting strategy, are discussed, and their benefits, limitations, and areas to be improved are highlighted. Finally, the directions the field should expand to make bioprinting strategies more translational and overcome the clinical unmet needs are discussed.
Collapse
Affiliation(s)
- Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | - Indranil Sinha
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Olivier Pourquié
- Department of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
10
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
11
|
Aavani F, Biazar E, Kheilnezhad B, Amjad F. 3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Curr Stem Cell Res Ther 2022; 17:415-439. [DOI: 10.2174/1574888x17666220204144544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective bio-mimicking of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges for skin tissue engineering.
Collapse
Affiliation(s)
- Farzaneh. Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Kheilnezhad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fatemeh Amjad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
12
|
Ritter P, Cai A, Reischl B, Fiedler M, Prol G, Frie B, Kretzschmar E, Michael M, Hartmann K, Lesko C, Salti H, Arkudas A, Horch R, Paulsen F, Friedrich O, Haug M. MyoBio: An automated bioreactor system technology for standardized perfusion-decellularization of whole skeletal muscle. IEEE Trans Biomed Eng 2022; 69:2305-2313. [DOI: 10.1109/tbme.2022.3142317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
De Moor L, Smet J, Plovyt M, Bekaert B, Vercruysse C, Asadian M, De Geyter N, Van Vlierberghe S, Dubruel P, Declercq H. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. Biofabrication 2021; 13. [PMID: 34496350 DOI: 10.1088/1758-5090/ac24de] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023]
Abstract
To engineer tissues with clinically relevant dimensions by three-dimensional bioprinting, an extended vascular network with diameters ranging from the macro- to micro-scale needs to be integrated. Extrusion-based bioprinting is the most commonly applied bioprinting technique but due to the limited resolution of conventional bioprinters, the establishment of a microvascular network for the transfer of oxygen, nutrients and metabolic waste products remains challenging. To answer this need, this study assessed the potential and processability of spheroids, containing a capillary-like network, to be used as micron-sized prevascularized units for incorporation throughout the bioprinted construct. Prevascularized spheroids were generated by combining endothelial cells with fibroblasts and adipose tissue-derived mesenchymal stem cells as supporting cells. To serve as a viscous medium for the bioink-based deposition by extrusion printing, spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) and Irgacure 2959. The influence of gelMA encapsulation, the printing process and photo-crosslinking conditions on spheroid viability, proliferation and vascularization were analyzed by live/dead staining, immunohistochemistry, gene expression analysis and sprouting analysis. Stable spheroid-laden constructs, allowing spheroid outgrowth, were achieved by applying 10 min UV-A photo-curing (365 nm, 4 mW cm-2), while the construct was incubated in an additional Irgacure 2959 immersion solution. Following implantationin ovoonto a chick chorioallantoic membrane, the prevascular engineered constructs showed anastomosis with the host vasculature. This study demonstrated (a) the potential of triculture prevascularized spheroids for application as multicellular building blocks, (b) the processability of the spheroid-laden gelMA bioink by extrusion bioprinting and (c) the importance of photo-crosslinking parameters post printing, as prolonged photo-curing intervals showed to be detrimental for the angiogenic potential and complete vascularization of the construct post printing.
Collapse
Affiliation(s)
- Lise De Moor
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jasper Smet
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Kortrijk, Belgium
| | - Magalie Plovyt
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Bieke Bekaert
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Chris Vercruysse
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Kortrijk, Belgium
| |
Collapse
|
14
|
Moldovan NI. Three-Dimensional Bioprinting of Anatomically Realistic Tissue Constructs for Disease Modeling and Drug Testing. Tissue Eng Part C Methods 2021; 27:225-231. [PMID: 33446076 DOI: 10.1089/ten.tec.2020.0293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an emerging tissue engineering technology, already with several remarkable accomplishments and with more promises to fulfill. Besides the enduring goal of making tissues for implantation, it could also become an essential tool in the worldwide trend to replace animal experimentation with improved in vitro models for disease mechanism studies, or with new high-throughput pharmacological and toxicology assays. All these require the speed, reproducibility, and standardization that bioprinting could easily provide. However, originating from additive manufacturing with its top-down approach of "filling" a virtual volume with a semifluid (hydrogel) material, the finer internal anatomic structure of the tissues, as well as vascularization and innervation, has remained difficult to implement. Thus, the next frontier in bioprinting is the generation of more anatomically realistic models, needed for ascending to the functionality of living tissues. In this study, I discuss the conceptual and practical barriers still hampering the attainment of this goal and suggest solutions to overcome them. In this regard, I introduce two workflows that combine existing methods in new operational sequences: (1) bioprinting guided by images of histological sections assembled in 3D constructs and (2) bioprinting of bidimensional vascular patterns implemented among stackable cellular layers. While more sophisticated methods to capture the tissue structure in 3D constructs certainly exist, I contend that extrusion bioprinting may still offer a simple, practical, and affordable option. Impact statement Paucity of anatomic structural details is one of the limitations of three-dimensional bioprinting toward fulfilling its potential for tissue engineering, drug testing, and toxicological assays. The origins of this problem can be tracked back to derivation of bioprinting from inorganic additive manufacturing, making it more adept to render the shapes of the objects than their content. As solutions, I suggest two simple workflows that can be implemented by most current bioprinters, based on the import into the construct design of anatomically realistic structural information. If more largely adopted, these and similar approaches may significantly improve the applicability of bioprinted constructs.
Collapse
Affiliation(s)
- Nicanor I Moldovan
- Indiana Institute for Medical Research at "Richard L. Roudebush" VA Medical Center, Indianapolis, Indiana, USA.,Department of Ophthalmology, IU School of Medicine, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Ke D, Jorgensen AM, Lee SJ, Yoo JJ, Murphy SV. Adenosine-treated bioprinted muscle constructs prolong cell survival and improve tissue formation. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Barrs RW, Jia J, Ward M, Richards DJ, Yao H, Yost MJ, Mei Y. Engineering a Chemically Defined Hydrogel Bioink for Direct Bioprinting of Microvasculature. Biomacromolecules 2021; 22:275-288. [PMID: 33332959 PMCID: PMC7870577 DOI: 10.1021/acs.biomac.0c00947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascularizing printed tissues is a critical challenge in bioprinting. While protein-based hydrogel bioinks have been successfully used to bioprint microvasculature, their compositions are ill-defined and subject to batch variation. Few studies have focused on engineering proangiogenic bioinks with defined properties to direct endogenous microvascular network formation after printing. Here, a peptide-functionalized alginate hydrogel bioink with defined mechanical, rheological, and biochemical properties is developed for direct bioprinting of microvascularized tissues. An integrin-binding peptide (RGD) and a vascular endothelial growth factor-mimetic peptide with a protease-sensitive linker are conjugated onto a biodegradable alginate to synergistically promote vascular morphogenesis and capillary-scale endothelial tube formation. Partial ionic crosslinking before printing converts the otherwise unprintable hydrogel into a viscoelastic bioink with excellent printability and cytocompatibility. We use the bioink to fabricate a compartmentalized vascularized tissue construct, wherein we observe pericyte-endothelial cell colocalization and angiogenic sprouting across a tissue interface, accompanied by deposition of fibronectin and collagen in vascular and tissue components, respectively. This study provides a tunable and translational "off-the-shelf" hydrogel bioink with defined composition for vascularized bioprinting.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Department of Bioengineering, Clemson University, USA
- Department of Surgery, Medical University of South
Carolina, USA
| | - Jia Jia
- Department of Bioengineering, Clemson University, USA
| | - Michael Ward
- Department of Bioengineering, Clemson University, USA
| | | | - Hai Yao
- Department of Bioengineering, Clemson University, USA
| | - Michael J. Yost
- Department of Surgery, Medical University of South
Carolina, USA
- Department of Regenerative Medicine and Cell Biology,
Medical University of South Carolina, USA
| | - Ying Mei
- Department of Bioengineering, Clemson University, USA
- Department of Regenerative Medicine and Cell Biology,
Medical University of South Carolina, USA
| |
Collapse
|
17
|
Shah Mohammadi M, Buchen JT, Pasquina PF, Niklason LE, Alvarez LM, Jariwala SH. Critical Considerations for Regeneration of Vascularized Composite Tissues. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:366-381. [PMID: 33115331 DOI: 10.1089/ten.teb.2020.0223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Effective vascularization is vital for survival and functionality of complex tissue-engineered organs. The formation of the microvasculature, composed of endothelial cells (ECs) alone, has been mostly used to restore the vascular networks in organs. However, recent heterocellular studies demonstrate that co-culturing is a more effective approach in revascularization of engineered organs. This review presents key considerations for manufacturing of artificial vascularized composite tissues. We summarize the importance of co-cultures and the multicellular interactions with ECs, as well as design and use of bioreactors, as critical considerations for tissue vascularization. In addition, as an emerging scaffolding technique, this review also highlights the current caveats and hurdles associated with three-dimensional bioprinting and discusses recent developments in bioprinting strategies such as four-dimensional bioprinting and its future outlook for manufacturing of vascularized tissue constructs. Finally, the review concludes with addressing the critical challenges in the regulatory pathway and clinical translation of artificial composite tissue grafts. Impact statement Regeneration of composite tissues is critical as biophysical and biochemical characteristics differ between various types of tissues. Engineering a vascularized composite tissue has remained unresolved and requires additional evaluations along with optimization of methodologies and standard operating procedures. To this end, the main hurdle is creating a viable vascular endothelium that remains functional for a longer duration postimplantation, and can be manufactured using clinically appropriate source of cell lines that are scalable in vitro for the fabrication of human-scale organs. This review presents key considerations for regeneration and manufacturing of vascularized composite tissues as the field advances.
Collapse
Affiliation(s)
- Maziar Shah Mohammadi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jack T Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Paul F Pasquina
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Laura E Niklason
- Department of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Luis M Alvarez
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Lung Biotechnology PBC, Silver Spring, Maryland, USA
| | - Shailly H Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
19
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
20
|
Davoodi E, Sarikhani E, Montazerian H, Ahadian S, Costantini M, Swieszkowski W, Willerth S, Walus K, Mofidfar M, Toyserkani E, Khademhosseini A, Ashammakhi N. Extrusion and Microfluidic-based Bioprinting to Fabricate Biomimetic Tissues and Organs. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:1901044. [PMID: 33072855 PMCID: PMC7567134 DOI: 10.1002/admt.201901044] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/10/2020] [Indexed: 05/07/2023]
Abstract
Next generation engineered tissue constructs with complex and ordered architectures aim to better mimic the native tissue structures, largely due to advances in three-dimensional (3D) bioprinting techniques. Extrusion bioprinting has drawn tremendous attention due to its widespread availability, cost-effectiveness, simplicity, and its facile and rapid processing. However, poor printing resolution and low speed have limited its fidelity and clinical implementation. To circumvent the downsides associated with extrusion printing, microfluidic technologies are increasingly being implemented in 3D bioprinting for engineering living constructs. These technologies enable biofabrication of heterogeneous biomimetic structures made of different types of cells, biomaterials, and biomolecules. Microfluiding bioprinting technology enables highly controlled fabrication of 3D constructs in high resolutions and it has been shown to be useful for building tubular structures and vascularized constructs, which may promote the survival and integration of implanted engineered tissues. Although this field is currently in its early development and the number of bioprinted implants is limited, it is envisioned that it will have a major impact on the production of customized clinical-grade tissue constructs. Further studies are, however, needed to fully demonstrate the effectiveness of the technology in the lab and its translation to the clinic.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Einollah Sarikhani
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Hossein Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Marco Costantini
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
- Institute of Physical Chemistry – Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Stephanie Willerth
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada
| | - Konrad Walus
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Mofidfar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ehsan Toyserkani
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Silva C, Cortés-Rodriguez CJ, Hazur J, Reakasame S, Boccaccini AR. Rational Design of a Triple-Layered Coaxial Extruder System: in silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. Int J Bioprint 2020; 6:282. [PMID: 33088996 PMCID: PMC7557338 DOI: 10.18063/ijb.v6i4.282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Biofabrication is a rapidly evolving field whose main goal is the manufacturing of three-dimensional (3D) cell-laden constructs that closely mimic tissues and organs. Despite recent advances on materials and techniques directed toward the achievement of this goal, several aspects such as tissue vascularization and prolonged cell functionality are limiting bench-to-bedside translation. Extrusion-based 3D bioprinting has been devised as a promising biofabrication technology to overcome these limitations, due to its versatility and wide availability. Here, we report the development of a triple-layered coaxial nozzle for use in the biomanufacturing of vascular networks and vessels. The design of the coaxial nozzle was first optimized toward guaranteeing high cell viability upon extrusion. This was done with the aid of in silico evaluations and their subsequent experimental validation by investigating the bioprinting of an alginate-based bioink. Results confirmed that the values for pressure distribution predicted by in silico experiments resulted in cell viabilities above 70% and further demonstrated the effect of layer thickness and extrusion pressure on cell viability. Our work paves the way for the rational design of multi-layered coaxial extrusion systems to be used in biofabrication approaches to replicate the very complex structures found in native organs and tissues.
Collapse
Affiliation(s)
- Christian Silva
- Department of Mechanical Engineering and Mechatronics, School of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Carlos J Cortés-Rodriguez
- Department of Mechanical Engineering and Mechatronics, School of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Jonas Hazur
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Supachai Reakasame
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
22
|
Guzzi EA, Tibbitt MW. Additive Manufacturing of Precision Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901994. [PMID: 31423679 DOI: 10.1002/adma.201901994] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Biomaterials play a critical role in modern medicine as surgical guides, implants for tissue repair, and as drug delivery systems. The emerging paradigm of precision medicine exploits individual patient information to tailor clinical therapy. While the main focus of precision medicine to date is the design of improved pharmaceutical treatments based on "-omics" data, the concept extends to all forms of customized medical care. This includes the design of precision biomaterials that are tailored to meet specific patient needs. Additive manufacturing (AM) enables free-form manufacturing and mass customization, and is a critical enabling technology for the clinical implementation of precision biomaterials. Materials scientists and engineers can contribute to the realization of precision biomaterials by developing new AM technologies, synthesizing advanced (bio)materials for AM, and improving medical-image-based digital design. As the field matures, AM is poised to provide patient-specific tissue and organ substitutes, reproducible microtissues for drug screening and disease modeling, personalized drug delivery systems, as well as customized medical devices.
Collapse
Affiliation(s)
- Elia A Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
23
|
Ramos T, Moroni L. Tissue Engineering and Regenerative Medicine 2019: The Role of Biofabrication-A Year in Review. Tissue Eng Part C Methods 2020; 26:91-106. [PMID: 31856696 DOI: 10.1089/ten.tec.2019.0344] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite its relative youth, biofabrication is unceasingly expanding by assimilating the contributions from various disciplinary areas and their technological advances. Those developments have spawned the range of available options to produce structures with complex geometries while accurately manipulating and controlling cell behavior. As it evolves, biofabrication impacts other research fields, allowing the fabrication of tissue models of increased complexity that more closely resemble the dynamics of living tissue. The recent blooming and evolutions in biofabrication have opened new windows and perspectives that could aid the translational struggle in tissue engineering and regenerative medicine (TERM) applications. Based on similar methodologies applied in past years' reviews, we identified the most high-impact publications and reviewed the major concepts, findings, and research outcomes in the context of advancement beyond the state-of-the-art in the field. We first aim to clarify the confusion in terminology and concepts in biofabrication to therefore introduce the striking evolutions in three-dimensional and four-dimensional bioprinting of tissues. We conclude with a short discussion on the future outlooks for innovation that biofabrication could bring to TERM research.
Collapse
Affiliation(s)
- Tiago Ramos
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
24
|
Bray LJ, Hutmacher DW, Bock N. Addressing Patient Specificity in the Engineering of Tumor Models. Front Bioeng Biotechnol 2019; 7:217. [PMID: 31572718 PMCID: PMC6751285 DOI: 10.3389/fbioe.2019.00217] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment is challenged by the heterogeneous nature of cancer, where prognosis depends on tumor type and disease stage, as well as previous treatments. Optimal patient stratification is critical for the development and validation of effective treatments, yet pre-clinical model systems are lacking in the delivery of effective individualized platforms that reflect distinct patient-specific clinical situations. Advances in cancer cell biology, biofabrication, and microengineering technologies have led to the development of more complex in vitro three-dimensional (3D) models to act as drug testing platforms and to elucidate novel cancer mechanisms. Mostly, these strategies have enabled researchers to account for the tumor microenvironment context including tumor-stroma interactions, a key factor of heterogeneity that affects both progression and therapeutic resistance. This is aided by state-of-the-art biomaterials and tissue engineering technologies, coupled with reproducible and high-throughput platforms that enable modeling of relevant physical and chemical factors. Yet, the translation of these models and technologies has been impaired by neglecting to incorporate patient-derived cells or tissues, and largely focusing on immortalized cell lines instead, contributing to drug failure rates. While this is a necessary step to establish and validate new models, a paradigm shift is needed to enable the systematic inclusion of patient-derived materials in the design and use of such models. In this review, we first present an overview of the components responsible for heterogeneity in different tumor microenvironments. Next, we introduce the state-of-the-art of current in vitro 3D cancer models employing patient-derived materials in traditional scaffold-free approaches, followed by novel bioengineered scaffold-based approaches, and further supported by dynamic systems such as bioreactors, microfluidics, and tumor-on-a-chip devices. We critically discuss the challenges and clinical prospects of models that have succeeded in providing clinical relevance and impact, and present emerging concepts of novel cancer model systems that are addressing patient specificity, the next frontier to be tackled by the field.
Collapse
Affiliation(s)
- Laura J. Bray
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
- Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Dietmar W. Hutmacher
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
- Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane, QLD, Australia
- Australian Research Council (ARC) Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Nathalie Bock
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
- Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane, QLD, Australia
| |
Collapse
|