1
|
Waickman AT, Friberg H, Gargulak M, Kong A, Polhemus M, Endy T, Thomas SJ, Jarman RG, Currier JR. Assessing the Diversity and Stability of Cellular Immunity Generated in Response to the Candidate Live-Attenuated Dengue Virus Vaccine TAK-003. Front Immunol 2019; 10:1778. [PMID: 31417556 PMCID: PMC6684763 DOI: 10.3389/fimmu.2019.01778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
The development of an efficacious DENV vaccine has been a long-standing public health priority. However, this effort has been complicated significantly due to the hazard presented by incomplete humoral immunity in mediating immune enhancement of infection and disease severity. Therefore, there is a significant need for DENV vaccine platforms capable of generating broad immune responses including durable cellular immunity, as well as novel analytical tools to assess the magnitude, diversity, and persistence of vaccine-elicited immunity. In this study, we demonstrate that a single dose of the recombinant, tetravalent, live-attenuated DENV vaccine TAK-003 elicits potent and durable cellular immunity against both the structural and non-structural proteins of all four DENV serotypes, which is maintained for at least 4 months post-immunization. Although not contained within the vaccine formulation, significant reactivity against the non-structural (NS) proteins of DENV-1,-3, and-4 is observed following vaccination, to an extent directly proportional to the magnitude of responses to the corresponding vaccine (DENV-2) components. Distinct, quantifiable, and durable patterns of DENV antigen reactivity can be observed in individuals following vaccination. Detailed epitope mapping of T cell reactivity against the DENV-2 proteome using a matrix of overlapping peptide pools demonstrated that TAK-003 elicits a broad response directed across the DENV-2 proteome, with focused reactivity against NS1 and NS3. We conclude that, as measured by an IFN-γ ELISPOT assay, a single dose of TAK-003 generates potent T cell-mediated immunity which is durable in magnitude and breadth through 4 months post-vaccination.
Collapse
Affiliation(s)
- Adam T Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Morgan Gargulak
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Amanda Kong
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Mark Polhemus
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, United States
| | - Timothy Endy
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, United States
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MA, United States
| |
Collapse
|
2
|
Lyski ZL, Messer WB. Approaches to Interrogating the Human Memory B-Cell and Memory-Derived Antibody Repertoire Following Dengue Virus Infection. Front Immunol 2019; 10:1276. [PMID: 31244836 PMCID: PMC6562360 DOI: 10.3389/fimmu.2019.01276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Memory B-cells (MBCs) are potential antibody secreting immune cells that differentiate and mature following host exposure to a pathogen. Following differentiation, MBCs remain in peripheral circulation after recovery and are poised to secrete antigen-specific antibodies if and when they are re-exposed to their cognate antigen. Consequently, MBCs form the founder population and provide one of the first lines of pathogen-specific defense against reinfection. The role MBCs play is complicated for viruses that are heterologous, such as dengue virus (DENV), which exist as antigenically different serotypes. On second infection with a different serotype, MBCs from initial dengue infection rapidly proliferate and secrete antibodies: many of these MBC derived antibodies will be cross-reactive and weakly neutralizing, while some antibodies may recognize epitopes conserved across serotypes and have the capacity to broadly neutralize 2 or more serotypes. It is also possible that a new population of MBCs and antibodies specific for the second virus serotype need to arise for long-term broader immunity to develop. Methods to interrogate and track memory B cell responses are important for evaluating both natural immunity and vaccine response. However, the low abundance of MBCs for any specific pathogen makes it challenging to interrogate frequency, specificity, and breadth for the pathogen of interest. This review discusses current approaches that have been used to interrogate the memory B cell immune response against viral pathogens in general and DENV specifically. Including strengths, limitations, and future directions. Single-cell approaches could help uncover the DENV specific MBC antibody repertoire, and improved methods for isolating DENV specific monoclonal antibodies from human peripheral blood cells would allow for a functional analysis of the anti-DENV repertoire.
Collapse
Affiliation(s)
- Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
3
|
Nivarthi UK, Tu HA, Delacruz MJ, Swanstrom J, Patel B, Durbin AP, Whitehead SS, Pierce KK, Kirkpatrick BD, Baric RS, Nguyen N, Emerling DE, de Silva AM, Diehl SA. Longitudinal analysis of acute and convalescent B cell responses in a human primary dengue serotype 2 infection model. EBioMedicine 2019; 41:465-478. [PMID: 30857944 PMCID: PMC6444124 DOI: 10.1016/j.ebiom.2019.02.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Acute viral infections induce a rapid and transient increase in antibody-secreting plasmablasts. At convalescence, memory B cells (MBC) and long-lived plasma cells (LLPC) are responsible for long-term humoral immunity. Following an acute viral infection, the specific properties and relationships between antibodies produced by these B cell compartments are poorly understood. METHODS We utilized a controlled human challenge model of primary dengue virus serotype 2 (DENV2) infection to study acute and convalescent B-cell responses. FINDINGS The level of DENV2 replication was correlated with the magnitude of the plasmablast response. Functional analysis of plasmablast-derived monoclonal antibodies showed that the DENV2-specific response was dominated by cells producing DENV2 serotype-specific antibodies. DENV2-neutralizing antibodies targeted quaternary structure epitopes centered on domain III of the viral envelope protein (EDIII). Functional analysis of MBC and serum antibodies from the same subjects six months post-challenge revealed maintenance of the serotype-specific response in both compartments. The serum response mainly targeted DENV2 serotype-specific epitopes on EDIII. INTERPRETATION Our data suggest overall functional alignment of DENV2-specific responses from the plasmablast, through the MBC and LLPC compartments following primary DENV2 inflection. These results provide enhanced resolution of the temporal and specificity of the B cell compartment in viral infection and serve as framework for evaluation of B cell responses in challenge models. FUNDING This study was supported by the Bill and Melinda Gates Foundation and the National Institutes of Health.
Collapse
Affiliation(s)
- Usha K Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Huy A Tu
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Matthew J Delacruz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jesica Swanstrom
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Bhumi Patel
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Anna P Durbin
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Ngan Nguyen
- Atreca, Inc. Redwood City, California 94063, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
4
|
Potent Plasmablast-Derived Antibodies Elicited by the National Institutes of Health Dengue Vaccine. J Virol 2017; 91:JVI.00867-17. [PMID: 28878078 DOI: 10.1128/jvi.00867-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Exposure to dengue virus (DENV) is thought to elicit lifelong immunity, mediated by DENV-neutralizing antibodies (nAbs). However, Abs generated by primary infections confer serotype-specific protection, and immunity against other serotypes develops only after subsequent infections. Accordingly, the induction of these nAb responses acquired after serial DENV infections has been a long-sought-after goal for vaccination. Nonetheless, it is still unclear if tetravalent vaccines can elicit or recall nAbs. In this study, we have characterized the responses from a volunteer who had been previously exposed to DENV and was immunized with the live attenuated tetravalent vaccine Butantan-DV, developed by the NIH and Butantan Institute. Eleven days after vaccination, we observed an ∼70-fold expansion of the plasmablast population. We generated 21 monoclonal Abs (MAbs) from singly sorted plasmablasts. These MAbs were the result of clonal expansions and had significant levels of somatic hypermutation (SHM). Nineteen MAbs (90.5%) neutralized at least one DENV serotype at concentrations of 1 μg/ml or less; 6 of the 21 MAbs neutralized three or more serotypes. Despite the tetravalent composition of the vaccine, we observed a neutralization bias in the induced repertoire: DENV3 was targeted by 18 of the 19 neutralizing MAbs (nMAbs). Furthermore, the P3D05 nMAb neutralized DENV3 with extraordinary potency (concentration to achieve half-maximal neutralization [Neut50] = 0.03 μg/ml). Thus, the Butantan-DV vaccine engendered a mature, antigen-selected B cell repertoire. Our results suggest that preexisting responses elicited by a previous DENV3 infection were recalled by immunization.IMPORTANCE The dengue epidemic presents a global public health challenge that causes widespread economic burden and remains largely unchecked by existing control strategies. Successful control of the dengue epidemic will require effective prophylactic and therapeutic interventions. Several vaccine clinical efficacy trials are approaching completion, and the chances that one or more live attenuated tetravalent vaccines (LATVs) will be introduced worldwide is higher than ever. While it is widely accepted that dengue virus (DENV)-neutralizing antibody (nAb) titers are associated with protection, the Ab repertoire induced by LATVs remain uncharacterized. Here, we describe the isolation of potent (Neut50 < 0.1 μg/ml) nAbs from a DENV-seropositive volunteer immunized with the tetravalent vaccine Butantan-DV, which is currently in phase III trials.
Collapse
|
5
|
Lima-Junior JDC, Morgado FN, Conceição-Silva F. How Can Elispot Add Information to Improve Knowledge on Tropical Diseases? Cells 2017; 6:cells6040031. [PMID: 28961208 PMCID: PMC5755491 DOI: 10.3390/cells6040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023] Open
Abstract
Elispot has been used as an important tool for detecting immune cells' products and functions and has facilitated the understanding of host-pathogen interaction. Despite the incredible diversity of possibilities, two main approaches have been developed: the immunopathogenesis and diagnosis/prognosis of infectious diseases as well as cancer research. Much has been described on the topics of allergy, autoimmune diseases, and HIV-Aids, however, Elispot can also be applied to other infectious diseases, mainly leishmaniasis, malaria, some viruses, helminths and mycosis usually classified as tropical diseases. The comprehension of the function, concentration and diversity of the immune response in the infectious disease is pointed out as crucial to the development of infection or disease in humans and animals. In this review we will describe the knowledge already obtained using Elispot as a method for accessing the profile of immune response as well as the recent advances in information about host-pathogen interaction in order to better understand the clinical outcome of a group of tropical and neglected diseases.
Collapse
Affiliation(s)
- Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-5° andar, sala 509, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fátima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Humoral cross-reactivity between Zika and dengue viruses: implications for protection and pathology. Emerg Microbes Infect 2017; 6:e33. [PMID: 28487557 PMCID: PMC5520485 DOI: 10.1038/emi.2017.42] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has recently caused extensive outbreaks in Central and South America and the Caribbean. Given its association with Guillain–Barré syndrome in adults and neurological and ocular malformities in neonates, ZIKV has become a pathogen of significant public health concern worldwide. ZIKV shares a considerable degree of genetic identity and structural homology with other flaviviruses, including dengue virus (DENV). In particular, the surface glycoprotein envelope (E), which is involved in viral fusion and entry and is therefore a chief target for neutralizing antibody responses, contains regions that are highly conserved between the two viruses. This results in immunological cross-reactivity, which in the context of prior DENV exposure, may have significant implications for the generation of immune responses to ZIKV and affect disease outcomes. Here we address the issue of humoral cross-reactivity between DENV and ZIKV, reviewing the evidence for and discussing the potential impact of this cross-recognition on the functional quality of antibody responses against ZIKV. These considerations are both timely and relevant to future vaccine design efforts, in view of the existing overlap in the distribution of ZIKV and DENV and the likely spread of ZIKV to additional DENV-naive and experienced populations.
Collapse
|
7
|
Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination. J Virol 2017; 91:JVI.02041-16. [PMID: 28031369 DOI: 10.1128/jvi.02041-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses responsible for dengue fever and dengue hemorrhagic fever. People exposed to DENV develop antibodies (Abs) that strongly neutralize the serotype responsible for infection. Historically, infection with DENV serotype 4 (DENV4) has been less common and less studied than infections with the other three serotypes. However, DENV4 has been responsible for recent large and sustained epidemics in Asia and Latin America. The neutralizing antibody responses and the epitopes targeted against DENV4 have not been characterized in human infection. In this study, we mapped and characterized epitopes on DENV4 recognized by neutralizing antibodies in people previously exposed to DENV4 infections or to a live attenuated DENV4 vaccine. To study the fine specificity of DENV4 neutralizing human antibodies, B cells from two people exposed to DENV4 were immortalized and screened to identify DENV-specific clones. Two human monoclonal antibodies (MAbs) that neutralized DENV4 were isolated, and their epitopes were finely mapped using recombinant viruses and alanine scan mutation array techniques. Both antibodies bound to quaternary structure epitopes near the hinge region between envelope protein domain I (EDI) and EDII. In parallel, to characterize the serum neutralizing antibody responses, convalescence-phase serum samples from people previously exposed to primary DENV4 natural infections or a monovalent DENV4 vaccine were analyzed. Natural infection and vaccination also induced serum-neutralizing antibodies that targeted similar epitope domains at the EDI/II hinge region. These studies defined a target of neutralizing antigenic site on DENV4 targeted by human antibodies following natural infection or vaccination.IMPORTANCE The four serotypes of dengue virus are the causative agents of dengue fever and dengue hemorrhagic fever. People exposed to primary DENV infections develop long-term neutralizing antibody responses, but these principally recognize only the infecting serotype. An effective vaccine against dengue should elicit long-lasting protective antibody responses to all four serotypes simultaneously. We and others have defined antigenic sites on the envelope (E) protein of viruses of dengue virus serotypes 1, 2, and 3 targeted by human neutralizing antibodies. The epitopes on DENV4 E protein targeted by the human neutralizing antibodies and the mechanisms of serotype 4 neutralization are poorly understood. Here, we report the properties of human antibodies that neutralize dengue virus serotype 4. People exposed to serotype 4 infections or a live attenuated serotype 4 vaccine developed neutralizing antibodies that bound to similar sites on the viral E protein. These studies have provided a foundation for developing and evaluating DENV4 vaccines.
Collapse
|
8
|
Yam-Puc JC, Cedillo-Barrón L, Aguilar-Medina EM, Ramos-Payán R, Escobar-Gutiérrez A, Flores-Romo L. The Cellular Bases of Antibody Responses during Dengue Virus Infection. Front Immunol 2016; 7:218. [PMID: 27375618 PMCID: PMC4893500 DOI: 10.3389/fimmu.2016.00218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Elsa Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa (UAS) , Culiacan, Sinaloa , Mexico
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa (UAS) , Culiacan, Sinaloa , Mexico
| | - Alejandro Escobar-Gutiérrez
- Department for Immunological Investigations, Institute for Epidemiological Diagnosis and Reference, Health Secretariat , Mexico City , Mexico
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| |
Collapse
|
9
|
B Cell Responses during Secondary Dengue Virus Infection Are Dominated by Highly Cross-Reactive, Memory-Derived Plasmablasts. J Virol 2016; 90:5574-85. [PMID: 27030262 DOI: 10.1128/jvi.03203-15] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/21/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Dengue virus (DENV) infection results in the production of both type-specific and cross-neutralizing antibodies. While immunity to the infecting serotype is long-lived, heterotypic immunity wanes a few months after infection. Epidemiological studies link secondary heterotypic infections with more severe symptoms, and cross-reactive, poorly neutralizing antibodies have been implicated in this increased disease severity. To understand the cellular and functional properties of the acute dengue virus B cell response and its role in protection and immunopathology, we characterized the plasmablast response in four secondary DENV type 2 (DENV2) patients. Dengue plasmablasts had high degrees of somatic hypermutation, with a clear preference for replacement mutations. Clonal expansions were also present in each donor, strongly supporting a memory origin for these acutely induced cells. We generated 53 monoclonal antibodies (MAbs) from sorted patient plasmablasts and found that DENV-reactive MAbs were largely envelope specific and cross neutralizing. Many more MAbs neutralized DENV than reacted to envelope protein, emphasizing the significance of virion-dependent B cell epitopes and the limitations of envelope protein-based antibody screening. A majority of DENV-reactive MAbs, irrespective of neutralization potency, enhanced infection by antibody-dependent enhancement (ADE). Interestingly, even though DENV2 was the infecting serotype in all four patients, several MAbs from two patients neutralized DENV1 more potently than DENV2. Further, half of all type-specific neutralizing MAbs were also DENV1 biased in binding. Taken together, these findings are reminiscent of original antigenic sin (OAS), given that the patients had prior dengue virus exposures. These data describe the ongoing B cell response in secondary patients and may further our understanding of the impact of antibodies in dengue virus pathogenesis. IMPORTANCE In addition to their role in protection, antibody responses have been hypothesized to contribute to the pathology of dengue. Recent studies characterizing memory B cell (MBC)-derived MAbs have provided valuable insight into the targets and functions of B cell responses generated after DENV exposure. However, in the case of secondary infections, such MBC-based approaches fail to distinguish acutely induced cells from the preexisting MBC pool. Our characterization of plasmablasts and plasmablast-derived MAbs provides a focused analysis of B cell responses activated during ongoing infection. Additionally, our studies provide evidence of OAS in the acute-phase dengue virus immune response, providing a basis for future work examining the impact of OAS phenotype antibodies on protective immunity and disease severity in secondary infections.
Collapse
|
10
|
Dengue Virus Directly Stimulates Polyclonal B Cell Activation. PLoS One 2015; 10:e0143391. [PMID: 26656738 PMCID: PMC4675537 DOI: 10.1371/journal.pone.0143391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/04/2015] [Indexed: 02/03/2023] Open
Abstract
Dengue infection is associated to vigorous inflammatory response, to a high frequency of activated B cells, and to increased levels of circulating cross-reactive antibodies. We investigated whether direct infection of B cells would promote activation by culturing primary human B lymphocytes from healthy donors with DENV in vitro. B cells were susceptible, but poorly permissive to infection. Even though, primary B cells cultured with DENV induced substantial IgM secretion, which is a hallmark of polyclonal B cell activation. Notably, DENV induced the activation of B cells obtained from either DENV immune or DENV naïve donors, suggesting that it was not dependent on DENV-specific secondary/memory response. B cell stimulation was dependent on activation of MAPK and CD81. B cells cultured with DENV also secreted IL-6 and presented increased expression of CD86 and HLA-DR, which might contribute to B lymphocyte co-stimulatory function. Indeed, PBMCs, but not isolated B cells, secreted high amounts of IgG upon DENV culture, suggesting that interaction with other cell types in vivo might promote Ig isotype switching and IgG secretion from different B cell clones. These findings suggest that activation signaling pathways triggered by DENV interaction with non-specific receptors on B cells might contribute to the exacerbated response observed in dengue patients.
Collapse
|
11
|
Yam-Puc JC, García-Cordero J, Calderón-Amador J, Donis-Maturano L, Cedillo-Barrón L, Flores-Romo L. Germinal center reaction following cutaneous dengue virus infection in immune-competent mice. Front Immunol 2015; 6:188. [PMID: 25964784 PMCID: PMC4408864 DOI: 10.3389/fimmu.2015.00188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/07/2015] [Indexed: 01/15/2023] Open
Abstract
Dengue virus (DENV) has four serotypes, which can cause from asymptomatic disease to severe dengue. Heterologous secondary infections have been associated to a greater risk of potentially fatal dengue due to non-neutralizing memory antibodies (Abs), which facilitate the infection, such as anti-precursor membrane (prM) Abs, among other mechanisms. Usually, class-switched memory Abs are generated mainly through germinal centers (GCs). However, the cellular events underlying these Ab responses to DENV, especially during repeated/secondary infections, have been poorly studied. We wanted to know whether there is involvement of GC reactions during cutaneous DENV infection and whether there is any sort of preferential Ab responses to defined viral proteins. Intradermal DENV inoculation at a relatively low dose efficiently infects immune-competent BALB/c mice, inducing higher quantities of DENV-specific GC B cells and larger GCs than the control conditions. Interestingly, GCs exhibited as much prM as envelope (E) and non-structural 3 viral proteins in situ. Intriguingly, despite the much larger abundance of E protein than of prM protein in the virions, infected animals showed similar amounts of circulating Abs and Ag-specific GC B cells both for prM and for E proteins, even significantly higher for prM. To the best of our knowledge, there are no reports of the GC responses during DENV infection. This relatively stronger anti-prM response could be triggered by DENV to preferentially promote Abs against certain viral proteins, which might favor infections by facilitating DENV invasion of host cells. It is thus conceivably that DENV might have evolved to induce this kind of Ab responses.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Department of Cell Biology, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Juana Calderón-Amador
- Department of Cell Biology, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Luis Donis-Maturano
- Department of Cell Biology, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| |
Collapse
|
12
|
Woda M, Mathew A. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry. J Immunol Methods 2014; 416:167-77. [PMID: 25497702 DOI: 10.1016/j.jim.2014.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals.
Collapse
Affiliation(s)
- Marcia Woda
- Division of Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Anuja Mathew
- Division of Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
13
|
Jaiswal S, Smith K, Ramirez A, Woda M, Pazoles P, Shultz LD, Greiner DL, Brehm MA, Mathew A. Dengue virus infection induces broadly cross-reactive human IgM antibodies that recognize intact virions in humanized BLT-NSG mice. Exp Biol Med (Maywood) 2014; 240:67-78. [PMID: 25125497 DOI: 10.1177/1535370214546273] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγ(null) mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines.
Collapse
Affiliation(s)
- Smita Jaiswal
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kenneth Smith
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Alejandro Ramirez
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Marcia Woda
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Pamela Pazoles
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Anuja Mathew
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|