1
|
Loor-Giler A, Robayo-Chico M, Puga-Torres B, Hernandez-Alomia F, Santander-Parra S, Piantino Ferreira A, Muslin C, Nuñez L. Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification. Foods 2025; 14:410. [PMID: 39942004 PMCID: PMC11816838 DOI: 10.3390/foods14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Escherichia coli (E. coli), especially the Shiga toxin-producing O157:H7 strain, poses severe health risks. In rural Ecuador, raw milk consumption heightens contamination risks. This study analyzed 633 raw milk samples from Pichincha and Manabí to assess E. coli O157:H7 prevalence. The samples were enriched using BHI broth, and then specific culture media were used to isolate E. coli O157:H7. The pathogen in the enriched raw milk was identified, and the isolates were specifically confirmed through the application of a newly designed qPCR assay. The novel qPCR assay demonstrated remarkable sensitivity, capable of detecting up to one copy of genetic material, and specificity (no amplification of other bacteria). An extremely high E. coli O157:H7 prevalence of 0.63 (n = 401) was detected, where the province with the highest number of positive samples was Manabí with 72.8% (n = 225/309) and 54.3% (n = 179/324) for Pichincha. In both provinces, the presence of E. coli O157:H7 contamination exhibited a favorable correlation with small-scale farms and elevated temperatures. This research provides valuable data on the microbiological contamination of E. coli O157:H7 present in raw milk, in addition to an improved method that has been demonstrated to be faster, more sensitive, and more specific than conventional and previously published methods, highlighting the associated risk of food-borne infections and pointing out potential shortcomings in the regulation of agricultural practices and the need for periodic monitoring of bacterial contamination levels with updated methods.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
| | - Marcela Robayo-Chico
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
| | - Byron Puga-Torres
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Jerónimo Leyton s/n y Gilberto Gatto Sobral, Quito EC 170521, Ecuador;
| | - Fernanda Hernandez-Alomia
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito EC 170125, Ecuador;
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
| | - Antonio Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo 05508-270, SP, Brazil;
| | - Claire Muslin
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito EC 170124, Ecuador
| | - Luis Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Antigua Vía a Nayon S/N, Quito EC 170124, Ecuador; (S.S.-P.); (C.M.)
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Americas, Quito EC 170124, Ecuador
| |
Collapse
|
2
|
Kudva IT, Biernbaum EN, Cassmann ED, Palmer MV. Bovine Rectoanal Junction In Vitro Organ Culture Model System to Study Shiga Toxin-Producing Escherichia coli Adherence. Microorganisms 2023; 11:1289. [PMID: 37317263 DOI: 10.3390/microorganisms11051289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Studies evaluating the interactions between Shiga toxin-producing Escherichia coli O157:H7 (O157) and the bovine recto-anal junction (RAJ) have been limited to either in vitro analyses of bacteria, cells, or nucleic acids at the RAJ, providing limited information. Alternatively, expensive in vivo studies in animals have been conducted. Therefore, our objective was to develop a comprehensive in vitro organ culture system of the RAJ (RAJ-IVOC) that accurately represents all cell types present in the RAJ. This system would enable studies that yield results similar to those observed in vivo. Pieces of RAJ tissue, obtained from unrelated cattle necropsies, were assembled and subjected to various tests in order to determine the optimal conditions for assaying bacterial adherence in a viable IVOC. O157 strain EDL933 and E. coli K12 with known adherence differences were used to standardize the RAJ-IVOC adherence assay. Tissue integrity was assessed using cell viability, structural cell markers, and histopathology, while the adherence of bacteria was evaluated via microscopy and culture methods. DNA fingerprinting verified the recovered bacteria against the inoculum. When the RAJ-IVOC was assembled in Dulbecco's Modified Eagle Medium, maintained at a temperature of 39 °C with 5% CO2 and gentle shaking for a duration of 3-4 h, it successfully preserved tissue integrity and reproduced the expected adherence phenotype of the bacteria being tested. The RAJ-IVOC model system provides a convenient method to pre-screen multiple bacteria-RAJ interactions prior to in vivo experiments, thereby reducing animal usage.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Erika N Biernbaum
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
3
|
Loayza F, Graham JP, Trueba G. Factors Obscuring the Role of E. coli from Domestic Animals in the Global Antimicrobial Resistance Crisis: An Evidence-Based Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3061. [PMID: 32354184 PMCID: PMC7246672 DOI: 10.3390/ijerph17093061] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
Recent studies have found limited associations between antimicrobial resistance (AMR) in domestic animals (and animal products), and AMR in human clinical settings. These studies have primarily used Escherichia coli, a critically important bacterial species associated with significant human morbidity and mortality. E. coli is found in domestic animals and the environment, and it can be easily transmitted between these compartments. Additionally, the World Health Organization has highlighted E. coli as a "highly relevant and representative indicator of the magnitude and the leading edge of the global antimicrobial resistance (AMR) problem". In this paper, we discuss the weaknesses of current research that aims to link E. coli from domestic animals to the current AMR crisis in humans. Fundamental gaps remain in our understanding the complexities of E. coli population genetics and the magnitude of phenomena such as horizontal gene transfer (HGT) or DNA rearrangements (transposition and recombination). The dynamic and intricate interplay between bacterial clones, plasmids, transposons, and genes likely blur the evidence of AMR transmission from E. coli in domestic animals to human microbiota and vice versa. We describe key factors that are frequently neglected when carrying out studies of AMR sources and transmission dynamics.
Collapse
Affiliation(s)
- Fernanda Loayza
- Microbiology Institute, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Diego de Robles y Pampite, Cumbayá-Quito P.O. BOX 170901, Ecuador
| | - Jay P. Graham
- Berkeley School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720-7360, USA
| | - Gabriel Trueba
- Microbiology Institute, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Diego de Robles y Pampite, Cumbayá-Quito P.O. BOX 170901, Ecuador
| |
Collapse
|
4
|
Vasco K, Graham JP, Trueba G. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador. Appl Environ Microbiol 2016; 82:4218-4224. [PMID: 27208122 PMCID: PMC4959199 DOI: 10.1128/aem.00795-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. IMPORTANCE We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes of C. jejuni and aEPEC from domestic animals to humans in this region. We also found that the genotypes associated with C. jejuni from chickens were present more often in children than were those from other domestic animals. The potential environmental factors associated with transmission of these pathogens to humans then are discussed.
Collapse
Affiliation(s)
- Karla Vasco
- Microbiology Institute, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jay P Graham
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Gabriel Trueba
- Microbiology Institute, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
5
|
Vasco G, Trueba G, Atherton R, Calvopiña M, Cevallos W, Andrade T, Eguiguren M, Eisenberg JNS. Identifying etiological agents causing diarrhea in low income Ecuadorian communities. Am J Trop Med Hyg 2014; 91:563-9. [PMID: 25048373 PMCID: PMC4155560 DOI: 10.4269/ajtmh.13-0744] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/16/2014] [Indexed: 12/26/2022] Open
Abstract
Continued success in decreasing diarrheal disease burden requires targeted interventions. To develop such interventions, it is crucial to understand which pathogens cause diarrhea. Using a case-control design we tested stool samples, collected in both rural and urban Ecuador, for 15 pathogenic microorganisms. Pathogens were present in 51% of case and 27% of control samples from the urban community, and 62% of case and 18% of control samples collected from the rural community. Rotavirus and Shigellae were associated with diarrhea in the urban community; co-infections were more pathogenic than single infection; Campylobacter and Entamoeba histolytica were found in large numbers in cases and controls; and non-typhi Salmonella and enteropathogenic Escherichia coli were not found in any samples. Consistent with the Global Enteric Multicenter Study, focused in south Asia and sub-Saharan Africa, we found that in Ecuador a small group of pathogens accounted for a significant amount of the diarrheal disease burden.
Collapse
Affiliation(s)
- Gabriela Vasco
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| | - Gabriel Trueba
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| | - Richard Atherton
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| | - Manuel Calvopiña
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| | - William Cevallos
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| | - Thamara Andrade
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| | - Martha Eguiguren
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| | - Joseph N S Eisenberg
- Microbiology Institute, Universidad San Francisco de Quito, Quito, Ecuador; Centro de Biomedicina, Universidad Central del Ecuador, Quito, Ecuador; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan; Centro de Salud de Guamaní, Ministerio de Salud Pública, Quito, Ecuador
| |
Collapse
|