1
|
Naama M, Buganim Y. Human trophoblast stem cell-state acquisition from pluripotent stem cells and somatic cells. Curr Opin Genet Dev 2023; 81:102084. [PMID: 37451165 DOI: 10.1016/j.gde.2023.102084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
For an extended period of time, research on human embryo implantation and early placentation was hindered by ethical limitation and lack of appropriate in vitro models. Recently, an explosion of new research has significantly expanded our knowledge of early human trophoblast development and facilitated the derivation and culture of self-renewing human trophoblast stem cells (hTSCs). Multiple approaches have been undertaken in efforts to derive and understand hTSCs, including from blastocysts, early trophoblast tissue, and, more recently, from human pluripotent stem cells (hPSCs) and somatic cells. In this concise review, we summarize recent advances in derivation of hTSCs, with a focus on derivation from naive and primed hPSCs, as well as via reprogramming of somatic cells into induced hTSCs. Each of these methods harbors distinct advantages and setbacks, which are discussed. Finally, we briefly explore the possibility of the existence of trophectoderm-like hTSCs corresponding to earlier, preimplantation trophoblast cells.
Collapse
Affiliation(s)
- Moriyah Naama
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
2
|
Li Q, Wu H, Wang Y, Wang H. Current understanding in deciphering trophoblast cell differentiation during human placentation. Biol Reprod 2022; 107:317-326. [PMID: 35478014 DOI: 10.1093/biolre/ioac083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
The placenta is a unique organ that forms during gestation and supports fetus survival and communication with the mother. However, of such an arguably essential organ for a successful pregnancy, our knowledge is limited. New progress has been made for human placenta study in recent years. We herein summarize the current understanding of human placental trophoblast differentiation and the molecules that govern trophoblast cell lineage specification. More importantly, the powerful tools for placental studies are also explained, such as human trophoblast stem cells (hTSCs), 3-dimensional (3D) trophoblast organoids, engineering-based placental devices, and single-cell RNA sequencing (sc-RNAseq). These advances have brought us new insights into placental development and provided multiple investigation strategies for deciphering molecular mechanisms.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
3
|
Ando Y, Okeyo KO, Adachi T. Pluripotency state of mouse ES cells determines their contribution to self-organized layer formation by mesh closure on microstructured adhesion-limiting substrates. Biochem Biophys Res Commun 2022; 590:97-102. [PMID: 34973536 DOI: 10.1016/j.bbrc.2021.12.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
Abstract
Assembly of pluripotent stem cells to initiate self-organized tissue formation on engineered scaffolds is an important process in stem cell engineering. Pluripotent stem cells are known to exist in diverse pluripotency states, with heterogeneous subpopulations exhibiting differential gene expression levels, but how such diverse pluripotency states orchestrate tissue formation is still an unrevealed question. In this study, using microstructured adhesion-limiting substrates, we aimed to clarify the contribution to self-organized layer formation by mouse embryonic stem cells in different pluripotency states: ground and naïve state. We found that while ground state cells as well as sorted REX1-high expression cells formed discontinuous cell layers with limited lateral spread, naïve state cells could successfully self-organize to form a continuous layer by progressive mesh closure within 3 days. Using sequential immunofluorescence microscopy to examine the mesh closure process, we found that KRT8+ cells were particularly localized around unfilled holes, occasionally bridging the holes in a manner suggestive of their role in the closure process. These results highlight that compared with ground state cells, naïve state cells possess a higher capability to contribute to self-organized layer formation by mesh closure. Thus, this study provides insights with implications for the application of stem cells in scaffold-based tissue engineering.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kennedy Omondi Okeyo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Zhu XY, Chen YH, Zhang T, Liu SJ, Bai XY, Huang XY, Jiang M, Sun XD. Improvement of human embryonic stem cell-derived retinal pigment epithelium cell adhesion, maturation, and function through coating with truncated recombinant human vitronectin. Int J Ophthalmol 2021; 14:1160-1167. [PMID: 34414078 DOI: 10.18240/ijo.2021.08.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To explore an xeno-free and defined coating substrate suitable for the culture of H9 human embryonic stem cell-derived retinal pigment epithelial (hES-RPE) cells in vitro, and compare the behaviors and functions of hES-RPE cells on two culture substrates, laminin521 (LN-521) and truncated recombinant human vitronectin (VTN-N). METHODS hES-RPE cells were used in the experiment. The abilities of LN-521 and VTN-N at different concentrations to adhere to hES-RPE cells were compared with a high-content imaging system. Quantitative real-time polymerase chain reaction was used to evaluate RPE-specific gene expression levels midway (day 10) and at the end (day 20) of the time course. Cell polarity was observed by immunofluorescent staining for apical and basal markers of the RPE. The phagocytic ability of hES-RPE cells was identified by flow cytometry and immunofluorescence. RESULTS The cell adhesion assay showed that the ability of LN-521 to adhere to hES-RPE cells was dose-dependent. With increasing coating concentration, an increasing number of cells attached to the surface of LN-521-coated wells. In contrast, VTN-N presented a strong adhesive ability even at a low concentration. The optimal concentration of LN-521 and VTN-N required to coat and adhesion to hES-RPE cells were 2 and 0.25 µg/cm2, respectively. Furthermore, both LN-521 and VTN-N could facilitate adoption of the desired cobblestone cellular morphology with tight junction and showed polarity by the hES-RPE cells. However, hES-RPE cells cultivated in VTN-N had a greater phagocytic ability, and it took less time for these hES-RPE cells to mature. CONCLUSION VTN-N is a more suitable coating substrate for cultivating hES-RPE cells.
Collapse
Affiliation(s)
- Xin-Yue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Yu-Hong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Su-Jun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xin-Yue Bai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xian-Yu Huang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| | - Xiao-Dong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.,National Clinical Research Center for Eye Diseases, Shanghai 200080, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
| |
Collapse
|
5
|
Ando Y, Okeyo KO, Sunaga J, Adachi T. Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates. Stem Cell Res 2021; 53:102352. [PMID: 33901814 DOI: 10.1016/j.scr.2021.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
Self-organization of pluripotent stem cells during tissue formation is directed by the adhesion microenvironment, which defines the resulting tissue topography. Although the influence of tissue topography on pluripotency state has been inferred, this aspect of self-organization remains largely unexplored. In this study, to determine the effect of self-organized tissue topography on pluripotency loss, we designed novel island mesh substrates to confine the self-organization process of mouse embryonic stem cells, enabling us to generate isolated cell layers with an island-like topography and overhanging edges. Using immunofluorescence microscopy, we determined that cells at the tissue edge exhibited deformed nuclei associated with low OCT3/4, in contrast with cells nested in the tissue interior which had round-shaped nuclei and exhibited sustained OCT3/4 expression. Interestingly, F-actin and phospho-myosin light chain were visibly enriched at the tissue edge where ERK activation and elevated AP-2γ expression were also found to be localized, as determined using both immunofluorescence microscopy and RT-qPCR analysis. Since actomyosin contractility is known to cause ERK activation, these results suggest that mechanical condition at the tissue edge can contribute to loss of pluripotency leading to differentiation. Thus, our study draws attention to the influence of self-organized tissue topography in stem cell culture and differentiation.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kennedy Omondi Okeyo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Junko Sunaga
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Ueno H, Maruo K, Inoue M, Kotera H, Suzuki T. Cell Culture on Low-Fluorescence and High-Resolution Photoresist. MICROMACHINES 2020; 11:mi11060571. [PMID: 32512915 PMCID: PMC7345055 DOI: 10.3390/mi11060571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
2D and 3D topographic cues made of photoresist, a polymer, are used for cell culture and cell analysis. Photoresists used for cell analysis provide the surface conditions necessary for proper cell growth, along with patterning properties of a wide range and high precision, and low auto-fluorescence that does not affect fluorescence imaging. In this study, we developed a thick negative photoresist SJI-001 possessing the aforementioned properties. We evaluated the surface conditions of SJI-001 affecting cell culture. First, we studied the wettability of SJI-001, which was changed by plasma treatment, conducted as a pretreatment on a plastic substrate before cell seeding. SJI-001 was more chemically stable than SU-8 used for fabricating the micro-electromechanical systems (MEMS). Furthermore, the doubling time and adhesion rate of adherent HeLa cells cultured on untreated SJI-001 were 25.2 h and 74%, respectively, thus indicating its suitability for cell culture over SU-8. In addition, we fabricated a cell culture plate with a 3D lattice structure, three micrometers in size, using SJI-001. HeLa cells seeded on this plate remained attached over five days. Therefore, SJI-001 exhibits surface conditions suitable for cell culture and has several bioapplications including microstructures and cell chips for cell culture and cell analysis.
Collapse
Affiliation(s)
- Hidetaka Ueno
- Division of Mechanical Science and Technology, Gunma University, Kiryu 376-8515, Japan;
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Katsuya Maruo
- Innovation Park, Daicel Corporation, Himeji 671-1283, Japan;
| | - Masatoshi Inoue
- Division of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan;
| | | | - Takaaki Suzuki
- Division of Mechanical Science and Technology, Gunma University, Kiryu 376-8515, Japan;
- Correspondence: ; Tel.: +81-277-30-1579
| |
Collapse
|
7
|
Li Z, Kurosawa O, Iwata H. A Novel Human Placental Barrier Model Based on Trophoblast Stem Cells Derived from Human Induced Pluripotent Stem Cells. Tissue Eng Part A 2020; 26:780-791. [PMID: 32323636 DOI: 10.1089/ten.tea.2019.0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The placenta acts as an interface between the fetus and the expecting mother. Various drugs and environmental pollutants can pass through the human placental barrier and may harm the developing fetus. Currently available in vitro placental barrier models are often inadequate, because they are lacking the functional trophoblast cells. Therefore, we developed and characterized a new human placental model using trophoblast stem cells (TSCs) derived from human induced pluripotent stem cells. Umbilical vein endothelial cells, fibroblast, and TSCs were cocultured using micromesh cell culture technique. These cells formed a tight three-layered structure. This coculture model induced progressive fusion of TSCs and formed a syncytialized epithelium that resembles the in vivo syncytiotrophoblast. Our model allowed the cultured trophoblasts to form microvilli and to reconstitute expression and physiological localization of membrane transport proteins, such as transporter for ATP-binding cassette subfamily B member 1, ATP-binding cassette subfamily C member 3, and glucose transporter-1. Drug permeability assays were performed using five compounds. The results from the permeability assays were comparable to the ones obtained with ex vivo placental models. In conclusion, we developed a novel coculture model mimicking human placenta that provides a useful tool for the studies on transfer of substances between the mother and fetus. Impact statement Compared with the currently available in vitro placental barrier models, a novel three-dimensional coculture placental barrier model presented in this study morphologically and functionally modeled the true placental barrier. The use of human trophoblast stem cells from human induced pluripotent stem cells substantially improved the current model. The use of micromesh sheet as a bioscaffold facilitated the formation of a good multilayer structure, which is closer to the physical appearance of the placenta observed in human.
Collapse
Affiliation(s)
- Zhuosi Li
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, Japan
| | - Osamu Kurosawa
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, Japan
| | - Hiroo Iwata
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, Japan.,Research Promotion Institution for COI Site, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Hori T, Kurosawa O, Ishihara K, Mizuta T, Iwata H. Three-Dimensional Cell Sheet Construction Method with a Polyester Micromesh Sheet. Tissue Eng Part C Methods 2020; 26:170-179. [PMID: 32186996 DOI: 10.1089/ten.tec.2019.0330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell sheet engineering has become important in a variety of fields, including regenerative medicine and transplantation. Our research group previously developed micromesh cultures that enable cells to form a cell sheet on a microstructured mesh sheet. Here, we present a more usable micromesh culture and devices that make it possible, aiming for widespread use. The devices are mainly constituted of a polyester micromesh sheet and three-dimensional (3D)-printed simple frames that fix the mesh sheet on it. Cells such as fibroblast Tig-1-20 cells, hepatoma HepG2 cells, or mesenchymal stem cells (MSC) were easily seeded on the polyester mesh sheet in the device and cultured for 16 days, which was followed by the formation of a 100-400-μm-thick cell sheet. The cell sheet was very robust, easy to handle, and could be readily removed from the device for subsequent analysis. Optical coherence tomography revealed the structure of the cell sheet as having the mesh sheet layer in the center of the cell sheet. Confocal microscopy demonstrated that Tig-1-20 cells in the cell sheet were aligned according to the shape of the mesh apertures, indicating that cell orientation can be controlled with this micromesh culture. As for another application, the device was used to construct a multilayered cell sheet that consists of three different types of cells. Furthermore, for mass production, the device frames were made using polyoxymethylene (POM) instead of 3D printing materials. Using the POM devices, a large MSC sheet for 10 cm dishes was successfully produced 7 days after cell seeding. This micromesh culture may become one of the useful cell sheet construction methods in future for medical and research fields. Impact statement Currently, cell sheets are constructed, for example, on a temperature-responsive polymer-coated dish or a porous membrane. These cell sheets are widely used but are not completely suitable in terms of robustness, ease of handling, cost, ease of microscopic cell observation, or nutrient supply. We previously reported that the micromesh culture can provide a three-dimensional (3D) cell sheet that has advantages for cell observation and nutrient supply. In this study, the micromesh culture was enhanced with a polyester micromesh sheet and a series of devices of polyoxymethylene, helping us to produce a robust, cost-effective, easily layered, and easy-to-use 3D cell sheet.
Collapse
Affiliation(s)
- Takeshi Hori
- Compass to Healthy Life Research Complex Program, RIKEN, Kobe, Japan
| | - Osamu Kurosawa
- Compass to Healthy Life Research Complex Program, RIKEN, Kobe, Japan
| | | | | | - Hiroo Iwata
- Compass to Healthy Life Research Complex Program, RIKEN, Kobe, Japan
| |
Collapse
|
9
|
Li Z, Kurosawa O, Iwata H. Establishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Res Ther 2019; 10:245. [PMID: 31391109 PMCID: PMC6686486 DOI: 10.1186/s13287-019-1339-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/14/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Trophoblasts as a specific cell lineage are crucial for the correct function of the placenta. Human trophoblast stem cells (hTSCs) are a proliferative population that can differentiate into syncytiotrophoblasts and extravillous cytotrophoblasts. Many studies have reported that chemical supplements induce the differentiation of trophoblasts from human induced pluripotent stem cells (hiPSCs). However, there have been no reports of the establishment of proliferative hTSCs from hiPSCs. Our previous report showed that culturing hiPSCs on micromesh as a bioscaffold induced cystic cells with trophoblast properties. Here, we aimed to establish hTSCs from hiPSCs. METHODS We used the micromesh culture technique to induce hiPSC differentiation into trophoblast cysts. We then reseeded and purified cystic cells. RESULTS The cells derived from the reseeded cysts were highly proliferative. Low expression levels of pluripotency genes and high expression levels of TSC-specific genes were detected in proliferative cells. The cells could be passaged, and further directional differentiation into syncytiotrophoblast- and extravillous cytotrophoblast-like cells was confirmed by marker expression and hormone secretion. CONCLUSIONS We established hiPSC-derived hTSCs, which may be applicable for studying the functions of trophoblasts and the placenta. Our experimental system may provide useful tools for understanding the pathogenesis of infertility owing to trophoblast defects in the future.
Collapse
Affiliation(s)
- Zhuosi Li
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.
| | - Osamu Kurosawa
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan
| | - Hiroo Iwata
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.,Research Promotion Institution for COI Site, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Nie Y, Wang W, Xu X, Zou J, Bhuvanesh T, Schulz B, Ma N, Lendlein A. Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating. Clin Hemorheol Microcirc 2019; 70:531-542. [PMID: 30347612 DOI: 10.3233/ch-189318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs.
Collapse
Affiliation(s)
- Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jie Zou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thanga Bhuvanesh
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Burkhard Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow, Germany
| |
Collapse
|
11
|
Ando Y, Okeyo KO, Adachi T. Modulation of adhesion microenvironment using mesh substrates triggers self-organization and primordial germ cell-like differentiation in mouse ES cells. APL Bioeng 2019; 3:016102. [PMID: 31069335 PMCID: PMC6481735 DOI: 10.1063/1.5072761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The cell adhesion microenvironment plays contributory roles in the induction of self-organized tissue formation and differentiation of pluripotent stem cells (PSCs). However, physical factors emanating from the adhesion microenvironment have been less investigated largely in part due to overreliance on biochemical approaches utilizing cytokines to drive in vitro developmental processes. Here, we report that a mesh culture technique can potentially induce mouse embryonic stem cells (mESCs) to self-organize and differentiate into cells expressing key signatures of primordial germ cells (PGCs) even with pluripotency maintained in the culture medium. Intriguingly, mESCs cultured on mesh substrates consisting of thin (5 μm-wide) strands and considerably large (200 μm-wide) openings which were set suspended in order to minimize the cell-substrate adhesion area, self-organized into cell sheets relying solely on cell-cell interactions to fill the large mesh openings by Day 2, and further into dome-shaped features around Day 6. Characterization using microarray analysis and immunofluorescence microscopy revealed that sheet-forming cells exhibited differential gene expressions related to PGCs as early as Day 2, but not other lineages such as epiblast, primitive endoderm, and trophectoderm, implying that the initial interaction with the mesh microenvironment and subsequent self-organization into cells sheets might have triggered PGC-like differentiation to occur differently from the previously reported pathway via epiblast-like differentiation. Overall, considering that the observed differentiation occurred without addition of known biochemical inducers, this study highlights that bioengineering techniques for modulating the adhesion microenvironment alone can be harnessed to coax PSCs to self-organize and differentiate, in this case, to a PGC-like state.
Collapse
|
12
|
Hori T, Kurosawa O. A Three-dimensional Cell Culture Method with a Micromesh Sheet and Its Application to Hepatic Cells. Tissue Eng Part C Methods 2018; 24:730-739. [PMID: 30412042 DOI: 10.1089/ten.tec.2018.0269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In vitro 3D cultures of hepatocytes are increasingly being used to assess human hepatic metabolism and toxicity in drug development. Here, we developed an in vitro 3D cell culture method with a microstructured mesh sheet and applied it to culturing human hepatoma HepG2 cells. The micromesh sheet is constituted of fine mesh strands and apertures that are each much larger than a single cell in size. Proliferating on a micromesh sheet, HepG2 cells spread out in a planar manner and then formed a multilayered cell sheet, so that cell-cell adhesion was dominant over cell-substrate adhesion as being different from 2D cultures. In micromesh cultures, the increase rate in thickness of the cell mass was visually slower than that in spheroid cultures, enabling us to clearly observe inside cells of the cell population by microscopy. Micromesh-cultured HepG2 cells showed higher viability compared with spheroid-cultured cells. The multilayered HepG2 cell sheet increased expression of hepatic marker genes and induced cell polarization with bile canalicular membranes. Furthermore, a combination of micromesh cultures with medium perfusion further induced expression of hepatic marker genes in HepG2 cells; especially CYP1A1 and CYP1A2 mRNA increased 86-fold and 43-fold compared with 2D controls, respectively, which were much higher than those in spheroid cultures. Thus, this simple and versatile micromesh culture method holds some advantages over traditional spheroid cultures and is expected to be instrumental in culturing more differentiated hepatic cells such as HepaRG cells and primary hepatocytes for future preclinical testing.
Collapse
Affiliation(s)
- Takeshi Hori
- RIKEN, Compass to Healthy Life Research Complex Program , 6-7-1, Minatojima-minamimachi, Chuou-ku , Kobe, Hyogo, Japan , 650-0047 ;
| | - Osamu Kurosawa
- RIKEN, Compass to Healthy Life Research Complex Program, Kobe, Hyogo, Japan ;
| |
Collapse
|
13
|
Development of trophoblast cystic structures from human induced pluripotent stem cells in limited-area cell culture. Biochem Biophys Res Commun 2018; 505:671-676. [PMID: 30292409 DOI: 10.1016/j.bbrc.2018.09.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
Abstract
We developed a novel engineering technique to induce differentiation of human induced pluripotent stem cells (hiPSCs) into organoids mimicking the trophectoderm (TE). Here, hiPSCs were cultured on a limited area of 2-4 mm in diameter. After 15-20 days, spherical cysts appeared on the surface of the limited area. Secretion of human chorionic gonadotrophin (hCG) began to increase after ∼ 20 days and remained dramatically elevated over the next 20 days. Limited-area-cultured cysts exhibited expression of hCG, which was a result of epithelial differentiation. Low expression levels of pluripotent genes and high expression levels of trophoblast lineage-specific genes were detected in the cells of spherical cysts. Multinucleated syncytia trophoblast was observed in the reseeded cystic cells. We observed hiPSC-derived cysts that morphologically resembled trophectoderm in vivo. The limited-area cell culture induced a three-dimensional (3D) trophectoderm organoid, which has potential for use in the study of human trophoblast differentiation and placental morphogenesis.
Collapse
|
14
|
Okeyo KO, Tanabe M, Kurosawa O, Oana H, Washizu M. Self-organization of human iPS cells into trophectoderm mimicking cysts induced by adhesion restriction using microstructured mesh scaffolds. Dev Growth Differ 2018; 60:183-194. [DOI: 10.1111/dgd.12430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Kennedy O. Okeyo
- Institute for Frontier Life and Medical Sciences; Kyoto University; Kyoto Japan
| | - Maiko Tanabe
- Research & Development Group; Hitachi Limited; Saitama Japan
| | - Osamu Kurosawa
- Compass to Healthy Life Research Complex Program; RIKEN; Kobe Japan
| | - Hidehiro Oana
- Department of Mechanical Engineering; University of Tokyo; Tokyo Japan
| | - Masao Washizu
- Department of Bioengineering; University of Tokyo; Tokyo Japan
| |
Collapse
|
15
|
Okeyo KO, Kurosawa O, Oana H, Kotera H, Washizu M. Minimization of cell-substrate interaction using suspended microstructured meshes initiates cell sheet formation by self-assembly organization. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/6/065019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Gamage TK, Chamley LW, James JL. Stem cell insights into human trophoblast lineage differentiation. Hum Reprod Update 2016; 23:77-103. [PMID: 27591247 DOI: 10.1093/humupd/dmw026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The human placenta is vital for fetal development, yet little is understood about how it forms successfully to ensure a healthy pregnancy or why this process is inadequate in 1 in 10 pregnancies, leading to miscarriage, intrauterine growth restriction or preeclampsia. Trophoblasts are placenta-specific epithelial cells that maximize nutrient exchange. All trophoblast lineages are thought to arise from a population of trophoblast stem cells (TSCs). However, whilst the isolation of murine TSC has led to an explosion in understanding murine placentation, the isolation of an analogous human TSC has proved more difficult. Consequently, alternative methods of studying human trophoblast lineage development have been employed, including human embryonic stem cells (hESCs), induced pluripotent stem cells (iPS) and transformed cell lines; but what do these proxy models tell us about what is happening during early placental development? OBJECTIVE AND RATIONALE In this systematic review, we evaluate current approaches to understanding human trophoblast lineage development in order to collate and refine these models and inform future approaches aimed at establishing human TSC lines. SEARCH METHODS To ensure all relevant articles were analysed, an unfiltered search of Pubmed, Embase, Scopus and Web of Science was conducted for 25 key terms on the 13th May 2016. In total, 47 313 articles were retrieved and manually filtered based on non-human, non-English, non-full text, non-original article and off-topic subject matter. This resulted in a total of 71 articles deemed relevant for review in this article. OUTCOMES Candidate human TSC populations have been identified in, and isolated from, both the chorionic membrane and villous tissue of the placenta, but further investigation is required to validate these as 'true' human TSCs. Isolating human TSCs from blastocyst trophectoderm has not been successful in humans as it was in mice, although recently the first reported TSC line (USFB6) was isolated from an eight-cell morula. In lieu of human TSC lines, trophoblast-like cells have been induced to differentiate from hESCs and iPS. However, differentiation in these model systems is difficult to control, culture conditions employed are highly variable, and the extent to which they accurately convey the biology of 'true' human TSCs remains unclear, particularly as a consensus has not been met among the scientific community regarding which characteristics a human TSC must possess. WIDER IMPLICATIONS Human TSC models have the potential to revolutionize our understanding of trophoblast differentiation, allowing us to make significant gains in understanding the underlying pathology of pregnancy disorders and to test potential therapeutic interventions on cell function in vitro. In order to do this, a collaborative effort is required to establish the criteria that define a human TSC to confirm the presence of human TSCs in both primary isolates and to determine how accurately trophoblast-like cells derived from current model systems reflect trophoblast from primary tissue. The in vitro systems currently used to model early trophoblast lineage formation have provided insights into early human placental formation but it is unclear whether these trophoblast-like cells are truly representative of primary human trophoblast. Consequently, continued refinement of current models, and standardization of culture protocols is essential to aid our ability to identify, isolate and propagate 'true' human TSCs from primary tissue.
Collapse
Affiliation(s)
- Teena Kjb Gamage
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|