1
|
Han Y, Han Z, Huang X, Li S, Jin G, Feng J, Wu D, Liu H. An injectable refrigerated hydrogel for inducing local hypothermia and neuroprotection against traumatic brain injury in mice. J Nanobiotechnology 2024; 22:251. [PMID: 38750597 PMCID: PMC11095020 DOI: 10.1186/s12951-024-02454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Hypothermia is a promising therapy for traumatic brain injury (TBI) in the clinic. However, the neuroprotective outcomes of hypothermia-treated TBI patients in clinical studies are inconsistent due to several severe side effects. Here, an injectable refrigerated hydrogel was designed to deliver 3-iodothyronamine (T1AM) to achieve a longer period of local hypothermia for TBI treatment. Hydrogel has four advantages: (1) It can be injected into injured sites after TBI, where it forms a hydrogel and avoids the side effects of whole-body cooling. (2) Hydrogels can biodegrade and be used for controlled drug release. (3) Released T1AM can induce hypothermia. (4) This hydrogel has increased medical value given its simple operation and ability to achieve timely treatment. METHODS Pol/T hydrogels were prepared by a low-temperature mixing method and characterized. The effect of the Pol/T hydrogel on traumatic brain injury in mice was studied. The degradation of the hydrogel at the body level was observed with a small animal imager. Brain temperature and body temperature were measured by brain thermometer and body thermometer, respectively. The apoptosis of peripheral nerve cells was detected by immunohistochemical staining. The protective effect of the hydrogels on the blood-brain barrier (BBB) after TBI was evaluated by the Evans blue penetration test. The protective effect of hydrogel on brain edema after injury in mice was detected by Magnetic resonance (MR) in small animals. The enzyme linked immunosorbent assay (ELISA) method was used to measure the levels of inflammatory factors. The effects of behavioral tests on the learning ability and exercise ability of mice after injury were evaluated. RESULTS This hydrogel was able to cool the brain to hypothermia for 12 h while maintaining body temperature within the normal range after TBI in mice. More importantly, hypothermia induced by this hydrogel leads to the maintenance of BBB integrity, the prevention of cell death, the reduction of the inflammatory response and brain edema, and the promotion of functional recovery after TBI in mice. This cooling method could be developed as a new approach for hypothermia treatment in TBI patients. CONCLUSION Our study showed that injectable and biodegradable frozen Pol/T hydrogels to induce local hypothermia in TBI mice can be used for the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Yuhan Han
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, 200127, China
| | - Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xuyang Huang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Intensive Care Medicine, The Second Hospital of Jiaxing, Jiaxing, 314000, Zhejiang, China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Guoliang Jin
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Junfeng Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, 200127, China.
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Wilkinson CM, Katsanos AH, Sander NH, Kung TFC, Colbourne F, Shoamanesh A. Colchicine pre-treatment and post-treatment does not worsen bleeding or functional outcome after collagenase-induced intracerebral hemorrhage. PLoS One 2022; 17:e0276405. [PMID: 36256671 PMCID: PMC9578626 DOI: 10.1371/journal.pone.0276405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Patients with intracerebral hemorrhage (ICH) are at increased risk for major ischemic cardiovascular and cerebrovascular events. However, the use of preventative antithrombotic therapy can increase the risk of ICH recurrence and worsen ICH-related outcomes. Colchicine, an anti-inflammatory agent, has the potential to mitigate inflammation-related atherothrombosis and reduce the risk of ischemic vascular events. Here we investigated the safety and efficacy of colchicine when used both before and acutely after ICH. We predicted that daily colchicine administration would not impact our safety measures but would reduce brain injury and improve functional outcomes associated with inflammation reduction. To test this, 0.05 mg/kg colchicine was given orally once daily to rats either before or after they were given a collagenase-induced striatal ICH. We assessed neurological impairments, intra-parenchymal bleeding, Perls positive cells, and brain injury to gauge the therapeutic impact of colchicine on brain injury. Colchicine did not significantly affect bleeding (average = 40.7 μL) at 48 hrs, lesion volume (average = 24.5 mm3) at 14 days, or functional outcome (median neurological deficit scale score at 2 days post-ICH = 4, i.e., modest deficits) from 1–14 days after ICH. Colchicine reduced the volume of Perls positive cells in the perihematomal zone, indicating a reduction in inflammation. Safety measures (body weight, food consumption, water consumption, hydration, body temperature, activity, and pain) were not affected by colchicine. Although colchicine did not confer neuroprotection or functional benefit, it was able to reduce perihematomal inflammation after ICH without increasing bleeding. Thus, our findings suggest that colchicine treatment is safe, unlikely to worsen bleeding, and is unlikely but may reduce secondary injury after an ICH if initiated early post ICH to reduce the risk of ischemic vascular events. These results are informative for the ongoing CoVasc-ICH phase II randomized trial (NCT05159219).
Collapse
Affiliation(s)
| | - Aristeidis H. Katsanos
- Department of Medicine (Neurology), McMaster University/Population Health Research Institute, Hamilton, Ontario, Canada
| | - Noam H. Sander
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tiffany F. C. Kung
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| | - Ashkan Shoamanesh
- Department of Medicine (Neurology), McMaster University/Population Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Baker TS, Kellner CP, Colbourne F, Rincon F, Kollmar R, Badjatia N, Dangayach N, Mocco J, Selim MH, Lyden P, Polderman K, Mayer S. Consensus recommendations on therapeutic hypothermia after minimally invasive intracerebral hemorrhage evacuation from the hypothermia for intracerebral hemorrhage (HICH) working group. Front Neurol 2022; 13:859894. [PMID: 36062017 PMCID: PMC9428129 DOI: 10.3389/fneur.2022.859894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background and purpose Therapeutic hypothermia (TH), or targeted temperature management (TTM), is a classic treatment option for reducing inflammation and potentially other destructive processes across a wide range of pathologies, and has been successfully used in numerous disease states. The ability for TH to improve neurological outcomes seems promising for inflammatory injuries but has yet to demonstrate clinical benefit in the intracerebral hemorrhage (ICH) patient population. Minimally invasive ICH evacuation also presents a promising option for ICH treatment with strong preclinical data but has yet to demonstrate functional improvement in large randomized trials. The biochemical mechanisms of action of ICH evacuation and TH appear to be synergistic, and thus combining hematoma evacuation with cooling therapy could provide synergistic benefits. The purpose of this working group was to develop consensus recommendations on optimal clinical trial design and outcomes for the use of therapeutic hypothermia in ICH in conjunction with minimally invasive ICH evacuation. Methods An international panel of experts on the intersection of critical-care TH and ICH was convened to analyze available evidence and form a consensus on critical elements of a focal cooling protocol and clinical trial design. Three focused sessions and three full-group meetings were held virtually from December 2020 to February 2021. Each meeting focused on a specific subtopic, allowing for guided, open discussion. Results These recommendations detail key elements of a clinical cooling protocol and an outline for the roll-out of clinical trials to test and validate the use of TH in conjunction with hematoma evacuation as well as late-stage protocols to improve the cooling approach. The combined use of systemic normothermia and localized moderate (33.5°C) hypothermia was identified as the most promising treatment strategy. Conclusions These recommendations provide a general outline for the use of TH after minimally invasive ICH evacuation. More research is needed to further refine the use and combination of these promising treatment paradigms for this patient population.
Collapse
Affiliation(s)
- Turner S. Baker
- Icahn School of Medicine at Mount Sinai, Sinai BioDesign, New York, NY, United States
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Turner S. Baker
| | - Christopher P. Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Fred Rincon
- Department of Neurology, Thomas Jefferson University Hospital, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rainer Kollmar
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurology and Neurological Intensive Care, Darmstadt Academic Teaching Hospital, Darmstadt, Germany
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neha Dangayach
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - J. Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Magdy H. Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, United States
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, CA, United States
| | - Kees Polderman
- United Memorial Medical Center, Houston, TX, United States
| | - Stephan Mayer
- Westchester Medical Center Health Network, Valhalla, NY, United States
- Department of Neurology, New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
4
|
Liddle LJ, Kalisvaart ACJ, Abrahart AH, Almekhlafi M, Demchuk A, Colbourne F. Targeting focal ischemic and hemorrhagic stroke neuroprotection: Current prospects for local hypothermia. J Neurochem 2021; 160:128-144. [PMID: 34496050 DOI: 10.1111/jnc.15508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ashley H Abrahart
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Wilkinson CM, Kung TF, Jickling GC, Colbourne F. A translational perspective on intracranial pressure responses following intracerebral hemorrhage in animal models. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
6
|
Liddle LJ, Dirks CA, Fedor BA, Almekhlafi M, Colbourne F. A Systematic Review and Meta-Analysis of Animal Studies Testing Intra-Arterial Chilled Infusates After Ischemic Stroke. Front Neurol 2021; 11:588479. [PMID: 33488495 PMCID: PMC7815528 DOI: 10.3389/fneur.2020.588479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: As not all ischemic stroke patients benefit from currently available treatments, there is considerable need for neuroprotective co-therapies. Therapeutic hypothermia is one such co-therapy, but numerous issues have hampered its clinical use (e.g., pneumonia risk with whole-body cooling). Some problems may be avoided with brain-specific methods, such as intra-arterial selective cooling infusion (IA-SCI) into the arteries supplying the ischemic tissue. Objective: Our research question was about the efficacy of IA-SCI in animal middle cerebral artery occlusion models. We hypothesized that IA-SCI would be beneficial, but translationally-relevant study elements may be missing (e.g., aged animals). Methods: We completed a systematic review of the PubMed database following the PRISMA guidelines on May 21, 2020 for animal studies that administered IA-SCI in the peri-reperfusion period and assessed infarct volume, behavior (primary meta-analytic endpoints), edema, or blood-brain barrier injury (secondary endpoints). Our search terms included: "focal ischemia" and related terms, "IA-SCI" and related terms, and "animal" and related terms. Nineteen studies met inclusion criteria. We adapted a methodological quality scale from 0 to 12 for experimental design assessment (e.g., use of blinding/randomization, a priori sample size calculations). Results: Studies were relatively homogenous (e.g., all studies used young, healthy animals). Some experimental design elements, such as blinding, were common whereas others, such as sample size calculations, were infrequent (median methodological quality score: 5; range: 2-7). Our analyses revealed that IA-SCI provides benefit on all endpoints (mean normalized infarct volume reduction = 23.67%; 95% CI: 19.21-28.12; mean normalized behavioral improvement = 35.56%; 95% CI: 25.91-45.20; mean standardized edema reduction = 0.95; 95% CI: 0.56-1.34). Unfortunately, blood-brain barrier assessments were uncommon and could not be analyzed. However, there was substantial statistical heterogeneity and relatively few studies. Therefore, exploration of heterogeneity via meta-regression using saline infusion parameters, study quality, and ischemic duration was inconclusive. Conclusion: Despite convincing evidence of benefit in ischemic stroke models, additional studies are required to determine the scope of benefit, especially when considering additional elements (e.g., dosing characteristics). As there is interest in using this treatment alongside current ischemic stroke therapies, more relevant animal studies will be critical to inform patient studies.
Collapse
Affiliation(s)
- Lane J. Liddle
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | | | - Brittany A. Fedor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Liddle LJ, Prokop BJ, Dirks CA, Demchuk A, Almekhlafi M, Colbourne F. Infusion of Cold Saline into the Carotid Artery Does Not Affect Outcome After Intrastriatal Hemorrhage. Ther Hypothermia Temp Manag 2020; 10:171-178. [PMID: 32456561 PMCID: PMC7482714 DOI: 10.1089/ther.2020.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Localized brain hypothermia (HYPO) can be achieved by infusing cold saline into the carotid artery of animals and patients. Studies suggest that HYPO improves behavioral and histological outcomes in focal ischemia models. Given that ischemic stroke and intracerebral hemorrhage (ICH) share pathophysiological overlap, we tested whether cold saline infusion is safe and neuroprotective when given during collagenase-induced ICH. Eighty-five adult male Sprague-Dawley rats were used. Experiment 1 investigated brain and body temperature changes associated with a cold saline infusion paradigm that was scaled from patients according to brain weight and blood volume (3 mL/20-minute infusion). Experiment 2 determined whether HYPO aggravated bleeding volume. Experiment 3 investigated if cerebral edema or elemental concentrations were altered by HYPO. We also collected core body temperature and activity data through telemetry. Experiment 4 investigated whether behavioral outcomes (e.g., skilled reaching) and tissue loss were influenced by HYPO. Our HYPO protocol decreased the ipsilateral striatal temperature by ∼0.20°C (p < 0.001), with no other effects. HYPO did not affect hematoma volume (p = 0.64), cerebral edema (p = 0.34), or elemental concentrations (p = 0.49) at 24 hours post-ICH. Although ICH caused persistent behavioral impairments, HYPO did not improve behavioral outcomes (measured by a neurological deficit scale, cylinder, and the staircase test; p > 0.05 for all). Brain tissue loss was not different between groups on day 28 post-ICH (p = 0.90). Although cold saline infusion appears to be safe in the acute post-ICH period, there was no evidence that this therapy improved outcome. However, our treatment protocol was relatively mild and additional interventions might help improve efficacy. Finally, our findings may also speak to the safety of this cooling approach in focal ischemia where hemorrhagic transformation is a risk; future studies on this issue are needed.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Canada
| | | | | | | | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Williamson MR, Wilkinson CM, Dietrich K, Colbourne F. Acetazolamide Mitigates Intracranial Pressure Spikes Without Affecting Functional Outcome After Experimental Hemorrhagic Stroke. Transl Stroke Res 2018; 10:428-439. [PMID: 30225552 PMCID: PMC6647499 DOI: 10.1007/s12975-018-0663-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/31/2023]
Abstract
Increased intracranial pressure (ICP) after stroke can lead to poor outcome and death. Novel treatments to combat ICP rises are needed. The carbonic anhydrase inhibitor acetazolamide diminishes cerebrospinal fluid (CSF) production, reduces ICP in healthy animals, and is beneficial for idiopathic intracranial hypertension patients. We tested whether acetazolamide mitigates ICP elevations by presumably decreasing CSF volume after collagenase-induced striatal hemorrhage in rats. We confirmed that acetazolamide did not adversely affect hematoma formation in this model or physiological variables, such as temperature. Then, we assessed the effects of acetazolamide on ICP. Lastly, we tested the effects of acetazolamide on behavioral and histological outcome. Acetazolamide reduced the magnitude and occurrence of short-timescale ICP spikes, assessed as disproportionate increases in ICP (sudden ICP increases > 10 mmHg), 1-min peak ICP, and the magnitude of spikes > 20 mmHg. However, mean ICP was unaffected. In addition, acetazolamide reduced ICP variability, reflecting improved intracranial compliance. Compliance measures were strongly correlated with high peak and mean ICP, whereas ipsilateral hemisphere water content was not correlated with ICP. Despite effects on ICP, acetazolamide did not improve behavioral function or affect lesion size. In summary, we show that intracerebral hemorrhage creates an impaired compliance state within the cranial space that can result in large, transient ICP spikes. Acetazolamide ameliorates intracranial compliance and mitigates ICP spikes, but does not improve functional outcome, at least for moderate-severity ICH in rats.
Collapse
Affiliation(s)
- Michael R Williamson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Cassandra M Wilkinson
- P217 Biological Sciences Building, Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Kristen Dietrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- P217 Biological Sciences Building, Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
9
|
Song F, Guo C, Geng Y, Wu X, Fan W. Therapeutic time window and regulation of autophagy by mild hypothermia after intracerebral hemorrhage in rats. Brain Res 2018; 1690:12-22. [PMID: 29649465 DOI: 10.1016/j.brainres.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Although recent studies have shown that mild hypothermia has neuroprotective effects on intracerebral hemorrhage (ICH), the therapeutic time window of the therapy and the role of autophagy as a potential neuroprotective mechanism remain unclear. This study was aimed to investigate the appropriate time window of mild hypothermia and the regulation of autophagy during the treatment in a rat model of autologous blood-injected ICH injury. The rats were divided into Sham, normothermic (NT) and hypothermic (HT) groups. HT groups received mild hypothermia (33 °C-35 °C) for 48 h starting from 3 h (HT3), 6 h (HT6), and 12 h (HT12) respectively after ICH. The neurological function, brain edema, blood brain barrier (BBB) permeability and volume of tissue loss were tested. The expression of metrix metalloproteinase 9 (MMP-9) and tight junction (TJ) protein including Occludin and Claudin-5 around the hematoma were detected by Western blot. Moreover, autophagy after ICH was detected by the ratio of LC3B-II/I, and the expression of Beclin-1 and p62, while apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dURP nick end labelling (TUNEL) staining and expression of Bcl-2, Bim, cleaved Caspase-3. Compared with NT group, neurological deficit, brain edema and BBB permeability were attenuated in HT6 and HT12 groups, but not in HT3 group, while volume of tissue loss was reduced only in HT12 group. The expression of MMP-9 and the degradation of Occludin and Claudin-5 were suppressed only in HT6 and HT12 groups, especially in the latter one. Moreover, neuronal autophagy and apoptosis induced by ICH were downregulated in HT12 group. The results suggested that mild hypothermia initiated at 6 h or 12 h post-injury was neuroprotective in ICH model of rats, especially at 12 h post-injury, via suppression of autophagy upregulated by ICH.
Collapse
Affiliation(s)
- Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Cen Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Yang Geng
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 20032 Shanghai, China.
| |
Collapse
|
10
|
Wowk S, Fagan KJ, Ma Y, Nichol H, Colbourne F. Examining potential side effects of therapeutic hypothermia in experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2017; 37:2975-2986. [PMID: 27899766 PMCID: PMC5536807 DOI: 10.1177/0271678x16681312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 11/16/2022]
Abstract
Studies treating intracerebral hemorrhage (ICH) with therapeutic hypothermia (TH) have shown inconsistent benefits. We hypothesized that TH's anti-inflammatory effects may be responsible as inflammatory cells are essential for removing degrading erythrocytes. Here, we subjected rats to a collagenase-induced striatal ICH followed by whole-body TH (∼33℃ for 11-72 h) or normothermia. We used X-ray fluorescence imaging to spatially quantify total and peri-hematoma iron three days post-injury. At three and seven days, we measured non-heme iron levels. Finally, hematoma volume was quantified on one, three, and seven days. In the injured hemisphere, total iron levels were elevated ( p < 0.001) with iron increasing in the peri-hematoma region ( p = 0.007). Non-heme iron increased from three to seven days (p < 0.001). TH had no effect on any measure of iron ( p ≥ 0.479). At one and three days, TH did not affect hematoma volume ( p ≥ 0.264); however, at seven days there was a four-fold increase in hematoma volume in 40% of treated animals ( p = 0.032). Thus, even when TH does not interfere with initial increases in total and non-heme iron or its containment, TH can cause re-bleeding post-treatment. This serious complication could partly account for the intermittent protection previously observed. This also raises serious concerns for clinical usage of TH for ICH.
Collapse
Affiliation(s)
- Shannon Wowk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly J Fagan
- Department of Biology, MacEwan University, Edmonton, Canada
| | - Yonglie Ma
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Klahr AC, Nadeau CA, Colbourne F. Temperature Control in Rodent Neuroprotection Studies: Methods and Challenges. Ther Hypothermia Temp Manag 2016; 7:42-49. [PMID: 27327871 DOI: 10.1089/ther.2016.0018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extensive animal research facilitated the clinical translation of therapeutic hypothermia for cardiac arrest in adults and hypoxic-ischemic injury in infants. Similarly, clinical interest in hypothermia for other brain injuries, such as stroke, has been greatly supported by positive findings in preclinical work. The reliability, validity, and utility of animal models, among many research practices (blinding, randomization, etc.), are key to successful clinical translation. Here, we review methods used to induce and maintain hypothermia in animal models. These include physical and pharmacological methods. We emphasize the advantages and limitations of each approach, and the importance of using clinically relevant cooling protocols and appropriate monitoring and reporting approaches. Moreover, we performed a literature survey of ischemic stroke studies published in 2015 to highlight the continuing risk of temperature confounds in neuroprotection studies. For example, many still do not accurately monitor and report temperature during surgery (23.5%), even though almost half of these studies (46.0%) use pharmaceutical agents that likely influence temperature. We hope this review stimulates awareness and discussion of the importance of temperature in neuroprotective studies.
Collapse
Affiliation(s)
- Ana C Klahr
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Colby A Nadeau
- 2 Department of Psychology, University of Alberta , Edmonton, Canada
| | - Frederick Colbourne
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| |
Collapse
|
12
|
Wowk S, Ma Y, Colbourne F. Therapeutic Hypothermia Does Not Mitigate Iron-Induced Injury in Rat. Ther Hypothermia Temp Manag 2015; 6:23-9. [PMID: 26716980 DOI: 10.1089/ther.2015.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is often a devastating stroke, and there are no clinically proven neuroprotective treatments. Considerable research points to iron toxicity as a leading contributor to secondary damage after ICH. Iron, released from degraded erythrocytes, catalyzes free radical production, thereby causing cell death in the ensuing days and weeks. Therapeutic hypothermia (TH) is a potential neuroprotective strategy for ICH, but results from animal studies are inconsistent and generally weaker than that found in ischemia models. Thus, we examined whether TH (∼33°C for 24-72 hours) would specifically mitigate iron toxicity, which we modeled by infusing 3.8 μg of FeCl2 in 30 μL of sterile saline into the striatum of rats. Rats were subjected to whole-body cooling beginning 1 hour after FeCl2 infusion. Use of TH reduced (p = 0.025) the small bleed caused by FeCl2 infusion (∼6 μL). However, TH did not lessen FeCl2-induced edema at 24 and 72 hours postinfusion, nor were behavioral impairments (e.g., walking) or brain injury (at 7 and 28 days) attenuated by TH. These results suggest that TH does not directly protect against iron toxicity, which indicates that this is not a means by which TH improves the outlook after ICH.
Collapse
Affiliation(s)
- Shannon Wowk
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Yonglie Ma
- 2 Department of Psychology, University of Alberta , Edmonton, Canada
| | - Frederick Colbourne
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| |
Collapse
|
13
|
Klahr AC, Dietrich K, Dickson CT, Colbourne F. Prolonged Localized Mild Hypothermia Does Not Affect Seizure Activity After Intracerebral Hemorrhage in Rats. Ther Hypothermia Temp Manag 2015; 6:40-7. [PMID: 26717112 DOI: 10.1089/ther.2015.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke with high morbidity and mortality. Post-ICH seizures are a common complication, potentially increasing brain injury and the risk of delayed epilepsy. Mild therapeutic hypothermia (HYPO, ∼33°C) is neuroprotective against several brain insults, such as ischemia, while also mitigating seizure incidence and severity in some instances. Therefore, we tested whether brain-selective HYPO reduced electrographic seizure activity after a collagenase-induced striatal ICH in rats. Animals were injected unilaterally with 0.14 U of bacterial collagenase, implanted with a unilateral brain cooling device, and a probe to bilaterally record electroencephalographic (EEG) activity. Cooling began 6 hours after collagenase infusion and was maintained for 48 hours, followed by rewarming over 6 hours. Our protocol did not affect EEG activity in naïve rats, nor did it increase bleeding after ICH (∼50 μL). Epileptiform activity commonly occurred in untreated ICH rats (∼60% of animals), but HYPO did not affect the incidence, timing, total duration of seizures, or the peaks occurring during epileptiform activity. However, longer average duration was detected on the ipsilateral side to stroke in the HYPO group (p < 0.05). Cooling did not affect neurological deficits (e.g., circling), measured 7 and 14 days after ICH, or lesion volume (∼35 mm(3)). In addition, there was no relationship among endpoints (e.g., seizures and lesion size). In summary, HYPO failed to reduce seizure activity after ICH, which fits with our separate findings that cooling does not mitigate thrombin and iron-mediated secondary injury mechanisms thought to cause seizures after ICH. Additional research is needed to identify better HYPO protocols and the use of cotreatments to maximize the benefit of HYPO to ICH patients.
Collapse
Affiliation(s)
- Ana C Klahr
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Kristen Dietrich
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Clayton T Dickson
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| | - Frederick Colbourne
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| |
Collapse
|