1
|
Ghosh AG, Kim HL, Khor SS. HLA alleles and dengue susceptibility across populations in the era of climate change: a comprehensive review. Front Immunol 2025; 16:1473475. [PMID: 40303409 PMCID: PMC12037607 DOI: 10.3389/fimmu.2025.1473475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Dengue, a viral infection transmitted by Aedes mosquitoes, is an emerging global health threat exacerbated by climate change. Rising temperatures and altered precipitation patterns create favourable conditions for vector proliferation and extended transmission periods, increasing the risk of dengue in endemic regions and facilitating its spread to non-endemic areas. Understanding the interplay between critical genetic factors and dengue susceptibility is crucial for developing effective public health strategies. The Human Leukocyte Antigen (HLA) genes encode proteins essential for an effective immune response against pathogens, and their genetic variations influence susceptibility to severe dengue. In this study, we conducted a comprehensive meta-analysis of HLA alleles associated with dengue infection and dengue severity. We analysed 19 case-control studies on dengue infections in populations worldwide to infer HLA associations with various pathological forms of dengue and to examine differences across different populations. Our findings indicate that HLA-A*02 increases susceptibility to dengue fever (DF), while HLA-A*03 increases the risk of Dengue Haemorrhagic Fever (DHF), with these increased susceptibilities primarily observed in Southeast Asian populations. Additionally, HLA-A*24 is associated with DHF and all symptomatic dengue infections (DEN), contributing to dengue risk in both Southeast Asia and the Caribbean. Conversely, HLA-A*33 and HLA-B*44 show a protective effect against DHF but show significant regional heterogeneity, highlighting divergent, population-specific susceptibility profiles. This study underscores the importance of population-specific genetic risk assessments for dengue infection and emphasizes the need for targeted medical interventions and improved predictive models to mitigate dengue's impact, especially as climate change accelerates disease spread.
Collapse
Affiliation(s)
- Amit Gourav Ghosh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- GenomeAsia 100K Consortium, Singapore, Singapore
| | - Hie Lim Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- GenomeAsia 100K Consortium, Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Seik-Soon Khor
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- GenomeAsia 100K Consortium, Singapore, Singapore
| |
Collapse
|
2
|
Ghetia C, Bhatt P, Mukhopadhyay C. Association of dengue virus non-structural-1 protein with disease severity: a brief review. Trans R Soc Trop Med Hyg 2022; 116:986-995. [PMID: 36125197 DOI: 10.1093/trstmh/trac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
Dengue virus (DENV) was discovered by P. M. Ashburn and Charles F. Craig in 1907. Evidence of dengue-like illness was observed before 1907 and DENV epidemics have been reported from different parts of the world since then, with increased morbidity rates every year. DENV typically causes a febrile illness that ranges from mild asymptomatic infection to fatal dengue haemorrhagic fever (DHF) and/or dengue shock syndrome (DSS). Host mechanisms through which mild infection progresses to the fatal forms are still unknown. Few factors have been associated to aid severe disease acquisition, DENV non-structural 1 (NS1) protein being one of them. NS1 is a highly conserved glycoprotein among the Flavivirus and is often used as a biomarker for dengue diagnosis. This review focuses on assessing the role of NS1 in severe dengue. In this review, hospital-based studies on the association of dengue NS1 with severe dengue from all over the world have been assessed and analysed and the majority of the studies positively correlate high NS1 levels with DHF/DSS acquisition. The review also discusses a few experimental studies on NS1 that have shown it contributes to dengue pathogenesis. This review assesses the role of NS1 and disease severity from hospital-based studies and aims to provide better insights on the kinetics and dynamics of DENV infection with respect to NS1 for a better understanding of the role of NS1 in dengue.
Collapse
Affiliation(s)
- Charmi Ghetia
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Puneet Bhatt
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
3
|
Leal ALAB, da Silva FA, Shin JI, Jeong GH, Ferreira GP, Vasconcelos DFP, Monteiro JRS, de Sousa AA, da Silva FRP, da Cunha Pereira ACT. Polymorphisms in immune-mediator genes and the risk of dengue virus infection: Lights from a systematic revaluation by Bayesian approaches. Cytokine 2022; 157:155955. [DOI: 10.1016/j.cyto.2022.155955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
|
4
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S. Current HLA Investigations on SARS-CoV-2 and Perspectives. Front Genet 2021; 12:774922. [PMID: 34912378 PMCID: PMC8667766 DOI: 10.3389/fgene.2021.774922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The rapid, global spread of the SARS-CoV-2 virus during the current pandemic has triggered numerous efforts in clinical and research settings to better understand the host genetics' interactions and the severity of COVID-19. Due to the established major role played by MHC/HLA polymorphism in infectious disease course and susceptibility, immunologists and geneticists have teamed up to investigate its contribution to the SARS-CoV-2 infection and COVID-19 progression. A major goal of the Covid-19|HLA & Immunogenetics Consortium is to support and unify these efforts. Here, we present a review of HLA immunogenomics studies in the SARS-CoV-2 pandemic and reflect on the role of various HLA data, their limitation and future perspectives.
Collapse
Affiliation(s)
- Venceslas Douillard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Nicolas Vince
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Sophie Limou
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| | | |
Collapse
|
5
|
Thach TQ, Eisa HG, Hmeda AB, Faraj H, Thuan TM, Abdelrahman MM, Awadallah MG, Ha NX, Noeske M, Abdul Aziz JM, Nam NH, Nile ME, Dumre SP, Huy NT, Hirayama K. Predictive markers for the early prognosis of dengue severity: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009808. [PMID: 34610027 PMCID: PMC8519480 DOI: 10.1371/journal.pntd.0009808] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/15/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Predictive markers represent a solution for the proactive management of severe dengue. Despite the low mortality rate resulting from severe cases, dengue requires constant examination and round-the-clock nursing care due to the unpredictable progression of complications, posing a burden on clinical triage and material resources. Accordingly, identifying markers that allow for predicting disease prognosis from the initial diagnosis is needed. Given the improved pathogenesis understanding, myriad candidates have been proposed to be associated with severe dengue progression. Thus, we aim to review the relationship between the available biomarkers and severe dengue. METHODOLOGY We performed a systematic review and meta-analysis to compare the differences in host data collected within 72 hours of fever onset amongst the different disease severity levels. We searched nine bibliographic databases without restrictive criteria of language and publication date. We assessed risk of bias and graded robustness of evidence using NHLBI quality assessments and GRADE, respectively. This study protocol is registered in PROSPERO (CRD42018104495). PRINCIPAL FINDINGS Of 4000 records found, 40 studies for qualitative synthesis, 19 for meta-analysis. We identified 108 host and viral markers collected within 72 hours of fever onset from 6160 laboratory-confirmed dengue cases, including hematopoietic parameters, biochemical substances, clinical symptoms, immune mediators, viral particles, and host genes. Overall, inconsistent case classifications explained substantial heterogeneity, and meta-analyses lacked statistical power. Still, moderate-certainty evidence indicated significantly lower platelet counts (SMD -0.65, 95% CI -0.97 to -0.32) and higher AST levels (SMD 0.87, 95% CI 0.36 to 1.38) in severe cases when compared to non-severe dengue during this time window. CONCLUSION The findings suggest that alterations of platelet count and AST level-in the first 72 hours of fever onset-are independent markers predicting the development of severe dengue.
Collapse
Affiliation(s)
- Tran Quang Thach
- Department of Immunogenetics, Nagasaki University, Nagasaki, Japan
| | - Heba Gamal Eisa
- Faculty of Medicine, Menoufia University, Shebin El-Koum, Egypt
| | | | - Hazem Faraj
- Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Tieu Minh Thuan
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Nam Xuan Ha
- Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Michael Noeske
- American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten
| | | | - Nguyen Hai Nam
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Sonon P, Brito Ferreira ML, Santos Almeida R, Saloum Deghaide NH, Henrique Willcox G, Guimarães EL, da Purificação Júnior AF, Cordeiro MT, Antunes de Brito CA, de Albuquerque MDFM, Lins RD, Donadi EA, Lucena-Silva N. Differential Frequencies of HLA-DRB1, DQA1, and DQB1 Alleles and Haplotypes Are Observed in the Arbovirus-Related Neurological Syndromes. J Infect Dis 2021; 224:517-525. [PMID: 33320259 DOI: 10.1093/infdis/jiaa764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND We took advantage of the 2015-2016 Brazilian arbovirus outbreak (Zika [ZIKV]/dengue/chikungunya viruses) associated with neurological complications to type HLA-DRB1/DQA1/DQB1 variants in patients exhibiting neurological complications and in bone marrow donors from the same endemic geographical region. METHODS DRB1/DQA1/DQB1 loci were typed using sequence-specific oligonucleotides. In silico studies were performed using X-ray resolved dimer constructions. RESULTS The DQA1*01, DQA1*05, DQB1*02, or DQB1*06 genotypes/haplotypes and DQA1/DQB1 haplotypes that encode the putative DQA1/DQB1 dimers were overrepresented in the whole group of patients and in patients exhibiting peripheral neurological spectrum disorders (PSD) or encephalitis spectrum disorders (ESD). The DRB1*04, DRB1*13, and DQA1*03 allele groups protected against arbovirus neurological manifestation, being underrepresented in whole group of patients and ESD and PSD groups. Genetic and in silico studies revealed that DQA1/DQB1 dimers (1) were primarily associated with susceptibility to arbovirus infections; (2) can bind to a broad range of ZIKV peptides (235 of 1878 peptides, primarily prM and NS2A); and (3) exhibited hydrophilic and highly positively charged grooves when compared to the DRA1/DRB1 cleft. The protective dimer (DRA1/DRB1*04) bound a limited number of ZIKV peptides (40 of 1878 peptides, primarily prM). CONCLUSION Protective haplotypes may recognize arbovirus peptides more specifically than susceptible haplotypes.
Collapse
Affiliation(s)
- Paulin Sonon
- Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | - Renata Santos Almeida
- Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | | | | | | | - Marli Tenório Cordeiro
- Virology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | | | - Roberto D Lins
- Virology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Eduardo A Donadi
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brazil
| | - Norma Lucena-Silva
- Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Dengue and the Lectin Pathway of the Complement System. Viruses 2021; 13:v13071219. [PMID: 34202570 PMCID: PMC8310334 DOI: 10.3390/v13071219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is a mosquito-borne viral disease causing significant health and economic burdens globally. The dengue virus (DENV) comprises four serotypes (DENV1-4). Usually, the primary infection is asymptomatic or causes mild dengue fever (DF), while secondary infections with a different serotype increase the risk of severe dengue disease (dengue hemorrhagic fever, DHF). Complement system activation induces inflammation and tissue injury, contributing to disease pathogenesis. However, in asymptomatic or primary infections, protective immunity largely results from the complement system’s lectin pathway (LP), which is activated through foreign glycan recognition. Differences in N-glycans displayed on the DENV envelope membrane influence the lectin pattern recognition receptor (PRR) binding efficiency. The important PRR, mannan binding lectin (MBL), mediates DENV neutralization through (1) a complement activation-independent mechanism via direct MBL glycan recognition, thereby inhibiting DENV attachment to host target cells, or (2) a complement activation-dependent mechanism following the attachment of complement opsonins C3b and C4b to virion surfaces. The serum concentrations of lectin PRRs and their polymorphisms influence these LP activities. Conversely, to escape the LP attack and enhance the infectivity, DENV utilizes the secreted form of nonstructural protein 1 (sNS1) to counteract the MBL effects, thereby increasing viral survival and dissemination.
Collapse
|