1
|
Yang X, Liang Y, Bamunuarachchi G, Xu Y, Vaddadi K, Pushparaj S, Xu D, Zhu Z, Blaha R, Huang C, Liu L. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch Virol 2020; 166:363-373. [PMID: 33206218 DOI: 10.1007/s00705-020-04877-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Influenza A virus (IAV) infections result in a large number of deaths and substantial economic losses each year. MicroRNAs repress gene expression and are involved in virus-host interactions. miR-29a is known to have anti-tumor and anti-fibrotic effects. However, the role of miR-29a in IAV infection is unclear. In the present study, we investigated the effect of miR-29a on IAV infection and the mechanisms by which it functions. IAV infection was found to cause decreased miR-29a expression in lung epithelial A549 cells and mouse lungs. Overexpression of miR-29a reduced IAV mRNA and protein levels and progeny virus production in HEK293 and A549 cells. Inhibition of IAV infection by miR-29a was observed with different strains of IAV, including A/PR/8/34, A/WSN/1933, and clinical isolates A/OK/3052/09 and A/OK/309/06 H3N2. Knockout of miR-29a using CRISPR/Cas9 resulted in an increase in viral mRNA and protein levels, confirming that miR-29a suppresses IAV infection. A 3' untranslated region (3'-UTR) reporter assay showed that miR-29a had binding sites in the 3'-UTR of the Wnt-Ca2+ signaling receptor frizzled 5 gene, and overexpression of miR-29a reduced the level of the endogenous frizzled 5 protein. Wnt5a treatment of HEK293 and A549 cells enhanced IAV infection. Our results suggest that miR-29a inhibits IAV infection, probably via the frizzled 5 receptor.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Gayan Bamunuarachchi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Yanzhao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Kishore Vaddadi
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Zhengyu Zhu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Rachel Blaha
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
| |
Collapse
|
2
|
Guo Y, Huang N, Tian M, Fan M, Liu Q, Liu Z, Sun T, Huang J, Xia H, Zhao Y, Ping J. Integrated Analysis of microRNA-mRNA Expression in Mouse Lungs Infected With H7N9 Influenza Virus: A Direct Comparison of Host-Adapting PB2 Mutants. Front Microbiol 2020; 11:1762. [PMID: 32849388 PMCID: PMC7399063 DOI: 10.3389/fmicb.2020.01762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators involved in the antiviral response to influenza virus infection, however, an analytical comparison of miRNA and mRNA expression changes induced by several H7N9 host-adapting PB2 mutants remains undone. Here, miRNA microarray and transcriptome sequencing of BALB/c mouse lungs infected with A/Anhui/1/2013 (H7N9) [hereafter referred to as H7N9/AH1-PB2-627K(WT)] and mutant variants with PB2 amino acid substitutions (avian-like H7N9/AH1-PB2-627E and mammalian-adapted H7N9/AH1-PB2-627E/701N) were directly compared. The results showed that influenza virus infection induced dysregulation of numerous host cell processes. In a miRNA-mRNA network associated with immunity, changes in the expression of 38 miRNAs and 58 mRNAs were detected following influenza virus infection. Notably, the miRNAs of mmu-miR-188-5p, mmu-miR-511-5p, mmu-miR-483-5p, and mmu-miR-690 were specifically associated with the replication of the avian-like virus H7N9/AH1-PB2-627E. Likewise, the miRNAs of mmu-miR-691, mmu-miR-329-3p, and mmu-miR-144-3p were specifically associated with the mammalian-adapted virus H7N9/AH1-PB2-627E/701N. Finally, the miRNAs of mmu-miR-98-5p, mmu-miR-103-3p, mmu-miR-199a-5p, and mmu-miR-378a-3p were specifically associated with H7N9/AH1-PB2-627K(WT) virus replication. This is the first report of comparative integration analysis of miRNA-mRNA expression of these three H7N9 influenza viruses with different host-adapting PB2 mutations. Our results highlight potential miRNAs of importance in influenza virus pathogenesis.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Nan Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Miao Tian
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Menglu Fan
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Qingzheng Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Sun
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jingjin Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Huizhi Xia
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Zhao
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Zheng Y, Fu X, Wang L, Zhang W, Zhou P, Zhang X, Zeng W, Chen J, Cao Z, Jia K, Li S. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses. Microb Pathog 2018; 121:252-261. [PMID: 29772263 DOI: 10.1016/j.micpath.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs.
Collapse
Affiliation(s)
- Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xinliang Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Wenyan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Jidang Chen
- School of Life Science and Engineering, Foshan University, Guangzhou, People's Republic of China
| | - Zongxi Cao
- Hainan Academy of Agricultural Science, Hainan, People's Republic of China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China.
| |
Collapse
|
4
|
Zhou P, Tu L, Lin X, Hao X, Zheng Q, Zeng W, Zhang X, Zheng Y, Wang L, Li S. cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells. Viruses 2017; 9:v9120360. [PMID: 29186842 PMCID: PMC5744135 DOI: 10.3390/v9120360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.
Collapse
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Liqing Tu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Qingxu Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wang R, Zhang YY, Lu JS, Xia BH, Yang ZX, Zhu XD, Zhou XW, Huang PT. The highly pathogenic H5N1 influenza A virus down-regulated several cellular MicroRNAs which target viral genome. J Cell Mol Med 2017; 21:3076-3086. [PMID: 28609011 PMCID: PMC5661113 DOI: 10.1111/jcmm.13219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
Higher and prolonged viral replication is critical for the increased pathogenesis of the highly pathogenic avian influenza (HPAI) subtype of H5N1 influenza A virus (IAV) over the lowly pathogenic H1N1 IAV strain. Recent studies highlighted the considerable roles of cellular miRNAs in host defence against viral infection. In this report, using a 3'UTR reporter system, we identified several putative miRNA target sites buried in the H5N1 virus genome. We found two miRNAs, miR-584-5p and miR-1249, that matched with the PB2 binding sequence. Moreover, we showed that these miRNAs dramatically down-regulated PB2 expression, and inhibited replication of H5N1 and H1N1 IAVs in A549 cells. Intriguingly, these miRNAs expression was differently regulated in A549 cells infected with the H5N1 and H1N1 viruses. Furthermore, transfection of miR-1249 inhibitor enhanced the PB2 expression and promoted the replication of H5N1 and H1N1 IAVs. These results suggest that H5N1 virus may have evolved a mechanism to escape host-mediated inhibition of viral replication through down-regulation of cellular miRNAs, which target its viral genome.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying-Ying Zhang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.,The General Hospital of the PLA Rocket Force, Beijing, China
| | - Jian-Sheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Bing-Hui Xia
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhi-Xin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xu-Dong Zhu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiao-Wei Zhou
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Pei-Tang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
6
|
Samir M, Vaas LAI, Pessler F. MicroRNAs in the Host Response to Viral Infections of Veterinary Importance. Front Vet Sci 2016; 3:86. [PMID: 27800484 PMCID: PMC5065965 DOI: 10.3389/fvets.2016.00086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs) are endogenous RNA molecules, approximately 22 nucleotides in length, that regulate gene expression, mostly at the posttranscriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host–pathogen interactions are being discovered, for instance, miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lea A I Vaas
- TWINCORE, Center for Experimental and Clinical Infection Research , Hannover , Germany
| | - Frank Pessler
- TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
7
|
Samir M, Pessler F. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications. Front Vet Sci 2016; 3:22. [PMID: 27092305 PMCID: PMC4819147 DOI: 10.3389/fvets.2016.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Frank Pessler
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
The Effect of Oseltamivir on the Disease Progression of Lethal Influenza A Virus Infection: Plasma Cytokine and miRNA Responses in a Mouse Model. DISEASE MARKERS 2016; 2016:9296457. [PMID: 27110056 PMCID: PMC4824134 DOI: 10.1155/2016/9296457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/25/2022]
Abstract
Lethal influenza A virus infection leads to acute lung injury and possibly lethal complications. There has been a continuous effort to identify the possible predictors of disease severity. Unlike earlier studies, where biomarkers were analyzed on certain time points or days after infection, in this study biomarkers were evaluated over the entire course of infection. Circulating proinflammatory cytokines and/or miRNAs that track with the onset and progression of lethal A/Puerto Rico/8/34 (PR8) influenza A virus infection and their response to oseltamivir treatment were investigated up to 10 days after infection. Changes in plasma cytokines (IL-1β, IL-10, IL-12p70, IL-6, KC, TNF-α, and IFN-γ) and several candidate miRNAs were profiled. Among the cytokines analyzed, IL-6 and KC/GRO cytokines appeared to correlate with peak viral titer. Over the selected 48 miRNAs profiled, certain miRNAs were up- or downregulated in a manner that was dependent on the oseltamivir treatment and disease severity. Our findings suggest that IL-6 and KC/GRO cytokines can be a potential disease severity biomarker and/or marker for the progression/remission of infection. Further studies to explore other cytokines, miRNAs, and lung injury proteins in serum with different subtypes of influenza A viruses with varying disease severity may provide new insight into other unique biomarkers.
Collapse
|
9
|
Makkoch J, Poomipak W, Saengchoowong S, Khongnomnan K, Praianantathavorn K, Jinato T, Poovorawan Y, Payungporn S. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1). Exp Biol Med (Maywood) 2016; 241:409-420. [PMID: 26518627 PMCID: PMC4935422 DOI: 10.1177/1535370215611764] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulation of gene silencing and are involved in many cellular processes including inhibition of infected viral replication. This study investigated cellular miRNA expression profiles operating in response to influenza virus in early stage of infection which might be useful for understanding and control of viral infection. A549 cells were infected with different subtypes of influenza virus (pH1N1, H3N2 and H5N1). After 24 h post-infection, miRNAs were extracted and then used for DNA library construction. All DNA libraries with different indexes were pooled together with equal concentration, followed by high-throughput sequencing based on MiSeq platform. The miRNAs were identified and counted from sequencing data by using MiSeq reporter software. The miRNAs expressions were classified into up and downregulated miRNAs compared to those found in non-infected cells. Mostly, each subtype of influenza A virus triggered the upregulated responses in miRNA expression profiles. Hsa-miR-101, hsa-miR-193b, hsa-miR-23b, and hsa-miR-30e* were upregulated when infected with all three subtypes of influenza A virus. Target prediction results showed that virus infection can trigger genes in cellular process, metabolic process, developmental process and biological regulation. This study provided some insights into the cellular miRNA profiling in response to various subtypes of influenza A viruses in circulation and which have caused outbreaks in human population. The regulated miRNAs might be involved in virus-host interaction or host defense mechanism, which should be investigated for effective antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Jarika Makkoch
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Witthaya Poomipak
- Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Suthat Saengchoowong
- Joint Chulalongkorn University - University of Liverpool PhD Programme in Biomedical Sciences and Biotechnology, Bangkok 10330, Thailand
| | - Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | | | - Thananya Jinato
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
10
|
Peng F, He J, Loo JFC, Yao J, Shi L, Liu C, Zhao C, Xie W, Shao Y, Kong SK, Gu D. Identification of microRNAs in Throat Swab as the Biomarkers for Diagnosis of Influenza. Int J Med Sci 2016; 13:77-84. [PMID: 26917988 PMCID: PMC4747873 DOI: 10.7150/ijms.13301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Influenza is a serious worldwide disease that captures global attention in the past few years after outbreaks. The recent discoveries of microRNA (miRNA) and its unique expression profile in influenza patients have offered a new method for early influenza diagnosis. The aim of this study was to examine the utility of miRNAs for the diagnosis of influenza. METHODS Thirteen selected miRNAs were investigated with the hosts' throat swabs (25 H1N1, 20 H3N2, 20 influenza B and 21 healthy controls) by real-time quantitative polymerase chain reaction (RT-qPCR) using U6 snRNA as endogenous control for normalization, and receiver operating characteristic (ROC) curve/Area under curve (AUC) for analysis. RESULTS miR-29a-3p, miR-30c-5p, miR-34c-3p and miR-181a-5p are useful biomarkers for influenza A detection; and miR-30c-5p, miR-34b-5p, miR-205-5p and miR-449b-5p for influenza B detection. Also, use of both miR-30c-5p and miR-34c-3p (AUC=0.879); and miR-30c-5p and miR-449b-5p (AUC=0.901) are better than using one miRNA to confirm influenza A and influenza B infection, respectively. CONCLUSIONS Given its simplicity, non-invasiveness and specificity, we found that the throat swab-derived miRNAs miR-29a-3p, miR-30c-5p, miR-34b-5p, miR-34c-3p, miR-181a-5p, miR-205-5p and miR-449b-5p are a useful tool for influenza diagnosis on influenza A and B.
Collapse
Affiliation(s)
- Fang Peng
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jianan He
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jacky Fong Chuen Loo
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyu Yao
- 4. Guangdong Medical University, Zhanjiang, China
| | - Lei Shi
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunxiao Liu
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Chunzhong Zhao
- 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Weidong Xie
- 5. Shenzhen Key Lab of Health Science and Technology, Division of Life Sciences & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yonghong Shao
- 6. College of Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems, Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, China
| | - Siu Kai Kong
- 3. Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dayong Gu
- 1. Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, China; 2. Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, China
| |
Collapse
|
11
|
Bao Y, Gao Y, Jin Y, Cong W, Pan X, Cui X. MicroRNA expression profiles and networks in mouse lung infected with H1N1 influenza virus. Mol Genet Genomics 2015; 290:1885-97. [PMID: 25893419 DOI: 10.1007/s00438-015-1047-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 11/27/2022]
Abstract
Influenza A viruses can cause localized outbreaks and worldwide pandemics, owing to their high transmissibility and wide host range. As such, they are among the major diseases that cause human death. However, the molecular changes induced by influenza A virus infection in lung tissue are not entirely clear. Changes in microRNA (miRNA) expression occur in many pathological and physiological processes, and influenza A virus infection has been shown to alter miRNA expression in cultured cells and animal models. In this study, we mined key miRNAs closely related to influenza A virus infection and explored cellular regulatory mechanisms against influenza A virus infection, by building networks among miRNAs and genes, gene ontologies (GOs), and pathways. In this study, miRNAs and mRNAs induced by H1N1 influenza virus infection were measured by gene chips, and we found that 82 miRNAs and 3371 mRNAs were differentially expressed. The 82 miRNAs were further analyzed with the series test of cluster (STC) analysis. Three of the 16 cluster profiles identified by STC, which include 46 miRNAs in the three profiles, changed significantly. Using potential target genes of the 46 miRNAs, we looked for intersections of these genes with 3371 differentially expressed mRNAs; 719 intersection genes were identified. Based on the GO or KEGG databases, we attained GOs or pathways for all of the above intersection genes. Fisher's and χ (2) test were used to calculate p value and false discovery rate (FDR), and according to the standard of p < 0.001, 241 GOs and 76 pathways were filtered. Based on these data, miRNA-gene, miRNA-GO, and miRNA-pathway networks were built. We then extracted three classes of GOs (related to inflammatory and immune response, cell cycle, proliferation and apoptosis, and signal transduction) to build three subgraphs, and pathways strictly related with H1N1 influenza virus infection were filtered to extract a subgraph of the miRNA-pathway network. Last, according to the pathway analysis and miRNA-pathway network analysis, 17 miRNAs were found to be associated with the "influenza A" pathway. This study provides the most complete miRNAome profiles, and the most detailed miRNA regulatory networks to date, and is the first to report the most important 17 miRNAs closely related with the pathway of influenza A. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology and the use of mice as a model for human H1N1 influenza virus infection studies.
Collapse
Affiliation(s)
- Yanyan Bao
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingjie Gao
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yahong Jin
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xin Pan
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolan Cui
- Biosafety Laboratory, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Altered splenic miRNA expression profile in H1N1 swine influenza. Arch Virol 2015; 160:979-85. [DOI: 10.1007/s00705-015-2351-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/25/2015] [Indexed: 01/29/2023]
|
13
|
Choi EJ, Kim HB, Baek YH, Kim EH, Pascua PNQ, Park SJ, Kwon HI, Lim GJ, Kim S, Kim YI, Choi YK. Differential microRNA expression following infection with a mouse-adapted, highly virulent avian H5N2 virus. BMC Microbiol 2014; 14:252. [PMID: 25266911 PMCID: PMC4189662 DOI: 10.1186/s12866-014-0252-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are known to regulate various biological processes, including expression of cellular gene and virus-induced inflammation. Recently, studies have indicated that some miRNAs could regulate influenza virus replication. Due to differential sensitivities of influenza A virus strains to different species (avian and mammalian), variations in host responses may be observed. Therefore, we investigated and compared the differences in global host miRNA expression in mouse lungs infected with wild type low pathogenicity A/Aquatic bird/Korea/w81/2005 (H5N2) (w81) or mouse-adapted virulent A/Aquatic bird /Korea/ma81/2007 (H5N2) (ma81) virus. Results Although the mice infected with ma81 exhibited much greater mortality than w81-infected mice, the parental w81 virus induced a higher number of differentially expressed miRNAs compared to the ma81 virus. Between these 2 viruses, a total of 27 and 20 miRNAs were commonly expressed at 1 dpi and 3 dpi, respectively. It is noteworthy that only 9 miRNAs (miR-100-5p, miR-130a-5p, miR-146b-3p, miR-147-3p, miR-151-5p, miR-155-3p, miR-223-3p, miR-301a-3p, and miR-495-3p) were significantly upregulated in both lungs infected with either wild type w81 or the mouse-adapted ma81 strain at both time points. Notably, expression levels of miR-147-3p, miR-151-5p, miR-155-3p, and miR-223-3p were higher in the lungs of mice infected with the ma81 virus than those infected with the w81 virus. To identify potential roles of these miRNAs in regulating influenza virus replication, each group of mice was intranasally treated with each inhibitor of specifically targeting 4 miRNAs, and then challenged with 5 mouse lethal dose 50% (MLD50) of the virulent ma81 virus on the following day. Although the specific miRNA inhibitors could not completely attenuate mortality or reduce viral replication, the miR-151-5p- and miR-223-3p-inhibitors reduced mortality of inoculated mice to 70% and substantially delayed death. Conclusions Our results suggest that the mammalian adaptation of avian influenza A virus results in a different miRNA expression pattern in lungs of virus-infected mice compared with its parental strain, and use of specific miRNA inhibitors to target genes associated with the immune response or cell death may affect virulence and virus replication. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0252-0) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Vela EM, Kasoji MD, Wendling MQ, Price JA, Knostman KAB, Bresler HS, Long JP. MicroRNA expression in mice infected with seasonal H1N1, swine H1N1 or highly pathogenic H5N1. J Med Microbiol 2014; 63:1131-1142. [PMID: 24913561 DOI: 10.1099/jmm.0.067959-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus infections in humans remain a healthcare concern, and the need for vaccines, therapeutics and prophylactics remains a high priority. Understanding the molecular events associated with influenza-virus-induced pathology may lead to the identification of clinical disease biomarkers and novel antiviral targets. MicroRNAs (miRNAs) are well-conserved endogenous non-coding RNAs known to regulate post-transcriptional gene expression as well as play a major role in many biological processes and pathways. Animal studies have demonstrated that miRNAs are involved in viral disease and controlling inflammation. In this study, we examined the differences in the miRNA expression profiles associated with the lung in mice infected with influenza viruses that varied in virulence and pathogenicity. A statistical model was employed that utilized changes in miRNA expression to identify the virus that was used to infect the mice. This study identified a unique fingerprint of viral pathogenicity associated with seasonal H1N1, swine H1N1 and highly pathogenic H5N1 in the mouse model, and may lead to the identification of novel therapeutic and prophylactic targets.
Collapse
Affiliation(s)
- Eric M Vela
- Battelle, 505 King Avenue, Columbus, OH, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wu Z, Hao R, Li P, Zhang X, Liu N, Qiu S, Wang L, Wang Y, Xue W, Liu K, Yang G, Cui J, Zhang C, Song H. MicroRNA expression profile of mouse lung infected with 2009 pandemic H1N1 influenza virus. PLoS One 2013; 8:e74190. [PMID: 24066118 PMCID: PMC3774802 DOI: 10.1371/journal.pone.0074190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/28/2013] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs have been implicated in the regulation of gene expression of various biological processes in a post-transcriptional manner under physiological and pathological conditions including host responses to viral infections. The 2009 pandemic H1N1 influenza virus is an emerging reassortant strain of swine, human and bird influenza virus that can cause mild to severe illness and even death. To further understand the molecular pathogenesis of the 2009 pandemic H1N1 influenza virus, we profiled cellular microRNAs of lungs from BALB/c mice infected with wild-type 2009 pandemic influenza virus A/Beijing/501/2009 (H1N1) (hereafter referred to as BJ501) and mouse-adapted influenza virus A/Puerto Rico/8/1934 (H1N1) (hereafter referred to as PR8) for comparison. Microarray analysis showed both the influenza virus BJ501 and PR8 infection induced strain- and temporal-specific microRNA expression patterns and that their infection caused a group of common and distinct differentially expressed microRNAs. Characteristically, more differentially expressed microRNAs were aroused on day 5 post infection than on day 2 and more up-regulated differentially expressed microRNAs were provoked than the down-regulated for both strains of influenza virus. Finally, 47 differentially expressed microRNAs were obtained for the infection of both strains of H1N1 influenza virus with 29 for influenza virus BJ501 and 43 for PR8. Among them, 15 microRNAs had no reported function, while 32 including miR-155 and miR-233 are known to play important roles in cancer, immunity and antiviral activity. Pathway enrichment analyses of the predicted targets revealed that the transforming growth factor-β (TGF-β) signaling pathway was the key cellular pathway associated with the differentially expressed miRNAs during influenza virus PR8 or BJ501 infection. To our knowledge, this is the first report of microRNA expression profiles of the 2009 pandemic H1N1 influenza virus in a mouse model, and our findings might offer novel therapy targets for influenza virus infection.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Rongzhang Hao
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Peng Li
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Nan Liu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Shaofu Qiu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Ligui Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Yong Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Wenzhong Xue
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Kun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Guang Yang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Jiajun Cui
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Chuanfu Zhang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
- * E-mail: (HBS); (CFZ)
| | - Hongbin Song
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P. R. China
- * E-mail: (HBS); (CFZ)
| |
Collapse
|
16
|
Song H, Wang Q, Guo Y, Liu S, Song R, Gao X, Dai L, Li B, Zhang D, Cheng J. Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis 2013; 13:257. [PMID: 23731466 PMCID: PMC3679792 DOI: 10.1186/1471-2334-13-257] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With concerns about the disastrous health and economic consequences caused by the influenza pandemic, comprehensively understanding the global host response to influenza virus infection is urgent. The role of microRNA (miRNA) has recently been highlighted in pathogen-host interactions. However, the precise role of miRNAs in the pathogenesis of influenza virus infection in humans, especially in critically ill patients is still unclear. METHODS We identified cellular miRNAs involved in the host response to influenza virus infection by performing comprehensive miRNA profiling in peripheral blood mononuclear cells (PBMCs) from critically ill patients with swine-origin influenza pandemic H1N1 (2009) virus infection via miRNA microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays. Receiver operator characteristic (ROC) curve analysis was conducted and area under the ROC curve (AUC) was calculated to evaluate the diagnostic accuracy of severe H1N1 influenza virus infection. Furthermore, an integrative network of miRNA-mediated host-influenza virus protein interactions was constructed by integrating the predicted and validated miRNA-gene interaction data with influenza virus and host-protein-protein interaction information using Cytoscape software. Moreover, several hub genes in the network were selected and validated by qRT-PCR. RESULTS Forty-one significantly differentially expressed miRNAs were found by miRNA microarray; nine were selected and validated by qRT-PCR. QRT-PCR assay and ROC curve analyses revealed that miR-31, miR-29a and miR-148a all had significant potential diagnostic value for critically ill patients infected with H1N1 influenza virus, which yielded AUC of 0.9510, 0.8951 and 0.8811, respectively. We subsequently constructed an integrative network of miRNA-mediated host-influenza virus protein interactions, wherein we found that miRNAs are involved in regulating important pathways, such as mitogen-activated protein kinase signaling pathway, epidermal growth factor receptor signaling pathway, and Toll-like receptor signaling pathway, during influenza virus infection. Some of differentially expressed miRNAs via in silico analysis targeted mRNAs of several key genes in these pathways. The mRNA expression level of tumor protein T53 and transforming growth factor beta receptor 1 were found significantly reduced in critically ill patients, whereas the expression of Janus kinase 2, caspase 3 apoptosis-related cysteine peptidase, interleukin 10, and myxovirus resistance 1 were extremely increased in critically ill patients. CONCLUSIONS Our data suggest that the dysregulation of miRNAs in the PBMCs of H1N1 critically ill patients can regulate a number of key genes in the major signaling pathways associated with influenza virus infection. These differentially expressed miRNAs could be potential therapeutic targets or biomarkers for severe influenza virus infection.
Collapse
Affiliation(s)
- Hao Song
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Yang Guo
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xuesong Gao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Li Dai
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Baoshun Li
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Deli Zhang
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| |
Collapse
|