1
|
Li T, Takeuchi S. Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications. BIOPHYSICS REVIEWS 2025; 6:011304. [PMID: 39957912 PMCID: PMC11825180 DOI: 10.1063/5.0246194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/18/2025]
Abstract
Biohybrid robots have attracted many researchers' attention due to their high flexibility, adaptation ability, and high output efficiency. Under electrical, optical, and neural stimulations, the biohybrid robot can achieve various movements. However, better understanding and more precise control of the biohybrid robot are strongly needed to establish an integrated autonomous robotic system. In this review, we outlined the ongoing techniques aiming for the contraction model and accurate control for the biohybrid robot. Computational modeling tools help to construct the bedrock of the contraction mechanism. Selective control, closed-loop control, and on-board control bring new perspectives to realize accurate control of the biohybrid robot. Additionally, applications of the biohybrid robot are given to indicate the future direction in this field.
Collapse
Affiliation(s)
- Tingyu Li
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
2
|
Scherrer C, Loret C, Védrenne N, Buckley C, Lia AS, Kermene V, Sturtz F, Favreau F, Rovini A, Faye PA. From in vivo models to in vitro bioengineered neuromuscular junctions for the study of Charcot-Marie-Tooth disease. J Tissue Eng 2025; 16:20417314241310508. [PMID: 40078221 PMCID: PMC11898049 DOI: 10.1177/20417314241310508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/14/2024] [Indexed: 03/14/2025] Open
Abstract
Peripheral neuropathies are disorders affecting the peripheral nervous system. Among them, Charcot-Marie-Tooth disease is an inherited sensorimotor neuropathy for which no effective treatment exists yet. Research on Charcot-Marie-Tooth disease has been hampered by difficulties in accessing relevant cells, such as sensory and motor neurons, Schwann cells, and myocytes, which interact at the neuromuscular junction, the specialized synapses formed between nerves and skeletal muscles. This review first outlines the various in vivo models and methods used to study neuromuscular junction deficiencies in Charcot-Marie-Tooth disease. We then explore novel in vitro techniques and models, including complex hiPSC-derived cultures, which offer promising isogenic and reproducible neuromuscular junction models. The adaptability of in vitro culture methods, including cell origin, cell-type combinations, and choice of culture format, adds complexity and excitement to this rapidly evolving field. This review aims to recapitulate available tools for studying Charcot-Marie-Tooth disease to understand its pathophysiological mechanisms and test potential therapies.
Collapse
Affiliation(s)
- Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Nicolas Védrenne
- University of Limoges, Inserm U1248 Pharmacology & Transplantation, Limoges, France
| | - Colman Buckley
- University of Limoges, XLIM, CNRS UMR 7252, Limoges, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
- Department of Bioinformatics, CHU Limoges, Limoges, France
| | | | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| |
Collapse
|
3
|
Strickland JB, Davis-Anderson K, Micheva-Viteva S, Twary S, Iyer R, Harris JF, Solomon EA. Optimization of Application-Driven Development of In Vitro Neuromuscular Junction Models. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1180-1191. [PMID: 35018825 PMCID: PMC9805869 DOI: 10.1089/ten.teb.2021.0204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuromuscular junctions (NMJs) are specialized synapses responsible for signal transduction between motor neurons (MNs) and skeletal muscle tissue. Malfunction at this site can result from developmental disorders, toxic environmental exposures, and neurodegenerative diseases leading to severe neurological dysfunction. Exploring these conditions in human or animal subjects is restricted by ethical concerns and confounding environmental factors. Therefore, in vitro NMJ models provide exciting opportunities for advancements in tissue engineering. In the last two decades, multiple NMJ prototypes and platforms have been reported, and each model system design is strongly tied to a specific application: exploring developmental physiology, disease modeling, or high-throughput screening. Directing the differentiation of stem cells into mature MNs and/or skeletal muscle for NMJ modeling has provided critical cues to recapitulate early-stage development. Patient-derived inducible pluripotent stem cells provide a personalized approach to investigating NMJ disease, especially when disease etiology cannot be resolved down to a specific gene mutation. Having reproducible NMJ culture replicates is useful for high-throughput screening to evaluate drug toxicity and determine the impact of environmental threat exposures. Cutting-edge bioengineering techniques have propelled this field forward with innovative microfabrication and design approaches allowing both two-dimensional and three-dimensional NMJ culture models. Many of these NMJ systems require further validation for broader application by regulatory agencies, pharmaceutical companies, and the general research community. In this summary, we present a comprehensive review on the current state-of-art research in NMJ models and discuss their ability to provide valuable insight into cell and tissue interactions. Impact statement In vitro neuromuscular junction (NMJ) models reveal the specialized mechanisms of communication between neurons and muscle tissue. This site can be disrupted by developmental disorders, toxic environmental exposures, or neurodegenerative diseases, which often lead to fatal outcomes and is therefore of critical importance to the medical community. Many bioengineering approaches for in vitro NMJ modeling have been designed to mimic development and disease; other approaches include in vitro NMJ models for high-throughput toxicology screening, providing a platform to limit or replace animal testing. This review describes various NMJ applications and the bioengineering advancements allowing for human NMJ characteristics to be more accurately recapitulated. While the extensive range of NMJ device structures has hindered standardization attempts, there is still a need to harmonize these devices for broader application and to continue advancing the field of NMJ modeling.
Collapse
Affiliation(s)
- Julie B. Strickland
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Katie Davis-Anderson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Scott Twary
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Rashi Iyer
- Information System and Modeling, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Emilia A. Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.,Address correspondence to: Emilia A. Solomon, PhD, Bioscience Division, Los Alamos National Laboratory, PO Box 1663 MS M888, Los Alamos, NM 87545, USA
| |
Collapse
|
4
|
Wells-Cembrano K, Sala-Jarque J, del Rio JA. Development of a simple and versatile in vitro method for production, stimulation, and analysis of bioengineered muscle. PLoS One 2022; 17:e0272610. [PMID: 35951605 PMCID: PMC9371355 DOI: 10.1371/journal.pone.0272610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, 3D in vitro modeling of human skeletal muscle has emerged as a subject of increasing interest, due to its applicability in basic studies or screening platforms. These models strive to recapitulate key features of muscle architecture and function, such as cell alignment, maturation, and contractility in response to different stimuli. To this end, it is required to culture cells in biomimetic hydrogels suspended between two anchors. Currently available protocols are often complex to produce, have a high rate of breakage, or are not adapted to imaging and stimulation. Therefore, we sought to develop a simplified and reliable protocol, which still enabled versatility in the study of muscle function. In our method, we have used human immortalized myoblasts cultured in a hydrogel composed of MatrigelTM and fibrinogen, to create muscle strips suspended between two VELCROTM anchors. The resulting muscle constructs show a differentiated phenotype and contractile activity in response to electrical, chemical and optical stimulation. This activity is analyzed by two alternative methods, namely contraction analysis and calcium analysis with Fluo-4 AM. In all, our protocol provides an optimized version of previously published methods, enabling individual imaging of muscle bundles and straightforward analysis of muscle response with standard image analysis software. This system provides a start-to-finish guide on how to produce, validate, stimulate, and analyze bioengineered muscle. This ensures that the system can be quickly established by researchers with varying degrees of expertise, while maintaining reliability and similarity to native muscle.
Collapse
Affiliation(s)
- Karen Wells-Cembrano
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Scientific Park of Barcelona, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Sala-Jarque
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Scientific Park of Barcelona, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jose A. del Rio
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Scientific Park of Barcelona, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
5
|
Asakura A, Kikyo N. Immunofluorescence analysis of myogenic differentiation. Methods Cell Biol 2022; 170:117-125. [PMID: 35811095 PMCID: PMC9699006 DOI: 10.1016/bs.mcb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Skeletal muscle is a highly regenerative tissue that can efficiently recover from various damages caused by injuries and excessive exercises. In adult muscle, stem cells termed satellite cells are mitotically quiescent but activated upon muscle damages to enter the cell cycle as myogenic precursor cells or myoblasts. After several rounds of cell cycles, they exist the cycle and fuse to each other to form multinucleated myotubes, and eventually mature to become contractile myofibers. Satellite cells can be readily isolated from mouse skeletal muscle with enzymatic digestion and magnetic separation with antibodies against specific surface markers. C2C12 cells are an immortalized mouse myoblast cell line that is commercially available and more readily expandable than primary myoblasts. Both primary myoblasts and C2C12 cells have been extensively used as useful in vitro models for myogenic differentiation. Proper examination of this process requires monitoring specific protein expression in subcellular compartments, which can be accomplished through immunofluorescence staining. This chapter describes the workflow for the isolation of satellite cells from mouse skeletal muscle and subsequent immunofluorescence staining to assess the proliferation and differentiation of primary myoblasts and C2C12 cells.
Collapse
Affiliation(s)
- Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States; Department of Neurology, University of Minnesota, Minneapolis, MN, United States.
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
6
|
Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol 2022; 96:691-710. [PMID: 35006284 PMCID: PMC8850226 DOI: 10.1007/s00204-021-03212-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The pharmacology and toxicology of a broad variety of therapies and chemicals have significantly improved with the aid of the increasing in vitro models of complex human tissues. Offering versatile and precise control over the cell population, extracellular matrix (ECM) deposition, dynamic microenvironment, and sophisticated microarchitecture, which is desired for the in vitro modeling of complex tissues, 3D bio-printing is a rapidly growing technology to be employed in the field. In this review, we will discuss the recent advancement of printing techniques and bio-ink sources, which have been spurred on by the increasing demand for modeling tactics and have facilitated the development of the refined tissue models as well as the modeling strategies, followed by a state-of-the-art update on the specialized work on cancer, heart, muscle and liver. In the end, the toxicological modeling strategies, substantial challenges, and future perspectives for 3D printed tissue models were explored.
Collapse
Affiliation(s)
- Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Kathleen Miller
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA
| | | | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA.
| |
Collapse
|