1
|
Garcia‐Aponte OF, Kahlenberg S, Kouroupis D, Egger D, Kasper C. Effects of Hydrogels on Mesenchymal Stem/Stromal Cells Paracrine Activity and Extracellular Vesicles Production. J Extracell Vesicles 2025; 14:e70057. [PMID: 40091440 PMCID: PMC11911545 DOI: 10.1002/jev2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a valuable source of paracrine factors, as they have a remarkable secretory capacity, and there is a sizeable knowledge base to develop industrial and clinical production protocols. Promising cell-free approaches for tissue regeneration and immunomodulation are driving research towards secretome applications, among which extracellular vesicles (EVs) are steadily gaining attention. However, the manufacturing and application of EVs is limited by insufficient yields, knowledge gaps, and low standardization. Facing these limitations, hydrogels represent a versatile three-dimensional (3D) culture platform that can incorporate extracellular matrix (ECM) components to mimic the natural stem cell environment in vitro; via these niche-mimicking properties, hydrogels can regulate MSCs' morphology, adhesion, proliferation, differentiation and secretion capacities. However, the impact of the hydrogel's architectural, biochemical and biomechanical properties on the production of EVs remains poorly understood, as the field is still in its infancy and the interdependency of culture parameters compromises the comparability of the studies. Therefore, this review summarizes and discusses the reported effects of hydrogel encapsulation and culture on the secretion of MSC-EVs. Considering the effects of cell-material interactions on the overall paracrine activity of MSCs, we identify persistent challenges from low standardization and process control, and outline future paths of research, such as the synergic use of hydrogels and bioreactors to enhance MSC-EV generation.
Collapse
Affiliation(s)
- Oscar Fabian Garcia‐Aponte
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simon Kahlenberg
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Diabetes Research Institute & Cell Transplant Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dominik Egger
- Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
| | - Cornelia Kasper
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
2
|
Aboal‐Castro L, Radziunas‐Salinas Y, Pita‐Vilar M, Carnero B, Mikos AG, Alvarez‐Lorenzo C, Flores‐Arias MT, Diaz‐Gomez L. Laser-Assisted Micropatterned 3D Printed Scaffolds with Customizable Surface Topography and Porosity for Modulation of Cell Function. Adv Healthc Mater 2025; 14:e2403992. [PMID: 39562173 PMCID: PMC11773100 DOI: 10.1002/adhm.202403992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Indexed: 11/21/2024]
Abstract
The dynamic interaction between cells and their substrate is a cornerstone of biomaterial-based tissue regeneration focused on unraveling the complex factors that govern this crucial relationship. A key challenge is translating physical cues from 2D to 3D due to limitations in current biofabrication techniques. In response, this study introduces an innovative approach that combines additive and subtractive manufacturing for precise surface patterning of 3D printed scaffolds. Using poly(𝜀-caprolactone) as the scaffold material, polymeric fibers are 3D printed and subsequently laser-engraved with femtosecond laser to precisely create controlled microtopographies, including microgrooves (10 and 80 µm in width) and micropits (25 µm in diameter). Testing shows that the process does not compromise the mechanical properties of the fibers, which is critical for structural applications in tissue engineering. Human mesenchymal stem cells are used to investigate the effects of these topographical features on cell behavior. The 10 µm wide microgrooves notably enhance cell attachment, with cells aligning in elongated forms along the grooves, while micropits and unpatterned surfaces promote polygonal cell shapes. This combined approach demonstrates that precisely engineered microtopographies on 3D printed scaffolds can better mimic the natural extracellular matrix, improving cellular responses and offering a promising strategy for advancing tissue regeneration.
Collapse
Affiliation(s)
- Lucia Aboal‐Castro
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Yago Radziunas‐Salinas
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Photonics4Life Research GroupApplied Physics DepartmentFacultade de Física and Facultade de Óptica e OptometríaUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
| | - Maria Pita‐Vilar
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Bastian Carnero
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Photonics4Life Research GroupApplied Physics DepartmentFacultade de Física and Facultade de Óptica e OptometríaUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
| | | | - Carmen Alvarez‐Lorenzo
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| | - Maria Teresa Flores‐Arias
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Photonics4Life Research GroupApplied Physics DepartmentFacultade de Física and Facultade de Óptica e OptometríaUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
| | - Luis Diaz‐Gomez
- Department of PharmacologyPharmacy, and Pharmaceutical TechnologyI+D Farma (GI‐1645)Facultad de Farmaciaand Health Research Institute of Santiago de Compostela (IDIS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
- Instituto de Materiales (iMATUS)Universidade de Santiago de CompostelaSantiago de Compostela15782Spain
| |
Collapse
|
3
|
Sands I, Demarco R, Thurber L, Esteban-Linares A, Song D, Meng E, Chen Y. Interface-Mediated Neurogenic Signaling: The Impact of Surface Geometry and Chemistry on Neural Cell Behavior for Regenerative and Brain-Machine Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401750. [PMID: 38961531 PMCID: PMC11326983 DOI: 10.1002/adma.202401750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.
Collapse
Affiliation(s)
- Ian Sands
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ryan Demarco
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Thurber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Alberto Esteban-Linares
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Sala F, Ficorella C, Osellame R, Käs JA, Martínez Vázquez R. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement. BIOSENSORS 2022; 12:bios12080604. [PMID: 36004998 PMCID: PMC9405557 DOI: 10.3390/bios12080604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Understanding cell migration is a key step in unraveling many physiological phenomena and predicting several pathologies, such as cancer metastasis. In particular, confinement has been proven to be a key factor in the cellular migration strategy choice. As our insight in the field improves, new tools are needed in order to empower biologists’ analysis capabilities. In this framework, microfluidic devices have been used to engineer the mechanical and spatial stimuli and to investigate cellular migration response in a more controlled way. In this work, we will review the existing technologies employed in the realization of microfluidic cellular migration assays, namely the soft lithography of PDMS and hydrogels and femtosecond laser micromachining. We will give an overview of the state of the art of these devices, focusing on the different geometrical configurations that have been exploited to study specific aspects of cellular migration. Our scope is to highlight the advantages and possibilities given by each approach and to envisage the future developments in in vitro migration studies under spatial confinement in microfluidic devices.
Collapse
Affiliation(s)
- Federico Sala
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Carlotta Ficorella
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Josef A. Käs
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
5
|
Doolin MT, Smith IM, Stroka KM. Fibroblast to myofibroblast transition is enhanced by increased cell density. Mol Biol Cell 2021; 32:ar41. [PMID: 34731044 PMCID: PMC8694087 DOI: 10.1091/mbc.e20-08-0536] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease of the lung caused by a rampant inflammatory response that results in the deposition of excessive extracellular matrix (ECM). IPF patient lungs also develop fibroblastic foci that consist of activated fibroblasts and myofibroblasts. In concert with ECM deposition, the increased cell density within fibroblastic foci imposes confining forces on lung fibroblasts. In this work, we observed that increased cell density increases the incidence of the fibroblast-to-myofibroblast transition (FMT), but mechanical confinement imposed by micropillars has no effect on FMT incidence. We found that human lung fibroblasts (HLFs) express more α-SMA and deposit more collagen matrix, which are both characteristics of myofibroblasts, in response to TGF-β1 when cells are seeded at a high density compared with a medium or a low density. These results support the hypothesis that HLFs undergo FMT more readily in response to TGF-β1 when cells are densely packed, and this effect could be dependent on increased OB-cadherin expression. This work demonstrates that cell density is an important factor to consider when modelling IPF in vitro, and it may suggest decreasing cell density within fibroblastic foci as a strategy to reduce IPF burden.
Collapse
Affiliation(s)
- Mary T Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, 20742.,Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, 20742.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, 21201
| |
Collapse
|
6
|
Dituri F, Centonze M, Berenschot EJW, Tas NR, Susarrey-Arce A, Krol S. Complex Tumor Spheroid Formation and One-Step Cancer-Associated Fibroblasts Purification from Hepatocellular Carcinoma Tissue Promoted by Inorganic Surface Topography. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3233. [PMID: 34947582 PMCID: PMC8706479 DOI: 10.3390/nano11123233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
In vitro cell models play important roles as testbeds for toxicity studies, drug development, or as replacements in animal experiments. In particular, complex tumor models such as hepatocellular carcinoma (HCC) are needed to predict drug efficacy and facilitate translation into clinical practice. In this work, topographical features of amorphous silicon dioxide (SiO2) are fabricated and tested for cell culture of primary HCC cells and cell lines. The topographies vary from pyramids to octahedrons to structures named fractals, with increased hierarchy and organized in periodic arrays (square or Hexagonal). The pyramids were found to promote complex 2D/3D tissue formation from primary HCC cells. It was found that the 2D layer was mainly composed of cancer-associated fibroblasts (CAFs), while the 3D spheroids were composed of tumor cells enwrapped by a CAF layer. Compared with conventional protocols for 3D cultures, this novel approach mimics the 2D/3D complexity of the original tumor by invading CAFs and a microtumor. Topographies such as octahedrons and fractals exclude tumor cells and allow one-step isolation of CAFs even directly from tumor tissue of patients as the CAFs migrate into the structured substrate. Cell lines form spheroids within a short time. The presented inorganic topographical surfaces stimulate complex spheroid formation while avoiding additional biological scaffolds and allowing direct visualization on the substrate.
Collapse
Affiliation(s)
- Francesco Dituri
- Laboratory for Personalized Medicine, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte Via Turi 27, 70013 Bari, Italy; (F.D.); (M.C.)
| | - Matteo Centonze
- Laboratory for Personalized Medicine, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte Via Turi 27, 70013 Bari, Italy; (F.D.); (M.C.)
| | - Erwin J. W. Berenschot
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (E.J.W.B.); (N.R.T.)
| | - Niels R. Tas
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (E.J.W.B.); (N.R.T.)
| | - Arturo Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (E.J.W.B.); (N.R.T.)
| | - Silke Krol
- Laboratory for Personalized Medicine, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Castellana Grotte Via Turi 27, 70013 Bari, Italy; (F.D.); (M.C.)
| |
Collapse
|
7
|
Han X, Su Y, White H, O'Neill KM, Morgan NY, Christensen R, Potarazu D, Vishwasrao HD, Xu S, Sun Y, Huang SY, Moyle MW, Dai Q, Pommier Y, Giniger E, Albrecht DR, Probst R, Shroff H. A polymer index-matched to water enables diverse applications in fluorescence microscopy. LAB ON A CHIP 2021; 21:1549-1562. [PMID: 33629685 PMCID: PMC8058278 DOI: 10.1039/d0lc01233e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate diffraction-limited and super-resolution imaging through thick layers (tens-hundreds of microns) of BIO-133, a biocompatible, UV-curable, commercially available polymer with a refractive index (RI) matched to water. We show that cells can be directly grown on BIO-133 substrates without the need for surface passivation and use this capability to perform extended time-lapse volumetric imaging of cellular dynamics 1) at isotropic resolution using dual-view light-sheet microscopy, and 2) at super-resolution using instant structured illumination microscopy. BIO-133 also enables immobilization of 1) Drosophila tissue, allowing us to track membrane puncta in pioneer neurons, and 2) Caenorhabditis elegans, which allows us to image and inspect fine neural structure and to track pan-neuronal calcium activity over hundreds of volumes. Finally, BIO-133 is compatible with other microfluidic materials, enabling optical and chemical perturbation of immobilized samples, as we demonstrate by performing drug and optogenetic stimulation on cells and C. elegans.
Collapse
Affiliation(s)
- Xiaofei Han
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hamilton White
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kate M O'Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and Institute for Physical Science and Technology, University of Maryland College Park, College Park, MD 20742, USA
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Christensen
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Deepika Potarazu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen Xu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-Yin Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark W Moyle
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA. and Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Roland Probst
- ACUITYnano, Innovation in Biomedical Imaging, North Bethesda, MD 20850, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA. and Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA and Marine Biological Laboratory Fellows Program, Woods Hole, MA 02543, USA
| |
Collapse
|
8
|
Herzer R, Gebert A, Hempel U, Hebenstreit F, Oswald S, Damm C, Schmidt OG, Medina-Sánchez M. Rolled-Up Metal Oxide Microscaffolds to Study Early Bone Formation at Single Cell Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005527. [PMID: 33599055 DOI: 10.1002/smll.202005527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Titanium and its alloys are frequently used to replace structural components of the human body due to their high mechanical strength, low stiffness, and biocompatibility. In particular, the use of porous materials has improved implant stabilization and the promotion of bone. However, it remains unclear which material properties and geometrical cues are optimal for a proper osteoinduction and osseointegration. To that end, transparent tubular microscaffolds are fabricated, mimicking the typical pores of structural implants, with the aim of studying early bone formation and cell-material interactions at the single cell level. Here, a β-stabilized alloy Ti-45Nb (wt%) is used for the microscaffold's fabrication due to its elastic modulus close to that of natural bone. Human mesenchymal stem cell migration, adhesion, and osteogenic differentiation is thus investigated, paying particular attention to the CaP formation and cell-body crystallization, both analyzed via optical and electron microscopy. It is demonstrated that the developed platform is suited for the long-term study of living single cells in an appropriate microenvironment, obtaining in the process deeper insights on early bone formation and providing cues to improve the stability and biocompatibility of current structural implants.
Collapse
Affiliation(s)
- Raffael Herzer
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Annett Gebert
- Institute for Complex Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Ute Hempel
- Institut für Physiologische Chemie, MTZ, Medizinische Fakultät der TU Dresden, Fiedlerstraße 42, Dresden, 01307, Germany
| | - Franziska Hebenstreit
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Steffen Oswald
- Institute for Complex Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Christine Damm
- Institute for Metallic Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
- School of Science, TU Dresden, Dresden, 01062, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, Chemnitz, 09126, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| |
Collapse
|
9
|
Prunet A, Lefort S, Delanoë-Ayari H, Laperrousaz B, Simon G, Barentin C, Saci S, Argoul F, Guyot B, Rieu JP, Gobert S, Maguer-Satta V, Rivière C. A new agarose-based microsystem to investigate cell response to prolonged confinement. LAB ON A CHIP 2020; 20:4016-4030. [PMID: 32975276 DOI: 10.1039/d0lc00732c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emerging evidence suggests the importance of mechanical stimuli in normal and pathological situations for the control of many critical cellular functions. While the effect of matrix stiffness has been and is still extensively studied, few studies have focused on the role of mechanical stresses. The main limitation of such analyses is the lack of standard in vitro assays enabling extended mechanical stimulation compatible with dynamic biological and biophysical cell characterization. We have developed an agarose-based microsystem, the soft cell confiner, which enables the precise control of confinement for single or mixed cell populations. The rigidity of the confiner matches physiological conditions and its porosity enables passive medium renewal. It is compatible with time-lapse microscopy, in situ immunostaining, and standard molecular analyses, and can be used with both adherent and non-adherent cell lines. Cell proliferation of various cell lines (hematopoietic cells, MCF10A epithelial breast cells and HS27A stromal cells) was followed for several days up to confluence using video-microscopy and further documented by Western blot and immunostaining. Interestingly, even though the nuclear projected area was much larger upon confinement, with many highly deformed nuclei (non-circular shape), cell viability, assessed by live and dead cell staining, was unaffected for up to 8 days in the confiner. However, there was a decrease in cell proliferation upon confinement for all cell lines tested. The soft cell confiner is thus a valuable tool to decipher the effects of long-term confinement and deformation on the biology of cell populations. This tool will be instrumental in deciphering the impact of nuclear and cytoskeletal mechanosensitivity in normal and pathological conditions involving highly confined situations, such as those reported upon aging with fibrosis or during cancer.
Collapse
Affiliation(s)
- A Prunet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5306, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nguyen AK, Kilian KA. Physicochemical Tools for Visualizing and Quantifying Cell-Generated Forces. ACS Chem Biol 2020; 15:1731-1746. [PMID: 32530602 DOI: 10.1021/acschembio.0c00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To discern how mechanical forces coordinate biological outcomes, methods that map cell-generated forces in a spatiotemporal manner, and at cellular length scales, are critical. In their native environment, whether it be within compact multicellular three-dimensional structures or sparsely populated fibrillar networks of the extracellular matrix, cells are constantly exposed to a slew of physical forces acting on them from all directions. At the same time, cells exert highly localized forces of their own on their surroundings and on neighboring cells. Together, the generation and transmission of these forces can control diverse cellular activities and behavior as well as influence cell fate decisions. To thoroughly understand these processes, we must first be able to characterize and measure such forces. However, our experimental needs and technical capabilities are in discord-while it is apparent that we should study cell-generated forces within more biologically relevant 3D environments, this goal remains challenging because of caveats associated with complex "sensing-transduction-readout" modalities. In this Review, we will discuss the latest techniques for measuring cell-generated forces. We will highlight recent advances in traction force microscopy and examine new alternative approaches for quantifying cell-generated forces, both of individual cells and within 3D tissues. Finally, we will explore the future direction of novel cellular force-sensing tools in the context of mechanobiology and next-generation biomaterials design.
Collapse
Affiliation(s)
- Ashley K. Nguyen
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kristopher A. Kilian
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Doolin MT, Moriarty RA, Stroka KM. Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Front Physiol 2020; 11:365. [PMID: 32390868 PMCID: PMC7193100 DOI: 10.3389/fphys.2020.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and tumor cells have the unique capability to migrate out of their native environment and either home or metastasize, respectively, through extremely heterogeneous environments to a distant location. Once there, they can either aid in tissue regrowth or impart an immunomodulatory effect in the case of MSCs, or form secondary tumors in the case of tumor cells. During these journeys, cells experience physically confining forces that impinge on the cell body and the nucleus, ultimately causing a multitude of cellular changes. Most drastically, confining individual MSCs within hydrogels or confining monolayers of MSCs within agarose wells can sway MSC lineage commitment, while applying a confining compressive stress to metastatic tumor cells can increase their invasiveness. In this review, we seek to understand the signaling cascades that occur as cells sense confining forces and how that translates to behavioral changes, including elongated and multinucleated cell morphologies, novel migrational mechanisms, and altered gene expression, leading to a unique MSC secretome that could hold great promise for anti-inflammatory treatments. Through comparison of these altered behaviors, we aim to discern how MSCs alter their lineage selection, while tumor cells may become more aggressive and invasive. Synthesizing this information can be useful for employing MSCs for therapeutic approaches through systemic injections or tissue engineered grafts, and developing improved strategies for metastatic cancer therapies.
Collapse
Affiliation(s)
- Mary T. Doolin
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Maryland Biophysics Program, University of Maryland, College Park, College Park, MD, United States
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|