1
|
Hansen M, Cheever A, Weber KS, O’Neill KL. Characterizing the Interplay of Lymphocytes in Graves' Disease. Int J Mol Sci 2023; 24:6835. [PMID: 37047805 PMCID: PMC10094834 DOI: 10.3390/ijms24076835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies. The immunophenotype of the cells involved and the interplay between them and their secreted factors are crucial to understanding disease progression and future treatment options. T cell populations are markedly distinct, including increased levels of Th17 and follicular helper T cells (Tfh), while Treg cells appear to be impaired. Some B cells subsets are autoreactive, and anti-TSHR antibodies are the key disease-causing outcome of this interplay. Though some consensus across phenotyping studies will be discussed here, there are also complexities that are yet to be resolved. A better understanding of the immunophenotype of Graves' disease can lead to improved treatment strategies and novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (M.H.); (A.C.); (K.S.W.)
| |
Collapse
|
2
|
Inaba H, De Groot LJ, Akamizu T. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves' Disease. Front Endocrinol (Lausanne) 2016; 7:120. [PMID: 27602020 PMCID: PMC4994058 DOI: 10.3389/fendo.2016.00120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
Graves' disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments.
Collapse
Affiliation(s)
- Hidefumi Inaba
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Hidefumi Inaba,
| | - Leslie J. De Groot
- Department of Cellular and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
3
|
Benvenga S, Santarpia L, Trimarchi F, Guarneri F. Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor. Thyroid 2006; 16:225-36. [PMID: 16571084 DOI: 10.1089/thy.2006.16.225] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported that the spirochete Borrelia burgdorferi could trigger autoimmune thyroid diseases (AITD). Subsequently, we showed local amino acid sequence homology between all human thyroid autoantigens (human thyrotropin receptor [hTSH-R], human thyroglobulin [hTg], human thyroperoxidase [hTPO], human sodium iodide symporter [hNIS]) and Borrelia proteins (n = 6,606), and between hTSH-R and Yersinia enterocolitica (n = 1,153). We have now updated our search of homology with Borrelia (n = 11,198 proteins) and extended our search on Yersinia to the entire species (n = 40,964 proteins). We also searched the homologous human and microbial sequences for peptide-binding motifs of HLA-DR molecules, because a number of these class II major histocompatibility complex (MHC) molecules (DR3, DR4, DR5, DR8, and DR9) are associated with AITD. Significant homologies were found for only 16 Borrelia proteins (5 with hTSH-R, 2 with hTg, 3 with hTPO, and 6 with hNIS) and only 19 Yersinia proteins (4 with hTSH-R, 2 with hTg, 2 with hTPO, and 11 with hNIS). Noteworthy, segments of thyroid autoantigens homologous to these microbial proteins are known to be autoantigenic. Also, the hTSH-R homologous region of one Borrelia protein (OspA) contains an immunodominant epitope that others have found to be homologous to hLFA-1. This is of interest, as the hLFA-1/ICAM-1 ligand/receptor pair is aberrantly expressed in the follicular cells of thyroids affected by Hashimoto's thyroiditis. A computer-assisted search detected antigenic peptide binding motifs to the DR molecules implicated in AITD. In conclusion, our in silico data do not directly demonstrate that Borrelia and Yersinia proteins trigger AITD but suggest that a restricted number of them might have the potential to, at least in persons with certain HLA-DR alleles.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Sezione di Endocrinologia del Dipartimento Clinico Sperimentale di Medicina e Farmacologia, Università di Messina, Messina, Italy.
| | | | | | | |
Collapse
|
4
|
Benvenga S, Guarneri F, Vaccaro M, Santarpia L, Trimarchi F. Homologies between proteins of Borrelia burgdorferi and thyroid autoantigens. Thyroid 2004; 14:964-6. [PMID: 15671776 DOI: 10.1089/thy.2004.14.964] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Subclinical exposure to microbic antigens that share amino acid sequence homology with self antigens might trigger autoimmune diseases in genetically predisposed individuals via molecular mimicry. Genetic predisposition to Graves' disease (GD) or Hashimoto's thyroiditis (HT) is conferred by HLA loci DR3 or DR5, respectively. Yersinia enterocolitica (YE) outer proteins (YOPs) are candidate triggers based on the high prevalence of serum antibodies (Ab) against YOPs in autoimmune thyroid diseases (AITD) and reactivity of these Ab with hTSH-R, suggesting homology between YOPs and hTSH-R. We have reported previously that the spirochete Borrelia burgdorferi (Bb) could be another trigger. We have explored further the homology of hTSH-R with YE and Bb. Using the Basic Local Alignment Search Tool (BLAST), we found four matches with YE and five matches with Bb . Residues 22-272, 186-330, 319-363 and 684-749 of hTSH-R matched YopM, Ysp, exopolygalacturonase and SpyA of YE (identity 23-31%, similarity 40-48%). Residues 112-205, 127-150, 141-260, 299-383 and 620-697 of hTSH-R matched outer surface protein A, flagellar motor rotation protein A, two hypothetical proteins (BBG02 and BBJ08) and DNA recombinase/ATP dependent helicase of Borrelia (identity 27-50%, similarity 40-75%). Interestingly, the above hTSH-R regions coincide with (or include) known human T-cell epitopes: aa 52-71, 140-176, 240-270, 340-380 and 441-661. Our data strengthen the hypothesis of Bb and YE as environmental triggers of AITD in genetically predisposed persons through molecular mimicry mechanisms.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Sezione di Endocrinologia del Dipartimento Clinico Sperimentale di Medicina e Farmacologia, Università di Messina, Messina, Italy.
| | | | | | | | | |
Collapse
|
5
|
Martin A, Barbesino G, Davies TF. T-cell receptors and autoimmune thyroid disease--signposts for T-cell-antigen driven diseases. Int Rev Immunol 1999; 18:111-40. [PMID: 10614741 DOI: 10.3109/08830189909043021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human autoimmune thyroid diseases (AITDs) are characterized by profuse infiltrates of both CD4+ and CD8+ T cells. The intrathyroidal T-cell-receptor repertoire in Graves' disease, more than in Hashimoto's disease, has been shown to be biased as evidenced by phenotypic analysis and by the use of a restricted T-cell-receptor variable (V) gene repertoire seen in both TCR alpha and beta chains. Evidence for a bias in the T-cell repertoire has also been observed in animal models of induced and spontaneous autoimmune thyroiditis. We found a similar phenomenon of autoimmune thyroid-related T-cell bias in thyroid-humanized scid mice. In these studies we transplanted lymphocyte-depleted thyrocytes and autologous peripheral lymphocytes from AITD patients with a basement membrane preparation which allowed the formation of an artificial thyroid which we have called an "organoid". T-cell clonal expansion was present in these artificial mixed-cell organoids which appeared to mimic the in vivo process. Such clonal expansion was suggestive of an antigen-driven immune response and could also be identified in thyroid tissue from patients with Graves' disease. Our data on scid mice grafted with human mixed-cell thyroid organoids, therefore, suggested that the major antigens driving T-cell selection in patients with AITD were most likely to be thyroid specific. These antigens include thyroglobulin, thyroid peroxidase, and the receptor for thyroid stimulating hormone (TSHR) on the surface of thyroid epithelial cells and we found significant T-cell proliferation to synthetic TSHR peptides in patients with AITD as compared with normals. Our search for a TCR recognition motif for the autoantigen TPO did not reveal any specific sequence motifs. Instead, analysis of the physico-chemical characteristics i.e. hydrophobicity of the amino acids in the CDR3 (N) region of the TCR alpha chain, revealed a strong negative linear correlation between strength of stimulation and the average hydrophobicity of N-region amino acids. This led us to hypothesize that lower affinity T-cell clones were commonly more hydrophobic in their CDR3 alpha region amino acids in keeping with potential crossreactivity of such T cells as a consequence of promiscuous, hydrophobic CDR3 regions. This phenomenon would be analogous to polyreactive, natural autoantibodies which tend to be crossreactive and 'sticky'. Thus, the physico-chemical characteristics of the TCR alpha CDR3 region supported the interaction with antigen/MHC by potentially cross-reactive T cells of low affinity. It would seem likely that such low-affinity autoreactive T-cell populations serve as a pool of potentially pathogenetic cells. These cells would be able to respond to an insult which, via a number of possible mechanisms such as molecular mimicry, would initiate a thyroid lymphocytic infiltration in an antigen-driven fashion with intrathyroidal T-cell expansion and a marked bias in the utilization of T-cell-receptor V genes.
Collapse
Affiliation(s)
- A Martin
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
6
|
Benvenga S, Alesci S, Trimarchi F, Facchiano A. Homologies of the thyroid sodium-iodide symporter with bacterial and viral proteins. J Endocrinol Invest 1999; 22:535-40. [PMID: 10475151 DOI: 10.1007/bf03343605] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have demonstrated that Na+/I- symporter (NIS), a novel thyroid autoantigen, has local amino acid sequence homologies with the other thyroid autoantigens: Thyroglobulin (Tg), thyroid peroxidase (TPO) and thyrotropin receptor (TSH-R). These homologies concern the 4th, 5th, 6th extracellular loop and the beginning of the intracellular tail. We have expanded our studies and found that there are significant local homologies with other 11 proteins, most of them of bacterial or viral origin (e.g., Streptococcus or Herpes). These homologies concern the 2nd and 4th extracellular loop, and both the beginning and the end of the intracellular tail. These 11 homologies were retrieved by a computer-assisted search and extracted out of a database containing almost 300,000 amino acid sequences. These homologies were of magnitude greater than those concerning the three thyroid autoantigens [identities=51.1+/-7.3% vs 25.3+/-7.8% (mean+/-SD), p<0.001; similarities=70.6+/-10.7% vs 43.3+/-8.5%; p<0.001]. In addition, extensive, not local, homology was found with a number of unknown proteins from invertebrates (Drosophila melanogaster and Caenorhabditis elegans) and bacteria such as Bacillus subtilis and Xanthobacter. Previously, we had found that NIS has no extensive homology with Tg or TPO or TSH-R. This is the first demonstration of both extensive and local homologies between one thyroid autoantigen (NIS) and microbiological proteins. Taken together with data of the literature on the homologies between other thyroid antigens (Tg, TPO, TSH-R) and bacteria, the homologies we have now found reinforce the view that both bacterial and viral infections may trigger autoimmune thyroid diseases.
Collapse
Affiliation(s)
- S Benvenga
- Cattedra di Endocrinologia, Università di Messina, Italy
| | | | | | | |
Collapse
|
7
|
Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies. Endocr Rev 1998; 19:673-716. [PMID: 9861544 DOI: 10.1210/edrv.19.6.0352] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- B Rapoport
- Autoimmune Disease Unit, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | |
Collapse
|
8
|
Nebes V, Wall J. Membrane Receptor–Linked Disease States. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Abstract
What causes Graves' ophthalmopathy is still a mystery, but the disease process results from a complex interplay of genetic and environmental factors. Genes such as those encoding for human leukocyte antigens, cytokines or putative target antigens may determine a patient's susceptibility to the disease and the disease severity, but environmental factors may determine its course. During the last 5 years, significant progress has been made towards a more in-depth understanding of the initiating events of the orbital immune process which occur in the context of autoimmune thyroid disease. Once established, the chronic inflammatory process within the orbital tissues appears to take on a momentum of its own. The work of many investigators has recently helped to extend our knowledge about the effector and target cells, and their reciprocal interaction, in the evolution and perpetuation of the orbital immune process. This chapter's focus is on the more recent aspects of retro-orbital autoimmunity, discussing new developments concerning orbital T-cell repertoires, candidate orbital antigens, potential target and effector cells, and their role in the extrathyroidal manifestations of autoimmune thyroid disease.
Collapse
Affiliation(s)
- A E Heufelder
- Medizinische Klinik, Klinikum Innenstadt, Ludwig-Maximilians-University, München, Germany
| |
Collapse
|
10
|
Benvenga S, Bartolone L, Trimarchi F. Thyroid iodide transporter: local sequence homologies with thyroid autoantigens. J Endocrinol Invest 1997; 20:508-12. [PMID: 9413803 DOI: 10.1007/bf03348011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here we show the existence of local amino acid (aa) sequence homologies between rat thyroid iodide transporter (Na+/l- symporter or NIS), whose gene was recently cloned, and known human thyroid autoantigens [thyroglobulin (Tg), thyroid peroxidase (TPO) and thyrotropin receptor (TSHR)] NIS sequences corresponding to the fourth (aa 264-282) and fifth extracellular loop (aa 386-414) are 15 to 40% identical and 30 to 60% similar to sequences corresponding to known or putative epitopes of Tg, TPO and TSHR. The sixth extracellular loop (aa 465-485) beared homology (44% identity, 52% similarity) only to a region of Tg which flanks one of its immunodominant domains. Sequences of thyroid autoantigens other than NIS shared homology, especially Tg and TPO. We conclude that in all likelihood NIS is an additional thyroid antigen, which shares common epitopes with the other thyroid autoantigens. Addendum: A study in abstract form appeared after submission of our paper finds experimental evidence for the antigenicity of two extracellular segments (aa 262-280 and 468-487) and of a portion of the intracellular C-terminus (aa 560-579).
Collapse
Affiliation(s)
- S Benvenga
- Cattedra di Endocrinologia, Università di Messina, Italy
| | | | | |
Collapse
|