1
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
2
|
Ma X, Yue Q, Wang Q, Liu C, Fu S, Luan J. Hydrophilic Components as Key Active Ingredients in Adipose-Derived Matrix Bioscaffolds for Inducing Fat Regeneration. Adv Healthc Mater 2024; 13:e2402331. [PMID: 39188185 PMCID: PMC11650414 DOI: 10.1002/adhm.202402331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Decellularized adipose-derived matrix (DAM) has emerged as a promising biomaterial for soft tissue reconstruction. However, due to a lack of research on its complex composition, the understanding of the key components in DAM remains limited, leading to inconsistent adipogenic properties and challenges in optimizing preparation methods purposefully. In this study, it is proposed for the first time that DAM comprises two distinct components: hydrophilic (H-DAM) and lipophilic (L-DAM), each with markedly different effects on fat regeneration. It is confirmed that H-DAM is the key component for inducing fat regeneration due to its enhanced cell-cell and cell-scaffold interactions, primarily mediated by the Hedgehog signaling pathway. In contrast, L-DAM exhibits poor cell adhesion and contains more antigenic components, leading to a higher immunoinflammatory response and reduced adipogenesis. In addition, it is found that intracellular proteins, which are more abundant in H-DAM, can be retained as beneficial components due to their hydrophilicity, contrary to the conventional view that they shall be removed. Accordingly, a purified bioscaffold with unprecedented efficacy is proposed for fat regeneration and reduced immunogenicity. This finding provides insights for developing scaffolds for fat regeneration and promotes the realization of xenotransplantation.
Collapse
Affiliation(s)
- Xiaomu Ma
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Qiang Yue
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Qian Wang
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Chunjun Liu
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Su Fu
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Jie Luan
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| |
Collapse
|
3
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
4
|
Feng J, Fu S, Luan J. Harnessing fine fibers in decellularized adipose-derived matrix for enhanced adipose regeneration. Mater Today Bio 2024; 25:100974. [PMID: 38322660 PMCID: PMC10844111 DOI: 10.1016/j.mtbio.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Decellularized Adipose-Derived Matrix (DAM) has the function of inducing adipogenesis, but the distribution of adipogenesis is uneven. We found for the first time that DAM contains two structural components: The tough fibers DAM (T-DAM) and the fine fibers DAM (F-DAM). T-DAM was a dense vortex structure composed of a large number of coarse fibers, characterized by myoblast-related proteins, which cannot achieve fat regeneration and forms a typical "adipose-free zone". While the F-DAM was a loose structure consisting of uniform fine fibers, has more matrix-related proteins and adipose-related proteins. It can not only better promote the adhesion and proliferation of adipose stem cells in vitro, but also achieve the regeneration of adipose tissue in vivo earlier and better, with a uniform range of adipogenesis. The F-DAM is the main and effective kind of DAM to initiate adipose tissue regeneration, which can be picked out by ultrasound fragmentation.
Collapse
Affiliation(s)
- Jiayi Feng
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | | | | |
Collapse
|
5
|
Hameed H, Khan MA, Paiva-Santos AC, Ereej N, Faheem S. Chitin: A versatile biopolymer-based functional therapy for cartilage regeneration. Int J Biol Macromol 2024; 265:131120. [PMID: 38527680 DOI: 10.1016/j.ijbiomac.2024.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Chitin is the second most abundant biopolymer and its inherent biological characteristics make it ideal to use for tissue engineering. For many decades, its properties like non-toxicity, abundant availability, ease of modification, biodegradability, biocompatibility, and anti-microbial activity have made chitin an ideal biopolymer for drug delivery. Research studies have also shown many potential benefits of chitin in the formulation of functional therapy for cartilage regeneration. Chitin and its derivatives can be processed into 2D/3D scaffolds, hydrogels, films, exosomes, and nano-fibers, which make it a versatile and functional biopolymer in tissue engineering. Chitin is a biomimetic polymer that provides targeted delivery of mesenchymal stem cells, especially of chondrocytes at the injected donor sites to accelerate regeneration by enhancing cell proliferation and differentiation. Due to this property, chitin is considered an interesting polymer that has a high potential to provide targeted therapy in the regeneration of cartilage. Our paper presents an overview of the method of extraction, structure, properties, and functional role of this versatile biopolymer in tissue engineering, especially cartilage regeneration.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| |
Collapse
|
6
|
Xu MS, D'Elia A, Hadzimustafic N, Adil A, Karoubi G, Waddell TK, Haykal S. Bioengineering of vascularized porcine flaps using perfusion-recellularization. Sci Rep 2024; 14:7590. [PMID: 38555385 PMCID: PMC10981729 DOI: 10.1038/s41598-024-58095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Large volume soft tissue defects greatly impact patient quality of life and function while suitable repair options remain a challenge in reconstructive surgery. Engineered flaps could represent a clinically translatable option that may circumvent issues related to donor site morbidity and tissue availability. Herein, we describe the regeneration of vascularized porcine flaps, specifically of the omentum and tensor fascia lata (TFL) flaps, using a tissue engineering perfusion-decellularization and recellularization approach. Flaps were decellularized using a low concentration sodium dodecyl sulfate (SDS) detergent perfusion to generate an acellular scaffold with retained extracellular matrix (ECM) components while removing underlying cellular and nuclear contents. A perfusion-recellularization strategy allowed for seeding of acellular flaps with a co-culture of human umbilical vein endothelial cell (HUVEC) and mesenchymal stromal cells (MSC) onto the decellularized omentum and TFL flaps. Our recellularization technique demonstrated evidence of intravascular cell attachment, as well as markers of endothelial and mesenchymal phenotype. Altogether, our findings support the potential of using bioengineered porcine flaps as a novel, clinically-translatable strategy for future application in reconstructive surgery.
Collapse
Affiliation(s)
- Michael S Xu
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Andrew D'Elia
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Nina Hadzimustafic
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada
- Division of Thoracic Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Research Laboratories, University Health Network, 200 Elizabeth Street 8N-869, Toronto, ON, M5G 2C4, Canada.
- Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale New Haven Health, New Haven, CT, USA.
| |
Collapse
|
7
|
Grosu-Bularda A, Hodea FV, Cretu A, Lita FF, Bordeanu-Diaconescu EM, Vancea CV, Lascar I, Popescu SA. Reconstructive Paradigms: A Problem-Solving Approach in Complex Tissue Defects. J Clin Med 2024; 13:1728. [PMID: 38541953 PMCID: PMC10971357 DOI: 10.3390/jcm13061728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 01/06/2025] Open
Abstract
The field of plastic surgery is continuously evolving, with faster-emerging technologies and therapeutic approaches, leading to the necessity of establishing novel protocols and solving models. Surgical decision-making in reconstructive surgery is significantly impacted by various factors, including the etiopathology of the defect, the need to restore form and function, the patient's characteristics, compliance and expectations, and the surgeon's expertise. A broad surgical armamentarium is currently available, comprising well-established surgical procedures, as well as emerging techniques and technologies. Reconstructive surgery paradigms guide therapeutic strategies in order to reduce morbidity, mortality and risks while maximizing safety, patient satisfaction and properly restoring form and function. The paradigms provide researchers with formulation and solving models for each unique problem, assembling complex entities composed of theoretical, practical, methodological and instrumental elements.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Florin-Vlad Hodea
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Andrei Cretu
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Flavia-Francesca Lita
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Central Military Universitary Emergency Hospital “Carol Davila”, 010825 București, Romania
| | | | - Cristian-Vladimir Vancea
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Ioan Lascar
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| | - Serban Arghir Popescu
- “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 București, Romania; (A.G.-B.); (I.L.); (S.A.P.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital Bucharest, 011602 București, Romania
| |
Collapse
|
8
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Manek YB, Jajoo S, Mahakalkar C. A Comprehensive Review of Evaluating Donor Site Morbidity and Scar Outcomes in Skin Transfer Techniques. Cureus 2024; 16:e53433. [PMID: 38435178 PMCID: PMC10909122 DOI: 10.7759/cureus.53433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
This comprehensive review delves into the intricacies of donor site morbidity and scar outcomes in skin transfer techniques central to the field of reconstructive surgery. The review synthesizes existing literature to illuminate the multifaceted factors influencing outcomes by surveying a broad spectrum of grafting methods, from traditional autografts to cutting-edge tissue engineering approaches. Key findings underscore the complex interplay of graft characteristics, surgical techniques, and patient-specific variables. The implications for clinical practice advocate for a nuanced, patient-centered approach, incorporating emerging minimally invasive procedures and adjuvant therapies. The review concludes with recommendations for future research, emphasizing the importance of longitudinal studies, comparative analyses, patient-reported outcomes, advanced imaging techniques, and exploration of tissue engineering innovations. This synthesis advances our understanding of donor site morbidity and scar outcomes. It provides a roadmap for refining clinical protocols, ultimately enhancing the delicate balance between therapeutic efficacy and patient well-being in reconstructive surgery.
Collapse
Affiliation(s)
- Yogesh B Manek
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Suhas Jajoo
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Chandrashekhar Mahakalkar
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
10
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Peng L, Jin X, He Q, Gao X, Wang W, Zeng X, Shen H, Luo D. Remodelling landscape of tissue-engineered bladder with porcine small intestine submucosa using single-cell RNA sequencing. Cell Prolif 2022; 56:e13343. [PMID: 36177893 PMCID: PMC9816928 DOI: 10.1111/cpr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Bioscaffolds are widely used for tissue engineering, but failed and inconsistent preclinical results have hampered the clinical use of bioscaffolds for tissue engineering. We aimed to construct a cellular remodelling landscape and to identify the key cell subpopulations and important genes driving bladder remodelling. METHODS Twenty-four reconstructed mouse bladders using porcine small intestinal submucosa (PSIS) were harvested at 1, 3, and 6 weeks to perform single-cell RNA sequencing. Cell types were identified and their differentially expressed genes (DEGs) at each stage were used for functional analysis. Immunofluorescence was used to validate the specific cell type. RESULTS The remodelling landscape included 13 cell types. Among them, fibroblasts, smooth muscle cells (SMCs), endothelial cells, and macrophages had the most communications with other cells. In the process of regeneration, DEGs of fibroblasts at 1, 3, and 6 weeks were mainly involved in wound healing, extracellular matrix organization, and regulation of development growth, respectively. Among these cells, Saa3+ fibroblasts might mediate tissue remodelling. The DEGs of SMCs at 1, 3, and 6 weeks were mainly involved in the inflammatory response, muscle cell proliferation, and mesenchyme development, respectively. Moreover, we found that Notch3+ SMCs potentially modulated contractility. From 1 to 6 weeks, synchronous development of endothelial cells was observed by trajectory analysis. CONCLUSIONS A remoulding landscape was successfully constructed and findings might help surficial modifications of PSIS and find a better alternative. However, more in vivo and in vitro studies are needed to further validate these results.
Collapse
Affiliation(s)
- Liao Peng
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Xi Jin
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Qing He
- Department of UrologyThe Third People's Hospital of ChengduChengduPR China
| | - Xiao‐shuai Gao
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Wei Wang
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Xiao Zeng
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - Hong Shen
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| | - De‐yi Luo
- Department of UrologyInstitute of Urology, West China Hospital, Sichuan UniversityChengduPR China
| |
Collapse
|
12
|
The Role of High Resolution Ultrasonography in Elucidating Features of the Breast Implants in Asymptomatic Patients After Implant-based Augmentation Mammaplasty. Aesthetic Plast Surg 2022; 46:1135-1142. [PMID: 35022838 DOI: 10.1007/s00266-021-02701-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND We conducted this study to describe the feasibility of high-resolution ultrasound (HRUS) in characterizing a breast implant in patients receiving an implant-based augmentation mammaplasty. METHODS The current study was conducted in a total of 612 patients (n =6 12) receiving an implant-based augmentation mammaplasty at other hospitals between August 31, 2017 and August 31, 2020. Of these, 136 patients (n = 136; 272 breasts) receiving reoperation were included in the current study. We compared between the patients' subjective awareness of a breast implant and its HRUS findings and an agreement between HRUS findings of a breast implant and its findings at reoperation. RESULTS The proportion of the patients receiving a silicone gel-filled breast implant was increased from 65.44% (89/136) to 81.61% (111/136) on HRUS. Moreover, HRUS was effective in identifying a manufacturer of the device. CONCLUSIONS In conclusion, our results indicate that HRUS is feasible in characterizing a breast implant in patients receiving an implant-based augmentation mammaplasty. But further prospective, large-scale studies are warranted to corroborate our results. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors. www.springer.com/00266 .
Collapse
|
13
|
Beyond the Scalpel: Attracting and Nurturing Surgeon-Scientists in Plastic Surgery. Plast Reconstr Surg 2021; 149:509-516. [PMID: 34898526 DOI: 10.1097/prs.0000000000008786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SUMMARY With plastic surgery being at the forefront of innovation and discovery in multiple research disciplines, plastic surgery is poised for M.D./Ph.D. and research-focused M.D. trainees to be attracted to this field. Surprisingly, recent reports have shown that the number of surgeon-scientists pursuing research is on the decline, with these declines being even more pronounced within plastic surgery. It is essential that plastic surgery remains a leader in translational research by cultivating a group of individuals who have been trained in basic research and are thereby competitive to obtain extramural grant funding. To address this need, the authors review data elucidating why the research-oriented trainee may forego pursuing a career in plastic surgery. Although much of the existing literature is speculative, the authors identified the current number of M.D./Ph.D.s in plastic surgery using data obtained from the American Society of Plastic Surgeons and investigated number of grants in plastic surgery compared to other medical and surgical fields using the National Institutes of Health Research Portfolio Online Reporting Tools Expenditures and Results. The authors hypothesize that economic constraints and difficulty securing protected research time may be contributing to fewer trainees pursuing plastic surgery. The purpose of this article is (1) to discuss potential reasons deterring research-oriented trainees from pursuing careers as surgeon-scientists within plastic surgery; (2) to propose solutions that may attract more trainees interested in careers as surgeon-scientists to the field of plastic surgery; (3) to highlight the lack of quantitative data regarding surgeon-scientist training in plastic surgery; and (4) to propose and encourage future research avenues to help attract and nurture surgeon-scientists in plastic surgery.
Collapse
|
14
|
Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv Transl Res 2021; 11:2394-2413. [PMID: 34176099 DOI: 10.1007/s13346-021-01018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Host immune cells interact bi-directionally with their extracellular matrix (ECM) to receive and deposit molecular signals, which orchestrate cellular activation, proliferation, differentiation, and function to maintain healthy tissue homeostasis. In response to pathogens or damage, immune cells infiltrate diseased sites and synthesize critical ECM molecules such as glycoproteins, proteoglycans, and glycosaminoglycans to promote healing. When the immune system misidentifies pathogens or fails to survey damaged cells effectively, maladies such as chronic inflammation, autoimmune diseases, and cancer can develop. In these conditions, it is essential to restore balance to the body through modulation of the immune system and the ECM. This review details the components of dysregulated ECM implicated in pathogenic environments and therapeutic approaches to restore tissue homeostasis. We evaluate emerging strategies to overcome inflamed, immune inhibitory, and otherwise diseased microenvironments, including mechanical stimulation, targeted proteases, adoptive cell therapy, mechanomedicine, and biomaterial-based cell therapeutics. We highlight various strategies that have produced efficacious responses in both pre-clinical and human trials and identify additional opportunities to develop next-generation interventions. Significantly, we identify a need for therapies to address dense or fibrotic tissue for the treatment of organ tissue damage and various cancer subtypes. Finally, we conclude that therapeutic techniques that disrupt, evade, or specifically target the pathogenic microenvironment have a high potential for improving therapeutic outcomes and should be considered a priority for immediate exploration. A schematic showing the various methods of extracellular matrix disruption/targeting in both fibrotic and cancerous environments. a Biomaterial-based cell therapy can be used to deliver anti-inflammatory cytokines, chemotherapeutics, or other factors for localized, slow release of therapeutics. b Mechanotherapeutics can be used to inhibit the deposition of molecules such as collagen that affect stiffness. c Ablation of the ECM and target tissue can be accomplished via mechanical degradation such as focused ultrasound. d Proteases can be used to improve the distribution of therapies such as oncolytic virus. e Localization of therapeutics such as checkpoint inhibitors can be improved with the targeting of specific ECM components, reducing off-target effects and toxicity.
Collapse
Affiliation(s)
| | - Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Yi Y, Xie C, Liu J, Zheng Y, Wang J, Lu X. Self-adhesive hydrogels for tissue engineering. J Mater Chem B 2021; 9:8739-8767. [PMID: 34647120 DOI: 10.1039/d1tb01503f] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogels consisting of a three-dimensional hydrophilic network of biocompatible polymers have been widely used in tissue engineering. Owing to their tunable mechanical properties, hydrogels have been applied in both hard and soft tissues. However, most hydrogels lack self-adhesive properties that enable integration with surrounding tissues, which may result in suture or low repair efficacy. Self-adhesive hydrogels (SAHs), an emerging class of hydrogels based on a combination of three-dimensional hydrophilic networks and self-adhesive properties, continue to garner increased attention in recent years. SAHs exhibit reliable and suitable adherence to tissues, and easily integrate into tissues to promote repair efficiency. SAHs are designed either by mimicking the adhesion mechanism of natural organisms, such as mussels and sandcastle worms, or by using supramolecular strategies. This review summarizes the design and processing strategies of SAHs, clarifies underlying adhesive mechanisms, and discusses their applications in tissue engineering, as well as future challenges.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Jin Liu
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
16
|
Bedingfield SK, Colazo JM, Di Francesco M, Yu F, Liu DD, Di Francesco V, Himmel LE, Gupta MK, Cho H, Hasty KA, Decuzzi P, Duvall CL. Top-Down Fabricated microPlates for Prolonged, Intra-articular Matrix Metalloproteinase 13 siRNA Nanocarrier Delivery to Reduce Post-traumatic Osteoarthritis. ACS NANO 2021; 15:14475-14491. [PMID: 34409835 PMCID: PMC9074946 DOI: 10.1021/acsnano.1c04005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) associated with joint injury triggers a degenerative cycle of matrix destruction and inflammatory signaling, leading to pain and loss of function. Here, prolonged RNA interference (RNAi) of matrix metalloproteinase 13 (MMP13) is tested as a PTOA disease modifying therapy. MMP13 is upregulated in PTOA and degrades the key cartilage structural protein type II collagen. Short interfering RNA (siRNA) loaded nanoparticles (siNPs) were encapsulated in shape-defined poly(lactic-co-glycolic acid) (PLGA) based microPlates (μPLs) to formulate siNP-μPLs that maintained siNPs in the joint significantly longer than delivery of free siNPs. Treatment with siNP-μPLs against MMP13 (siMMP13-μPLs) in a mechanical load-induced mouse model of PTOA maintained potent (65-75%) MMP13 gene expression knockdown and reduced MMP13 protein production in joint tissues throughout a 28-day study. MMP13 silencing reduced PTOA articular cartilage degradation/fibrillation, meniscal deterioration, synovial hyperplasia, osteophytes, and pro-inflammatory gene expression, supporting the therapeutic potential of long-lasting siMMP13-μPL therapy for PTOA.
Collapse
Affiliation(s)
- Sean K Bedingfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Danielle D. Liu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Lauren E. Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, Tennessee 38104, United States; Research 151, VA Medical Center, Memphis, Tennessee 38104, United States
| | - Karen A. Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, Tennessee 38104, United States; Research 151, VA Medical Center, Memphis, Tennessee 38104, United States
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
17
|
Sun JM, Ho CK, Gao Y, Chong CH, Zheng DN, Zhang YF, Yu L. Salvianolic acid-B improves fat graft survival by promoting proliferation and adipogenesis. Stem Cell Res Ther 2021; 12:507. [PMID: 34535194 PMCID: PMC8447755 DOI: 10.1186/s13287-021-02575-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Our previous study proved that Salvia miltiorrhiza could enhance fat graft survival by promoting adipogenesis. However, the effect of salvianolic acid B (Sal-B), the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza, on fat graft survival has not yet been investigated. Objective This study aims to investigate whether salvianolic acid B could improve fat graft survival and promote preadipocyte differentiation. The underlying mechanism has also been studied. Methods In vivo, 0.2 ml of Coleman fat was transplanted into nude mice with salvianolic acid B. The grafts were evaluated by HE and IF at 2 and 4 weeks posttransplantation and by micro-CT at 4 weeks posttransplantation. In vitro, the adipogenesis and proliferative activities of salvianolic acid B were analyzed in cultured human adipose-derived stem cells (h-ADSCs) and 3T3-L1 cells to detect the mechanism by which salvianolic acid B affects graft survival. Results In vivo, the weights and volumes of the fat grafts in the Sal-B-treated groups were significantly higher than those of the fat grafts in the control group. In addition, higher fat integrity and more viable adipocytes were observed in the Sal-B-treated groups. In vitro, salvianolic acid B showed the ability to promote 3T3-L1 and h-ADSC proliferation and adipogenesis. Conclusions Our in vitro experiments demonstrated that salvianolic acid B can promote the proliferation of adipose stem cells and enhance the differentiation of adipose stem cells. Simultaneously, in vivo experiments showed that salvianolic acid B can improve the survival rate of fat transplantation. Therefore, our research shed light on the potential therapeutic usage of salvianolic acid B in improving the survival rate of fat transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02575-4.
Collapse
Affiliation(s)
- Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chio-Hou Chong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Dan-Ning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| |
Collapse
|
18
|
Armstrong DG, Orgill DP, Galiano R, Glat PM, Didomenico L, Reyzelman A, Snyder R, Li WW, Carter M, Zelen CM. A multicentre, randomised controlled clinical trial evaluating the effects of a novel autologous, heterogeneous skin construct in the treatment of Wagner one diabetic foot ulcers: Interim analysis. Int Wound J 2021; 19:64-75. [PMID: 33942506 PMCID: PMC8684853 DOI: 10.1111/iwj.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022] Open
Abstract
We desired to carefully evaluate a novel autologous heterogeneous skin construct in a prospective randomised clinical trial comparing this to a standard-of-care treatment in diabetic foot ulcers (DFUs). This study reports the interim analysis after the first half of the subjects have been analysed. Fifty patients (25 per group) with Wagner 1 ulcers were enrolled at 13 wound centres in the United States. Twenty-three subjects underwent the autologous heterogeneous skin construct harvest and application procedure once; two subjects required two applications due to loss of the first application. The primary endpoint was the proportion of wounds closed at 12 weeks. There were significantly more wounds closed in the treatment group (18/25; 72%) vs controls (8/25; 32%) at 12 weeks. The treatment group achieved significantly greater percent area reduction compared to the control group at every prespecified timepoint of 4, 6, 8, and 12 weeks. Thirty-eight adverse events occurred in 11 subjects (44%) in the treatment group vs 48 in 14 controls (56%), 6 of which required study removal. In the treatment group, there were no serious adverse events related to the index ulcer. Two adverse events (index ulcer cellulitis and bleeding) were possibly related to the autologous heterogeneous skin construct. Data from this planned interim analysis support that application of autologous heterogeneous skin construct may be potentially effective therapy for DFUs and provide supportive data to complete the planned study.
Collapse
Affiliation(s)
- David G Armstrong
- Department of Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert Galiano
- Division of Plastic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul M Glat
- Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | - Robert Snyder
- Clinical Research Barry University SPM, Brand Research Center, Barry University, Miami, Florida, USA
| | - William W Li
- The Angiogenesis Foundation, Cambridge, Massachusetts, USA
| | | | - Charles M Zelen
- Department of Medical Education, The Professional Education and Research Institute (PERI), Roanoke, Virginia, USA
| |
Collapse
|
19
|
Safi AF, Kauke M, Nelms L, Palmer WJ, Tchiloemba B, Kollar B, Haug V, Pomahač B. Local immunosuppression in vascularized composite allotransplantation (VCA): A systematic review. J Plast Reconstr Aesthet Surg 2020; 74:327-335. [PMID: 33229219 DOI: 10.1016/j.bjps.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/07/2020] [Accepted: 10/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Local immunosuppression in vascularized composite allotransplantation (VCA) aims to minimize immunosuppressant-related toxic and malignant side effects. Promising allograft survival data have been published by multiple workgroups. In this systematic review, we examine preclinical animal studies that investigated local immunosuppression in VCA. MATERIAL AND METHODS We conducted a systematic review of manuscripts listed in the MEDLINE and PubMed database concerning preclinical VCA models. Papers included had to be available as full-text and written in English. Non-VCA studies, human trials, and studies using cell-based therapy strategies were excluded. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Literature research retrieved 980 articles. Ten studies published between 2010 and 2019 met the inclusion and exclusion criteria. Seven out of ten articles demonstrated a significant prolongation of allograft survival by using local immunosuppression. Five articles employed tacrolimus (TAC) as the main immunosuppressive agent. Seven studies performed hind-limb VCA in a rat model. CONCLUSION The easily accessible location of skin containing VCAs makes it an ideal candidate for local immunosuppression. Published preclinical data are very promising in terms of improved allograft survival and reduced systemic toxicity.
Collapse
Affiliation(s)
- Ali-Farid Safi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Martin Kauke
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Laurel Nelms
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William Jackson Palmer
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bianief Tchiloemba
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Branislav Kollar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Valentin Haug
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Bohdan Pomahač
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|