1
|
Serem EK, Mburu DM, Abdullahi OA, Bargul JL. A scoping review on tsetse fly blood meal sources and its assay methods since 1956 to 2022. Parasit Vectors 2024; 17:52. [PMID: 38308365 PMCID: PMC10837921 DOI: 10.1186/s13071-023-06114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/27/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Tsetse flies (Glossina spp.) are the definitive biological vectors of African trypanosomes in humans and animals. Controlling this vector is the most promising method of preventing trypanosome transmission. This requires a comprehensive understanding of tsetse biology and host preference to inform targeted design and management strategies, such as the use of olfaction and visual cues in tsetse traps. No current review exists on host preference and blood meal analyses of tsetse flies. METHODS This review presents a meta-analysis of tsetse fly blood meal sources and the methodologies used to identify animal hosts from 1956 to August 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRIMA-ScR) was applied. This focused on tsetse-endemic countries, blood meal analysis methodologies and the blood meal hosts identified. The articles were retrieved and screened from databases using predetermined eligibility criteria. RESULTS Only 49/393 of the articles retrieved matched the inclusion criteria. Glossina's main hosts in the wild included the bushbuck, buffalo, elephant, warthog, bushpig and hippopotamus. Pigs, livestock and humans were key hosts at the domestic interface. The least studied species included Glossina fuscipleuris, G. fusca, G. medicorum, G. tabaniformis and G. austeni. In the absence of preferred hosts, Glossina fed opportunistically on a variety of hosts. Precipitin, haemagglutination, disc diffusion, complement fixation, ELISA and PCR-based assays were used to evaluate blood meals. Cytochrome b (Cyt b) was the main target gene in PCR to identify the vertebrate hosts. CONCLUSIONS Tsetse blood meal sources have likely expanded because of ecological changes that could have rendered preferred hosts unavailable. The major approaches for analysing tsetse fly blood meal hosts targeted Cyt b gene for species identification by Sanger sequencing. However, small-fragment DNAs, such as the mammalian 12S and 16S rRNA genes, along with second- and third-generation sequencing techniques, could increase sensitivity for host identification in multiple host feeders that Sanger sequencing may misidentify as "noise". This review of tsetse fly blood meal sources and approaches to host identification could inform strategies for tsetse control.
Collapse
Affiliation(s)
- Erick Kibichiy Serem
- Department of Anatomy and Physiology, School of Health and Human Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya.
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, P.O. Box 195-80108, Kilifi, Kenya.
| | - David Mwangi Mburu
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, P.O. Box 195-80108, Kilifi, Kenya
- Department of Biological Sciences, School of Pure and Applied Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | - Osman Abdikarim Abdullahi
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, P.O. Box 195-80108, Kilifi, Kenya
- Department of Public Health, School of Health and Human Sciences, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | - Joel Ltilitan Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
2
|
Tsagmo JM, Njiokou F, Dziedziech A, Rofidal V, Hem S, Geiger A. Protein abundance in the midgut of wild tsetse flies (Glossina palpalis palpalis) naturally infected by Trypanosoma congolense s.l. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:723-736. [PMID: 37357577 DOI: 10.1111/mve.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Tsetse flies (Glossina spp.) are major vectors of African trypanosomes, causing either Human or Animal African Trypanosomiasis (HAT or AAT). Several approaches have been developed to control the disease, among which is the anti-vector Sterile Insect Technique. Another approach to anti-vector strategies could consist of controlling the fly's vector competence through hitherto unidentified regulatory factors (genes, proteins, biological pathways, etc.). The present work aims to evaluate the protein abundance in the midgut of wild tsetse flies (Glossina palpalis palpalis) naturally infected by Trypanosoma congolense s.l. Infected and non-infected flies were sampled in two HAT/AAT foci in Southern Cameroon. After dissection, the proteomes from the guts of parasite-infected flies were compared to that of uninfected flies to identify quantitative and/or qualitative changes associated with infection. Among the proteins with increased abundance were fructose-1,6-biphosphatase, membrane trafficking proteins, death proteins (or apoptosis proteins) and SERPINs (inhibitor of serine proteases, enzymes considered as trypanosome virulence factors) that displayed the highest increased abundance. The present study, together with previous proteomic and transcriptomic studies on the secretome of trypanosomes from tsetse fly gut extracts, provides data to be explored in further investigations on, for example, mammal host immunisation or on fly vector competence modification via para-transgenic approaches.
Collapse
Affiliation(s)
- Jean Marc Tsagmo
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
- Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors and INSERM U1201, Institut Pasteur, Paris, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
| | - Alexis Dziedziech
- Biology of Host-Parasite Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Valerie Rofidal
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Sonia Hem
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
- Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
- Center for Research on Filariasis and Other Tropical Diseases (CRFilMT), Yaounde, Cameroon
| |
Collapse
|
3
|
Ngambia Freitas FS, Njiokou F, Tsagmo Ngoune JM, Sempere G, Berthier D, Geiger A. Modulation of trypanosome establishment in Glossina palpalis palpalis by its microbiome in the Campo sleeping sickness focus, Cameroon. INFECTION GENETICS AND EVOLUTION 2021; 90:104763. [PMID: 33571685 DOI: 10.1016/j.meegid.2021.104763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate factors involved in vector competence by analyzing whether the diversity and relative abundance of the different bacterial genera inhabiting the fly's gut could be associated with its trypanosome infection status. This was investigated on 160 randomly selected G. p. palpalis flies - 80 trypanosome-infected, 80 uninfected - collected in 5 villages of the Campo trypanosomiasis focus in South Cameroon. Trypanosome species were identified using specific primers, and the V4 region of the 16S rRNA gene of bacteria was targeted for metabarcoding analysis in order to identify the bacteria and determine microbiome composition. A total of 261 bacterial genera were identified of which only 114 crossed two barriers: a threshold of 0.01% relative abundance and the presence at least in 5 flies. The secondary symbiont Sodalis glossinidius was identified in 50% of the flies but it was not considered since its relative abundance was much lower than the 0.01% relative abundance threshold. The primary symbiont Wigglesworthia displayed 87% relative abundance, the remaining 13% were prominently constituted by the genera Spiroplasma, Tediphilus, Acinetobacter and Pseudomonas. Despite a large diversity in bacterial genera and in their abundance observed in micobiome composition, the statistical analyzes of the 160 tsetse flies showed an association with flies' infection status and the sampling sites. Furthermore, tsetse flies harboring Trypanosoma congolense Savanah type displayed a different composition of bacterial flora compared to uninfected flies. In addition, our study revealed that 36 bacterial genera were present only in uninfected flies, which could therefore suggest a possible involvement in flies' refractoriness; with the exception of Cupriavidus, they were however of low relative abundance. Some genera, including Acinetobacter, Cutibacterium, Pseudomonas and Tepidiphilus, although present both in infected and uninfected flies, were found to be associated with uninfected status of tsetse flies. Hence their effective role deserves to be further evaluated in order to determine whether some of them could become targets for tsetse control of fly vector competence and consequently for the control of the disease. Finally, when comparing the bacterial genera identified in tsetse flies collected during 4 epidemiological surveys, 39 genera were found to be common to flies from at least 2 sampling campaigns.
Collapse
Affiliation(s)
- François Sougal Ngambia Freitas
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France; Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | | | - Guilhem Sempere
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; South Green Bioinformatics Platform, Biodiversity, CIRAD, INRAE, IRD, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - David Berthier
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France; Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon; Center for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon.
| |
Collapse
|
4
|
Tsagmo Ngoune JM, Reveillaud J, Sempere G, Njiokou F, Melachio TT, Abate L, Tchioffo MT, Geiger A. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon. Parasit Vectors 2019; 12:151. [PMID: 30940213 PMCID: PMC6444424 DOI: 10.1186/s13071-019-3402-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background A number of reports have demonstrated the role of insect bacterial flora on their host’s physiology and metabolism. The tsetse host and vector of trypanosomes responsible for human sleeping sickness (human African trypanosomiasis, HAT) and nagana in animals (African animal trypanosomiasis, AAT) carry bacteria that influence its diet and immune processes. However, the mechanisms involved in these processes remain poorly documented. This underscores the need for increased research into the bacterial flora composition and structure of tsetse flies. The aim of this study was to identify the diversity and relative abundance of bacterial genera in Glossina palpalis palpalis flies collected in two trypanosomiasis foci in Cameroon. Methods Samples of G. p. palpalis which were either negative or naturally trypanosome-positive were collected in two foci located in southern Cameroon (Campo and Bipindi). Using the V3V4 and V4 variable regions of the small subunit of the 16S ribosomal RNA gene, we analyzed the respective bacteriome of the flies’ midguts. Results We identified ten bacterial genera. In addition, we observed that the relative abundance of the obligate endosymbiont Wigglesworthia was highly prominent (around 99%), regardless of the analyzed region. The remaining genera represented approximately 1% of the bacterial flora, and were composed of Salmonella, Spiroplasma, Sphingomonas, Methylobacterium, Acidibacter, Tsukamurella, Serratia, Kluyvera and an unidentified bacterium. The genus Sodalis was present but with a very low abundance. Globally, no statistically significant difference was found between the bacterial compositions of flies from the two foci, and between positive and trypanosome-negative flies. However, Salmonella and Serratia were only described in trypanosome-negative flies, suggesting a potential role for these two bacteria in fly refractoriness to trypanosome infection. In addition, our study showed the V4 region of the small subunit of the 16S ribosomal RNA gene was more efficient than the V3V4 region at describing the totality of the bacterial diversity. Conclusions A very large diversity of bacteria was identified with the discovering of species reported to secrete anti-parasitic compounds or to modulate vector competence in other insects. For future studies, the analyses should be enlarged with larger sampling including foci from several countries. Electronic supplementary material The online version of this article (10.1186/s13071-019-3402-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean Marc Tsagmo Ngoune
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France.,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Guilhem Sempere
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Trésor T Melachio
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Luc Abate
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Majoline T Tchioffo
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France. .,Center for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon. .,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
5
|
Kame-Ngasse GI, Njiokou F, Melachio-Tanekou TT, Farikou O, Simo G, Geiger A. Prevalence of symbionts and trypanosome infections in tsetse flies of two villages of the "Faro and Déo" division of the Adamawa region of Cameroon. BMC Microbiol 2018; 18:159. [PMID: 30470177 PMCID: PMC6251084 DOI: 10.1186/s12866-018-1286-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Tsetse flies are vectors of human and animal African trypanosomiasis. In spite of many decades of chemotherapy and vector control, the disease has not been eradicated. Other methods like the transformation of tsetse fly symbionts to render the fly refractory to trypanosome infection are being evaluated. The aim of the present study was to evaluate the association between trypanosome infections and the presence of symbionts in these tsetse species. Tsetse flies were trapped in two villages of the “Faro and Déo” Division of the Adamawa region of Cameroon. In the field, tsetse fly species were identified and their infection by trypanosomes was checked by microscopy. In the laboratory, DNA was extracted from their midguts and the presence of symbionts (Sodalis glossinidius and Wolbachia sp.) and trypanosomes was checked by PCR. Symbionts/trypanosomes association tests were performed. Results Three tsetse fly species including Glossina tachinoides (90.1%), Glossina morsitans submorsitans (9.4%) and Glossina fuscipes fuscipes (0.5%) were caught. In all the population we obtained an occurrence rate of 37.2% for Sodalis glossinidius and 67.6% for Wolbachia irrespective to tsetse flies species. S. glossinidius and Wolbachia sp. occurrence rates were respectively 37 and 68% for G. tachinoides and 28.6 and 59.5% for G. m. submorsitans. Between Golde Bourle and Mayo Dagoum significant differences were observed in the prevalence of symbionts. Prevalence of trypanosomes were 34.8% for Glossina tachinoides and 40.5% for Glossina morsitans submorsitans. In G. tachinoides, the trypanosome infection rates were 11, 2.6 and 13.7%, respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type. In G. m. submorsitans, these infection rates were 16.7, 9.5 and, 2.4% respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type. Conclusions The rate of tsetse fly infection by trypanosomes was low compared to those obtained in HAT foci of south Cameroon, and this rate was not statistically linked to the rate of symbiont occurrence. This study allowed to show for the first time the presence of Wolbachia sp. in the tsetse fly sub-species Glossina morsitans submorsitans and Glossina tachinoides.
Collapse
Affiliation(s)
- Ginette Irma Kame-Ngasse
- Laboratory of Parasitology and Ecology, Faculty of Science, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Faculty of Science, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Tito Trésor Melachio-Tanekou
- Laboratory of Parasitology and Ecology, Faculty of Science, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Oumarou Farikou
- Ministry of livestock, Fisheries and Animal Industries, Special Mission for Tsetse Eradication (MSEG), Ngaoundéré, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Faculty of Science, Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Anne Geiger
- Institut de Recherche pour le Développement (IRD)-CIRAD, UMR 177, Montpellier, France
| |
Collapse
|
6
|
Jacob F, Melachio TT, Njitchouang GR, Gimonneau G, Njiokou F, Abate L, Christen R, Reveillaud J, Geiger A. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon. Front Microbiol 2017; 8:1464. [PMID: 28824591 PMCID: PMC5541443 DOI: 10.3389/fmicb.2017.01464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022] Open
Abstract
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.
Collapse
Affiliation(s)
- Franck Jacob
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Trésor T Melachio
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Guy R Njitchouang
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Geoffrey Gimonneau
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Flobert Njiokou
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Luc Abate
- UMR MIVEGEC, Institut de Recherche pour le Développement 224-Centre National de la Recherche Scientifique 5290Montpellier, France
| | - Richard Christen
- UMR 7138, Systématique Adaptation Evolution, Université de Nice-Sophia AntipolisNice, France
| | - Julie Reveillaud
- Institut National de la Recherche Agronomique, UMR 1309 ASTREMontpellier, France.,CIRAD, UMR ASTREMontpellier, France
| | - Anne Geiger
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| |
Collapse
|
7
|
Tsagmo Ngoune JM, Njiokou F, Loriod B, Kame-Ngasse G, Fernandez-Nunez N, Rioualen C, van Helden J, Geiger A. Transcriptional Profiling of Midguts Prepared from Trypanosoma/T. congolense-Positive Glossina palpalis palpalis Collected from Two Distinct Cameroonian Foci: Coordinated Signatures of the Midguts' Remodeling As T. congolense-Supportive Niches. Front Immunol 2017; 8:876. [PMID: 28804485 PMCID: PMC5532377 DOI: 10.3389/fimmu.2017.00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Our previous transcriptomic analysis of Glossina palpalis gambiensis experimentally infected or not with Trypanosoma brucei gambiense aimed to detect differentially expressed genes (DEGs) associated with infection. Specifically, we selected candidate genes governing tsetse fly vector competence that could be used in the context of an anti-vector strategy, to control human and/or animal trypanosomiasis. The present study aimed to verify whether gene expression in field tsetse flies (G. p. palpalis) is modified in response to natural infection by trypanosomes (T. congolense), as reported when insectary-raised flies (G. p. gambiensis) are experimentally infected with T. b. gambiense. This was achieved using the RNA-seq approach, which identified 524 DEGs in infected vs. non-infected tsetse flies, including 285 downregulated genes and 239 upregulated genes (identified using DESeq2). Several of these genes were highly differentially expressed, with log2 fold change values in the vicinity of either +40 or −40. Downregulated genes were primarily involved in transcription/translation processes, whereas encoded upregulated genes governed amino acid and nucleotide biosynthesis pathways. The BioCyc metabolic pathways associated with infection also revealed that downregulated genes were mainly involved in fly immunity processes. Importantly, our study demonstrates that data on the molecular cross-talk between the host and the parasite (as well as the always present fly microbiome) recorded from an experimental biological model has a counterpart in field flies, which in turn validates the use of experimental host/parasite couples.
Collapse
Affiliation(s)
- Jean M Tsagmo Ngoune
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Béatrice Loriod
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | | | - Nicolas Fernandez-Nunez
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Claire Rioualen
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Jacques van Helden
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
8
|
Grébaut P, Girardin K, Fédérico V, Bousquet F. Simulating the elimination of sleeping sickness with an agent-based model. Parasite 2016; 23:63. [PMID: 28008825 PMCID: PMC5188770 DOI: 10.1051/parasite/2016066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/29/2016] [Indexed: 11/14/2022] Open
Abstract
Although Human African Trypanosomiasis is largely considered to be in the process of extinction today, the persistence of human and animal reservoirs, as well as the vector, necessitates a laborious elimination process. In this context, modeling could be an effective tool to evaluate the ability of different public health interventions to control the disease. Using the Cormas® system, we developed HATSim, an agent-based model capable of simulating the possible endemic evolutions of sleeping sickness and the ability of National Control Programs to eliminate the disease. This model takes into account the analysis of epidemiological, entomological, and ecological data from field studies conducted during the last decade, making it possible to predict the evolution of the disease within this area over a 5-year span. In this article, we first present HATSim according to the Overview, Design concepts, and Details (ODD) protocol that is classically used to describe agent-based models, then, in a second part, we present predictive results concerning the evolution of Human African Trypanosomiasis in the village of Lambi (Cameroon), in order to illustrate the interest of such a tool. Our results are consistent with what was observed in the field by the Cameroonian National Control Program (CNCP). Our simulations also revealed that regular screening can be sufficient, although vector control applied to all areas with human activities could be significantly more efficient. Our results indicate that the current model can already help decision-makers in planning the elimination of the disease in foci.
Collapse
Affiliation(s)
- Pascal Grébaut
-
UMR177 IRD/CIRAD INTERTRYP, TA A17 G, Campus International de Baillarguet 34398
Montpellier Cedex 5 France
| | - Killian Girardin
-
Faculté des Sciences, Université Montpellier 2 Place Eugène Bataillon 34095
Montpellier Cedex 5 France
| | | | - François Bousquet
-
UR GREEN, CIRAD, Campus International de Baillarguet 34398
Montpellier Cedex 5 France
| |
Collapse
|
9
|
Stone CM, Chitnis N. Implications of Heterogeneous Biting Exposure and Animal Hosts on Trypanosomiasis brucei gambiense Transmission and Control. PLoS Comput Biol 2015; 11:e1004514. [PMID: 26426854 PMCID: PMC4591123 DOI: 10.1371/journal.pcbi.1004514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022] Open
Abstract
The gambiense form of sleeping sickness is a neglected tropical disease, which is presumed to be anthroponotic. However, the parasite persists in human populations at levels of considerable rarity and as such the existence of animal reservoirs has been posited. Clarifying the impact of animal host reservoirs on the feasibility of interrupting sleeping sickness transmission through interventions is a matter of urgency. We developed a mathematical model allowing for heterogeneous exposure of humans to tsetse, with animal populations that differed in their ability to transmit infections, to investigate the effectiveness of two established techniques, screening and treatment of at-risk populations, and vector control. Importantly, under both assumptions, an integrated approach of human screening and vector control was supported in high transmission areas. However, increasing the intensity of vector control was more likely to eliminate transmission, while increasing the intensity of human screening reduced the time to elimination. Non-human animal hosts played important, but different roles in HAT transmission, depending on whether or not they contributed as reservoirs. If they did not serve as reservoirs, sensitivity analyses suggested their attractiveness may instead function as a sink for tsetse bites. These outcomes highlight the importance of understanding the ecological and environmental context of sleeping sickness in optimizing integrated interventions, particularly for moderate and low transmission intensity settings. Sleeping sickness, a disease that strikes predominantly poor populations in sub-Saharan Africa, has been targeted for elimination as a public health problem. Despite decades of control operations the disease remains enigmatic and is capable of persisting in populations at low levels of prevalence. Two mechanisms are investigated here that could allow persistence at such levels. Heterogeneous exposure of humans to tsetse is modelled as a subset of humans commuting to areas of high vectorial capacity. Additionally, non-human animals may act as reservoir species. We developed, parameterized, and investigated a model of sleeping sickness transmission to gain insight into the impact of these assumptions on the prospects of elimination using screening and treatment of humans and vector control. Supplemental use of vector control increased the probability of elimination and decreased the duration until elimination was achieved. This was more pronounced when animals did contribute to transmission, or when coverage and compliance of humans with screening operations was lower, for instance due to an inability to reach the humans at greatest risk of exposure. These results can provide insights to public health officials as to when to consider supplementing human treatment with additional measures, and thereby improve the prospects of elimination of this disease.
Collapse
Affiliation(s)
- Chris M. Stone
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Mélachio TTT, Njiokou F, Ravel S, Simo G, Solano P, De Meeûs T. Effect of sampling methods, effective population size and migration rate estimation in Glossina palpalis palpalis from Cameroon. INFECTION GENETICS AND EVOLUTION 2015; 33:150-7. [PMID: 25917495 DOI: 10.1016/j.meegid.2015.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
Human and animal trypanosomiases are two major constraints to development in Africa. These diseases are mainly transmitted by tsetse flies in particular by Glossina palpalis palpalis in Western and Central Africa. To set up an effective vector control campaign, prior population genetics studies have proved useful. Previous studies on population genetics of G. p. palpalis using microsatellite loci showed high heterozygote deficits, as compared to Hardy-Weinberg expectations, mainly explained by the presence of null alleles and/or the mixing of individuals belonging to several reproductive units (Wahlund effect). In this study we implemented a system of trapping, consisting of a central trap and two to four satellite traps around the central one to evaluate a possible role of the Wahlund effect in tsetse flies from three Cameroon human and animal African trypanosomiases foci (Campo, Bipindi and Fontem). We also estimated effective population sizes and dispersal. No difference was observed between the values of allelic richness, genetic diversity and Wright's FIS, in the samples from central and from satellite traps, suggesting an absence of Wahlund effect. Partitioning of the samples with Bayesian methods showed numerous clusters of 2-3 individuals as expected from a population at demographic equilibrium with two expected offspring per reproducing female. As previously shown, null alleles appeared as the most probable factor inducing these heterozygote deficits in these populations. Effective population sizes varied from 80 to 450 individuals while immigration rates were between 0.05 and 0.43, showing substantial genetic exchanges between different villages within a focus. These results suggest that the "suppression" with establishment of physical barriers may be the best strategy for a vector control campaign in this forest context.
Collapse
Affiliation(s)
| | - Flobert Njiokou
- University of Yaounde I, Laboratory of Parasitology and Ecology, Faculty of Science, BP 812 Yaounde, Cameroon
| | - Sophie Ravel
- Institut de Recherche pour le Développement (IRD), UMR IRD/CIRAD 177 INTERTRYP, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Philippe Solano
- Institut de Recherche pour le Développement (IRD), UMR IRD/CIRAD 177 INTERTRYP, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France; UMR 177 IRD/CIRAD INTERTRYP, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - Thierry De Meeûs
- Institut de Recherche pour le Développement (IRD), UMR IRD/CIRAD 177 INTERTRYP, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France; UMR 177 IRD/CIRAD INTERTRYP, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454 Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
11
|
Tchouomene-Labou J, Nana-Djeunga H, Simo G, Njitchouang GR, Cuny G, Asonganyi T, Njiokou F. Spatial and temporal variations relevant to tsetse control in the Bipindi focus of southern Cameroon. Parasit Vectors 2013; 6:193. [PMID: 23815985 PMCID: PMC3701558 DOI: 10.1186/1756-3305-6-193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/25/2013] [Indexed: 11/11/2022] Open
Abstract
Background Human African Trypanosomiasis (HAT) remains a public health problem in many poor countries. Due to lack of financial resources in these countries, cost-effective strategies are needed for efficient control of this scourge, especially the tsetse vector. It was shown that perennial water sources maintain a favourable biotope for tsetse flies and thus the transmission dynamics of sleeping sickness. The present paper aimed at assessing the transmission dynamics of HAT in a forest environment where the hydrographic network is important. Methods Two entomological surveys were carried out in July 2009 and March 2010 in the Bipindi sleeping sickness focus of the South Region of Cameroon. Entomological and parasitological data were collected during both trapping periods (including the climate variations throughout a year) and compared to each other. The level of risk for transmission of the disease during each trapping period was also evaluated at the trap level and materialised on the map of the Bipindi focus. Results Glossina palpalis palpalis was the most prevalent tsetse fly species captured in this focus. The overall densities of tsetse flies as well as the risk for transmission of HAT in the Bipindi focus were significantly higher in July than in March. At the trap level, we observed that these parameters were almost constant, whatever the trapping period, when the biotope included perennial water sources. Conclusions This study shows that the spatial distribution of traps, as well as the temporal climatic variations might influence entomological and parasitological parameters of HAT and that the presence of perennial water sources in biotopes would favour the development of tsetse flies and thus the transmission of sleeping sickness. These factors should, therefore, be taken into account in order to provide more efficient vector control.
Collapse
Affiliation(s)
- Judith Tchouomene-Labou
- Department of Animal Biology and Physiology, Parasitology and Ecology Laboratory, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | | | | | | | | | | | | |
Collapse
|
12
|
Funk S, Nishiura H, Heesterbeek H, Edmunds WJ, Checchi F. Identifying transmission cycles at the human-animal interface: the role of animal reservoirs in maintaining gambiense human african trypanosomiasis. PLoS Comput Biol 2013; 9:e1002855. [PMID: 23341760 PMCID: PMC3547827 DOI: 10.1371/journal.pcbi.1002855] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 11/08/2012] [Indexed: 11/18/2022] Open
Abstract
Many infections can be transmitted between animals and humans. The epidemiological roles of different species can vary from important reservoirs to dead-end hosts. Here, we present a method to identify transmission cycles in different combinations of species from field data. We used this method to synthesise epidemiological and ecological data from Bipindi, Cameroon, a historical focus of gambiense Human African Trypanosomiasis (HAT, sleeping sickness), a disease that has often been considered to be maintained mainly by humans. We estimated the basic reproduction number of gambiense HAT in Bipindi and evaluated the potential for transmission in the absence of human cases. We found that under the assumption of random mixing between vectors and hosts, gambiense HAT could not be maintained in this focus without the contribution of animals. This result remains robust under extensive sensitivity analysis. When using the distributions of species among habitats to estimate the amount of mixing between those species, we found indications for an independent transmission cycle in wild animals. Stochastic simulation of the system confirmed that unless vectors moved between species very rarely, reintroduction would usually occur shortly after elimination of the infection from human populations. This suggests that elimination strategies may have to be reconsidered as targeting human cases alone would be insufficient for control, and reintroduction from animal reservoirs would remain a threat. Our approach is broadly applicable and could reveal animal reservoirs critical to the control of other infectious diseases. Gambiense sleeping sickness is a disease transmitted by tsetse flies that mostly affects rural populations in sub-Saharan Africa. Although the parasite that causes the disease can be found in many different wild and domestic animal species, the disease has often been claimed to be maintained mostly by humans. Currently, fewer than 10,000 human cases are reported per year across Africa, and it has been suggested that elimination of gambiense sleeping sickness is feasible. We analysed human and animal case data from a well-known endemic focus of sleeping sickness in Cameroon, to quantify the contribution of the different species to the circulation of the parasite. In a wide range of scenarios, we found that animals are crucial for maintenance in the disease. When informing our model by the distribution of species among habitats as measured in the field, we found indications for independent transmission cycles in animals. This suggests that a risk of reintroduction from animal into human populations would remain even if the disease were eliminated from those human populations.
Collapse
Affiliation(s)
- Sebastian Funk
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA.
| | | | | | | | | |
Collapse
|
13
|
Geiger A, Fardeau ML, Njiokou F, Joseph M, Asonganyi T, Ollivier B, Cuny G. Bacterial diversity associated with populations of Glossina spp. from Cameroon and distribution within the Campo sleeping sickness focus. MICROBIAL ECOLOGY 2011; 62:632-643. [PMID: 21387098 DOI: 10.1007/s00248-011-9830-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 05/30/2023]
Abstract
Tsetse flies were sampled in three villages of the Campo sleeping sickness focus in South Cameroon. The aim of this study was to investigate the flies' gut bacterial composition using culture-dependent techniques. Out of the 32 flies analyzed (27 Glossina palpalis palpalis, two Glossina pallicera, one Glossina nigrofusca, and two Glossina caliginea), 17 were shown to be inhabited by diverse bacteria belonging to the Proteobacteria, the Firmicutes, or the Bacteroidetes phyla. Phylogenetic analysis based on 16S rRNA gene sequences indicated the presence of 16 bacteria belonging to the genera Acinetobacter (4), Enterobacter (4), Enterococcus (2), Providencia (1), Sphingobacterium (1), Chryseobacterium (1), Lactococcus (1), Staphylococcus (1), and Pseudomonas (1). Using identical bacterial isolation and identification processes, the diversity of the inhabiting bacteria analyzed in tsetse flies sampled in Cameroon was much higher than the diversity found previously in flies collected in Angola. Furthermore, bacterial infection rates differed greatly between the flies from the three sampling areas (Akak, Campo Beach/Ipono, and Mabiogo). Last, the geographic distribution of the different bacteria was highly uneven; two of them identified as Sphingobacterium spp. and Chryseobacterium spp. were only found in Mabiogo. Among the bacteria identified, several are known for their capability to affect the survival of their insect hosts and/or insect vector competence. In some cases, bacteria belonging to a given genus were shown to cluster separately in phylogenetic trees; they could be novel species within their corresponding genus. Therefore, such investigations deserve to be pursued in expanded sampling areas within and outside Cameroon to provide greater insight into the diverse bacteria able to infect tsetse flies given the severe human and animal sickness they transmit.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Njitchouang GR, Njiokou F, Nana-Djeunga H, Asonganyi T, Fewou-Moundipa P, Cuny G, Simo G. A new transmission risk index for human African trypanosomiasis and its application in the identification of sites of high transmission of sleeping sickness in the Fontem focus of southwest Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2011; 25:289-296. [PMID: 21198712 DOI: 10.1111/j.1365-2915.2010.00936.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new index for the risk for transmission of human African trypanosomiasis was developed from an earlier index by adding terms for the proportion of tsetse infected with Trypanosoma brucei gambiense group 1 and the contribution of animals to tsetse diet. The validity of the new index was then assessed in the Fontem focus of southwest Cameroon. Averages of 0.66 and 4.85 Glossina palpalis palpalis (Diptera: Glossinidae) were caught per trap/day at the end of one rainy season (November) and the start of the next (April), respectively. Of 1596 tsetse flies examined, 4.7% were positive for Trypanosoma brucei s.l. midgut infections and 0.6% for T. b. gambiense group 1. Among 184 bloodmeals identified, 55.1% were from pigs, 25.2% from humans, 17.6% from wild animals and 1.2% from goats. Of the meals taken from humans, 81.5% were taken at sites distant from pigsties. At the end of the rainy season, catches were low and similar between biotopes distant from and close to pigsties, but the risk for transmission was greatest at sites distant from the sties, suggesting that the presence of pigs reduced the risk to humans. At the beginning of the rainy season, catches of tsetse and risk for transmission were greatest close to the sties. In all seasons, there was a strong correlation between the old and new indices, suggesting that both can be used to estimate the level of transmission, but as the new index is the more comprehensive, it may be more accurate.
Collapse
Affiliation(s)
- G R Njitchouang
- General Biology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon.
| | | | | | | | | | | | | |
Collapse
|
15
|
Farikou O, Thevenon S, Njiokou F, Allal F, Cuny G, Geiger A. Genetic diversity and population structure of the secondary symbiont of tsetse flies, Sodalis glossinidius, in sleeping sickness foci in Cameroon. PLoS Negl Trop Dis 2011; 5:e1281. [PMID: 21886849 PMCID: PMC3160304 DOI: 10.1371/journal.pntd.0001281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 07/03/2011] [Indexed: 11/17/2022] Open
Abstract
Background Previous studies have shown substantial differences in Sodalis glossinidius and trypanosome infection rates between Glossina palpalis palpalis populations from two Cameroonian foci of human African trypanosomiasis (HAT), Bipindi and Campo. We hypothesized that the geographical isolation of the two foci may have induced independent evolution in the two areas, resulting in the diversification of symbiont genotypes. Methodology/Principal Findings To test this hypothesis, we investigated the symbiont genetic structure using the allelic size variation at four specific microsatellite loci. Classical analysis of molecular variance (AMOVA) and differentiation statistics revealed that most of the genetic diversity was observed among individuals within populations and frequent haplotypes were shared between populations. The structure of genetic diversity varied at different geographical scales, with almost no differentiation within the Campo HAT focus and a low but significant differentiation between the Campo and Bipindi HAT foci. Conclusions/Significance The data provided new information on the genetic diversity of the secondary symbiont population revealing mild structuring. Possible interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species should be further investigated. Human African trypanosomiasis remains a threat to the poorest people in Africa. The trypanosomes causing the disease are transmitted by tsetse flies. The drugs currently used are unsatisfactory: some are toxic and all are difficult to administer. Furthermore, drug resistance is increasing. Therefore, investigations for novel disease control strategies are urgently needed. Previous analyses showed the association between the presence of Glossina symbiont, Sodalis glossinidius, and the fly infection by trypanosomes in a south-western region in Cameroon: flies harbouring symbionts had a threefold higher probability of being infected by trypanosomes than flies devoid of symbionts. But the study also showed substantial differences in S. glossinidius and trypanosome infection rates between Glossina populations from two Cameroonian foci of sleeping sickness. We hypothesized that the geographical isolation of the two foci may have induced the independent evolution of each one, leading to the diversification of symbiont genotypes. Microsatellite markers were used and showed that genetic diversity structuring of S. glossinidius varies at different geographical scales with a low but significant differentiation between the Campo and Bipindi HAT foci. This encourages further work on interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species.
Collapse
Affiliation(s)
- Oumarou Farikou
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | | | | | | | | | | |
Collapse
|
16
|
Melachio TTTTT, Simo G, Ravel S, De Meeûs T, Causse S, Solano P, Lutumba P, Asonganyi T, Njiokou F. Population genetics of Glossina palpalis palpalis from central African sleeping sickness foci. Parasit Vectors 2011; 4:140. [PMID: 21767402 PMCID: PMC3162924 DOI: 10.1186/1756-3305-4-140] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Glossina palpalis palpalis (Diptera: Glossinidae) is widespread in west Africa, and is the main vector of sleeping sickness in Cameroon as well as in the Bas Congo Province of the Democratic Republic of Congo. However, little is known on the structure of its populations. We investigated G. p. palpalis population genetic structure in five sleeping sickness foci (four in Cameroon, one in Democratic Republic of Congo) using eight microsatellite DNA markers. Results A strong isolation by distance explains most of the population structure observed in our sampling sites of Cameroon and DRC. The populations here are composed of panmictic subpopulations occupying fairly wide zones with a very strong isolation by distance. Effective population sizes are probably between 20 and 300 individuals and if we assume densities between 120 and 2000 individuals per km2, dispersal distance between reproducing adults and their parents extends between 60 and 300 meters. Conclusions This first investigation of population genetic structure of G. p. palpalis in Central Africa has evidenced random mating subpopulations over fairly large areas and is thus at variance with that found in West African populations of G. p. palpalis. This study brings new information on the isolation by distance at a macrogeographic scale which in turn brings useful information on how to organise regional tsetse control. Future investigations should be directed at temporal sampling to have more accurate measures of demographic parameters in order to help vector control decision.
Collapse
|
17
|
Farikou O, Njiokou F, Simo G, Asonganyi T, Cuny G, Geiger A. Tsetse fly blood meal modification and trypanosome identification in two sleeping sickness foci in the forest of southern Cameroon. Acta Trop 2010; 116:81-8. [PMID: 20541513 DOI: 10.1016/j.actatropica.2010.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/14/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
The blood meal origins of 222 tsetse flies (213 Glossina palpalis palpalis, 7 Glossina pallicera pallicera, one Glossina nigrofusca and one Glossina caliginea) caught in 2008 in two Human African trypanosomiasis foci (Bipindi and Campo) of south Cameroon were investigated. 88.7% of tsetse flies blood meals were identified using the heteroduplex method and the origin of the remaining blood meals (11.3%) was identified by sequencing the cytochrome B gene. Most of the meals were from humans (45.9%) and pigs (37.4%), 16.7% from wild animals. Interestingly, new tsetse fly hosts including turtle (Trionyx and Kinixys) and snake (Python sebae) were identified. Significant differences were recorded between Bipindi where the blood meals from pigs were predominant (66.7% vs 23.5% from humans) and Campo where blood meals from humans were predominant (62.9% vs 22.7% from pigs). Comparison with the data recorded in 2004 in the same foci (and with the same molecular approach) demonstrated significant modifications of the feeding patterns: increase in blood meals from pigs in Bipindi (66.7% in 2008 vs 44.8% in 2004) and in Campo (20.5% in 2008 vs 6.8% in 2004), decrease in that from human (significant in Bipindi only). 12.6%, 8.1% and 2.7% of the flies were, respectively, Trypanosoma congolense forest type, Trypanosoma congolense savannah type and Trypanosoma brucei gambiense infected. These results demonstrate that tsetse fly feeding patterns can be specific of a given area and can evolve rapidly with time. They show an active circulation of a variety of trypanosomes in sleeping sickness foci of southern Cameroon.
Collapse
|
18
|
Grébaut P, Bena JM, Manzambi EZ, Mansinsa P, Khande V, Ollivier G, Cuny G, Simo G. Characterization of sleeping sickness transmission sites in rural and periurban areas of Kinshasa (République Démocratique du Congo). Vector Borne Zoonotic Dis 2010; 9:631-6. [PMID: 19272002 DOI: 10.1089/vbz.2008.0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To characterize the potential transmission sites of sleeping sickness in Kinshasa, two entomologic surveys were carried out during the dry and the rainy seasons in rural and periurban areas of Kinshasa in 2005. About 610 pyramidal traps were set up, and 897 Glossina fuscipes quanzensis were captured. Environmental and biologic factors were reported, and relationships between these factors were evaluated using logistic regression and multiple correspondence analysis. The biologic factors (the presence of tsetse flies, human blood meals, and teneral flies) were progressively accumulated at each capture site to permit the characterization of the sleeping sickness transmission risk. The dry season was found to be a more favorable period for the disease transmission than the rainy season. Moreover, the landscapes characterized by the presence of argillaceous soils, raised ground cover with forest residues and rivers, were identified as types of environments with greater risk of sleeping sickness transmission. Pig breeding appeared as an important factor increasing the disease transmission. If vector control is continuously performed along rivers segments at high risk, the transmission of sleeping sickness in rural and periurban areas of Kinshasa will considerably decrease.
Collapse
Affiliation(s)
- Pascal Grébaut
- Laboratoire de Recherche et de Coordination sur les Trypanosomoses (LRCT), UR 177 IRD/CIRAD, TA-A17G, Campus international de Baillarguet, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Farikou O, Njiokou F, Mbida Mbida JA, Njitchouang GR, Djeunga HN, Asonganyi T, Simarro PP, Cuny G, Geiger A. Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes--an epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. INFECTION GENETICS AND EVOLUTION 2009; 10:115-21. [PMID: 19879380 DOI: 10.1016/j.meegid.2009.10.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 11/17/2022]
Abstract
Epidemiological surveys were conducted in two historical human African trypanosomiasis foci in South Cameroon, Bipindi and Campo. In each focus, three sampling areas were defined. In Bipindi, only Glossina palpalis was identified, whereas four species were identified in Campo, G. palpalis being highly predominant (93%). For further analyses, 75 flies were randomly chosen among the flies trapped in each of the six villages. Large and statistically significant differences were recorded between both (1) the prevalence of Sodalis glossinidius (tsetse symbiont) and the prevalence of trypanosome infection of the major fly species G. p. palpalis and (2) the respective prevalence of symbiont and infection between the two foci. Despite these differences, the rate of infected flies harbouring the symbiont was very similar (75%) in both foci, suggesting that symbionts favour fly infection by trypanosomes. This hypothesis was statistically tested and assessed, showing that S. glossinidius is potentially an efficient target for controlling tsetse fly vectorial competence and consequently sleeping sickness.
Collapse
Affiliation(s)
- Oumarou Farikou
- University of Yaoundé I, Faculty of Science, BP 812, Yaoundé, Cameroon
| | | | | | | | | | | | | | | | | |
Collapse
|