1
|
Toshima T, Yagi M, Do Y, Hirai H, Kunisaki Y, Kang D, Uchiumi T. Mitochondrial translation failure represses cholesterol gene expression via Pyk2-Gsk3β-Srebp2 axis. Life Sci Alliance 2024; 7:e202302423. [PMID: 38719751 PMCID: PMC11079605 DOI: 10.26508/lsa.202302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Neurodegenerative diseases and other age-related disorders are closely associated with mitochondrial dysfunction. We previously showed that mice with neuron-specific deficiency of mitochondrial translation exhibit leukoencephalopathy because of demyelination. Reduced cholesterol metabolism has been associated with demyelinating diseases of the brain such as Alzheimer's disease. However, the molecular mechanisms involved and relevance to the pathogenesis remained unknown. In this study, we show that inhibition of mitochondrial translation significantly reduced expression of the cholesterol synthase genes and degraded their sterol-regulated transcription factor, sterol regulatory element-binding protein 2 (Srebp2). Furthermore, the phosphorylation of Pyk2 and Gsk3β was increased in the white matter of p32cKO mice. We observed that Pyk2 inhibitors reduced the phosphorylation of Gsk3β and that GSK3β inhibitors suppressed degradation of the transcription factor Srebp2. The Pyk2-Gsk3β axis is involved in the ubiquitination of Srebp2 and reduced expression of cholesterol gene. These results suggest that inhibition of mitochondrial translation may be a causative mechanism of neurodegenerative diseases of aging. Improving the mitochondrial translation or effectiveness of Gsk3β inhibitors is a potential therapeutic strategy for leukoencephalopathy.
Collapse
Affiliation(s)
- Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Qin L, Shi L, Wang Y, Yu H, Du Z, Chen M, Cai Y, Cao Y, Deng S, Wang J, Cheng D, Heng Y, Xu J, Cai K, Wu K. Fumarate Hydratase Enhances the Therapeutic Effect of PD-1 Antibody in Colorectal Cancer by Regulating PCSK9. Cancers (Basel) 2024; 16:713. [PMID: 38398104 PMCID: PMC10887080 DOI: 10.3390/cancers16040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the notable achievements of programmed death 1 (PD-1) antibodies in treating various cancers, the overall efficacy remains limited in the majority of colorectal cancer (CRC) cases. Metabolism reprogramming of tumors inhibits the tricarboxylic acid (TCA) cycle, leading to down-regulation of fumarate hydratase (FH), which is related to poor prognosis in CRC patients. By establishing a tumor-bearing mouse model of CRC with Fh1 expression deficiency, we confirmed that the therapeutic effect of PD-1 antibodies alone was suboptimal in mice with low Fh1 expression, which was improved by combination with a protein invertase subtilisin/kexin 9 (PCSK9) inhibitor. Mechanistically, FH binds to Ras-related nucleoprotein (RAN), which inhibits the nuclear import of the PCSK9 transcription factor SREBF1/2, thus reducing the expression of PCSK9. This leads to increased clonal expansion of CD8+ T cells while the number of Tregs remains unchanged, and the expression of PD-L1 does not change significantly, thus enhancing the immunotherapy response. On the contrary, the expression of PCSK9 increased in CRC cells with low FH expression, which antagonized the effects of immunotherapy. Overall, CRC patients with low FH expression may benefit from combinatorial therapy with PD-1 antibodies and PCSK9 inhibitors to enhance the curative effect.
Collapse
Affiliation(s)
- Le Qin
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
- Department of General Surgery, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China; (Y.H.); (J.X.)
| | - Liang Shi
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yu Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (Z.D.); (Y.C.)
| | - Zhouyuan Du
- Department of Digestive Surgical Oncology, Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (Z.D.); (Y.C.)
| | - Mian Chen
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yuxuan Cai
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yinghao Cao
- Department of Digestive Surgical Oncology, Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (Z.D.); (Y.C.)
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Jun Wang
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yixin Heng
- Department of General Surgery, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China; (Y.H.); (J.X.)
| | - Jiaxin Xu
- Department of General Surgery, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China; (Y.H.); (J.X.)
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Ke Wu
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| |
Collapse
|
3
|
Rashmi R, Nandi C, Majumdar S. Bioinformatic analysis of THAP9 transposase homolog: conserved regions, novel motifs. Curr Res Struct Biol 2023; 7:100113. [PMID: 38292821 PMCID: PMC10824691 DOI: 10.1016/j.crstbi.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 02/01/2024] Open
Abstract
THAP9 is a transposable element-derived gene that encodes the THAP9 protein, which is homologous to the Drosophila P-element transposase (DmTNP) and can cut and paste DNA. However, the exact functional role of THAP9 is unknown. Here, we perform structure prediction, evolutionary analysis and extensive in silico characterization of THAP9, including predicting domains and putative post-translational modification sites. Comparison of the AlphaFold-predicted structure of THAP9 with the DmTNP CryoEM structure, provided insights about the C2CH motif and other DNA binding residues, RNase H-like catalytic domain and insertion domain of the THAP9 protein. We also predicted previously unreported mammalian-specific post-translational modification sites that may play a role in the subcellular localization of THAP9. Furthermore, we observed that there are distinct organism class-specific conservation patterns of key functional residues in certain THAP9 domains.
Collapse
Affiliation(s)
- Richa Rashmi
- Discipline of Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat, India
| | - Chandan Nandi
- Discipline of Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat, India
| | - Sharmistha Majumdar
- Discipline of Biological Engineering, IIT Gandhinagar, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Kim W, Li M, Jin H, Yang H, Türkez H, Uhlén M, Zhang C, Mardinoglu A. Characterization of an in vitro steatosis model simulating activated de novo lipogenesis in MAFLD patients. iScience 2023; 26:107727. [PMID: 37674987 PMCID: PMC10477067 DOI: 10.1016/j.isci.2023.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
Activated de novo lipogenesis (DNL) is the critical pathway involved in the progression of metabolic-associated fatty liver disease (MAFLD). We present an in vitro steatosis model for MAFLD that induces steatosis through activated DNL. This model utilizes insulin and LXR receptor ligand T0901317, eliminating the need for fatty acid treatment. Significant increases in triglycerides (TAGs) and expression of DNL-related transcription factors were observed. Transcriptomic analysis revealed distinct gene expression profiles between the DNL and conventional oleic acid (OA)-induced steatosis model. DNL steatosis model exhibited elevated pathways related to glycolysis, cholesterol homeostasis, and bile acid metabolism, reflecting its clinical relevance to MAFLD. Moreover, C75 and JNK-IN-5A compounds effectively reduced TAG accumulation and steatosis-related protein expression in the DNL model, whereas they had no significant impact on TAG accumulation in the OA model. In conclusion, we introduce an ideal model for steatosis study, which could help in understanding the MAFLD mechanisms.
Collapse
Affiliation(s)
- Woonghee Kim
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 17165, Sweden
| | - Mengzhen Li
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 17165, Sweden
| | - Han Jin
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 17165, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 17165, Sweden
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mathias Uhlén
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 17165, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 17165, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm 17165, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
5
|
Di Pardo A, Monyror J, Morales LC, Kadam V, Lingrell S, Maglione V, Wozniak RW, Sipione S. Mutant huntingtin interacts with the sterol regulatory element-binding proteins and impairs their nuclear import. Hum Mol Genet 2021; 29:418-431. [PMID: 31875875 DOI: 10.1093/hmg/ddz298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Brain cholesterol homeostasis is altered in Huntington's disease (HD), a neurodegenerative disorder caused by the expansion of a CAG nucleotide repeat in the HTT gene. Genes involved in the synthesis of cholesterol and fatty acids were shown to be downregulated shortly after the expression of mutant huntingtin (mHTT) in inducible HD cells. Nuclear levels of the transcription factors that regulate lipid biogenesis, the sterol regulatory element-binding proteins (SREBP1 and SREBP2), were found to be decreased in HD models compared to wild-type, but the underlying causes were not known. SREBPs are synthesized as inactive endoplasmic reticulum-localized precursors. Their mature forms (mSREBPs) are generated upon transport of the SREBP precursors to the Golgi and proteolytic cleavage, and are rapidly imported into the nucleus by binding to importin β. We show that, although SREBP2 processing into mSREBP2 is not affected in YAC128 HD mice, mSREBP2 is mislocalized to the cytoplasm. Chimeric mSREBP2-and mSREBP1-EGFP proteins are also mislocalized to the cytoplasm in immortalized striatal cells expressing mHTT, in YAC128 neurons and in fibroblasts from HD patients. We further show that mHTT binds to the SREBP2/importin β complex required for nuclear import and sequesters it in the cytoplasm. As a result, HD cells fail to upregulate cholesterogenic genes under sterol-depleted conditions. These findings provide mechanistic insight into the downregulation of genes involved in the synthesis of cholesterol and fatty acids in HD models, and have potential implications for other pathways modulated by SREBPs, including autophagy and excitotoxicity.
Collapse
Affiliation(s)
- Alba Di Pardo
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - John Monyror
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Luis Carlos Morales
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Vaibhavi Kadam
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Susanne Lingrell
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Vittorio Maglione
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| |
Collapse
|
6
|
Liu S, Gao Y, Zhang L, Yin Y, Zhang W. Rspo1/Rspo3-LGR4 signaling inhibits hepatic cholesterol synthesis through the AMPKα-SREBP2 pathway. FASEB J 2020; 34:14946-14959. [PMID: 32926477 DOI: 10.1096/fj.202001234r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
R-spondins (Rspos) are endogenous ligands of leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4). Rspos-LGR4 signaling plays important roles in embryogenesis, gastrointestinal homeostasis, and food intake. Here, we investigated the impacts of Rspos-LGR4 on hepatic cholesterol synthesis. Rspo1/3 and Lgr4 knockdown mice were used to investigate the impacts of Rspo1/3-LGR4 on hepatic cholesterol synthesis. AMPKα agonist, antagonist, and shRNA were used to explore the downstream targets of Rspos-LGR4 signaling. In our study, we reported that LGR4, Rspo1, and Rspo3 were highly expressed in hepatocytes and their expressions were sensitive to energy states. Rspo1 and Rspo3 reversed OA-induced cholesterol synthesis, accompanying with increased the phosphorylation of AMPKα Thr172, reduced SREBP2 nuclear translocation, and Srebf2 mRNA expression. Conversely, hepatic LGR4 knockdown increased hepatic cholesterol synthesis and decreased the phosphorylation of AMPKα both in vitro and in vivo. Activation or inhibition of AMPKα significantly abolished the effects of LGR4 deficiency or Rspos, respectively, on cholesterol synthesis. Knockdown of AMPKα1 or/and AMPKα2 repressed Rspos-induced inhibition on cholesterol synthesis. Our study indicates that Rspo1/Rspo3-LGR4 signaling in hepatocytes suppresses cholesterol synthesis via the AMPKα-SREBP2 pathway.
Collapse
Affiliation(s)
- Shiying Liu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Gao
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liping Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yue Yin
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weizhen Zhang
- School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Abstract
Synthesis and regulation of lipid levels and identities is critical for a wide variety of cellular functions, including structural and morphological properties of organelles, energy storage, signaling, and stability and function of membrane proteins. Proteolytic cleavage events regulate and/or influence some of these lipid metabolic processes and as a result help modulate their pleiotropic cellular functions. Proteins involved in lipid regulation are proteolytically cleaved for the purpose of their relocalization, processing, turnover, and quality control, among others. The scope of this review includes proteolytic events governing cellular lipid dynamics. After an initial discussion of the classic example of sterol regulatory element-binding proteins, our focus will shift to the mitochondrion, where a range of proteolytic events are critical for normal mitochondrial phospholipid metabolism and enforcing quality control therein. Recently, mitochondrial phospholipid metabolic pathways have been implicated as important for the proliferative capacity of cancers. Thus, the assorted proteases that regulate, monitor, or influence the activity of proteins that are important for phospholipid metabolism represent attractive targets to be manipulated for research purposes and clinical applications.
Collapse
Affiliation(s)
- Pingdewinde N. Sam
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Erica Avery
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven M. Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Zhang C, Zhang H, Zhang M, Lin C, Wang H, Yao J, Wei Q, Lu Y, Chen Z, Xing G, Cao X. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. Exp Cell Res 2019; 383:111512. [PMID: 31356817 DOI: 10.1016/j.yexcr.2019.111512] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that oxysterol binding protein like 2 (OSBPL2) knockdown is closely related to cholesterol metabolism. However, whether there is a direct relation between OSBPL2 and cholesterol synthesis is unknown. This study explored the mechanism of OSBPL2 deficiency in the upregulation of squalene epoxidase (SQLE) and the subsequent accumulation of intracellular cholesterol and cholesteryl ester. Here, we constructed an OSBPL2-deleted HeLa cell line using CRISPR/Cas9 technology, screened differentially expressed genes and examined the transcriptional regulation of SQLE using a dual-luciferase reporter gene. RNA-seq analysis showed that SQLE was upregulated significantly and the dual luciferase reporter gene assay revealed that two new functional transcription factor binding sites of Sp1 transcription factor (SP1) and sterol regulatory element-binding transcription factor 2 (SREBF2) in the SQLE promoter participated in the SQLE transcription and expression. In addition, we also observed that OSBPL2 deletion inhibited the AMPK signalling pathway and that the inhibition of AMPK signalling promoted SP1 and SREBF2 entry into the nuclear to upregulate SQLE expression. Therefore, these data support that OSBPL2 deficiency upregulates SQLE expression and increases the accumulation of cholesterol and cholesteryl ester by suppressing AMPK signalling, which provides new evidence of the connection between OSBPL2 and cholesterol synthesis.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongdu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Heterogeneous Nuclear Ribonucleoprotein A1 and Lamin A/C Modulate Nucleocytoplasmic Shuttling of Avian Reovirus p17. J Virol 2019; 93:JVI.00851-19. [PMID: 31375578 DOI: 10.1128/jvi.00851-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/17/2019] [Indexed: 01/15/2023] Open
Abstract
Avian reovirus (ARV) p17 protein continuously shuttles between the nucleus and the cytoplasm via transcription-dependent and chromosome region maintenance 1 (CRM1)-independent mechanisms. Nevertheless, whether cellular proteins modulate nucleocytoplasmic shuttling of p17 remains unknown. This is the first report that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 serves as a carrier protein to modulate nucleocytoplasmic shuttling of p17. Both in vitro and in vivo studies indicated that direct interaction of p17 with hnRNP A1 maps within the amino terminus (amino acids [aa] 19 to 40) of p17 and the Gly-rich region of the C terminus of hnRNP A1. Furthermore, our results reveal that the formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Utilizing sequence and mutagenesis analyses, we have identified nuclear export signal (NES) 19LSLRELAI26 of p17. Mutations of these residues causes a nuclear retention of p17. In this work, we uncovered that the N-terminal 21 amino acids (aa 19 to 40) of p17 that comprise the NES can modulate both p17 and hnRNP A1 interaction and nucleocytoplasmic shuttling of p17. In this work, the interaction site of p17 with lamin A/C was mapped within the amino terminus (aa 41 to 60) of p17 and p17 colocalized with lamin A/C at the nuclear envelope. Knockdown of hnRNP A1 or lamin A/C led to inhibition of nucleocytoplasmic shuttling of p17 and reduced virus yield. Collectively, the results of this study provide mechanistic insights into hnRNP A1 and lamin A/C-modulated nucleocytoplasmic shuttling of the ARV p17 protein.IMPORTANCE Avian reoviruses (ARVs) cause considerable economic losses in the poultry industry. The ARV p17 protein continuously shuttles between the nucleus and the cytoplasm to regulate several cellular signaling pathways and interacts with several cellular proteins to cause translation shutoff, cell cycle arrest, and autophagosome formation, all of which enhance virus replication. To date the mechanisms underlying nucleocytoplasmic shuttling of p17 remain largely unknown. Here we report that hnRNP A1 and lamin A/C serve as carrier and mediator proteins to modulate nucleocytoplasmic shuttling of p17. The formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Furthermore, we have identified an NES-containing nucleocytoplasmic shuttling domain (aa 19 to 40) of p17 that is critical for binding to hnRNP A1 and for nucleocytoplasmic shuttling of p17. This study provides novel insights into how hnRNP A1 and lamin A/C modulate nucleocytoplasmic shuttling of the ARV p17 protein.
Collapse
|
10
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Reprint of: Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 106:14-23. [PMID: 28550879 DOI: 10.1016/j.neuint.2017.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
12
|
Importins in the maintenance and lineage commitment of ES cells. Neurochem Int 2017; 105:32-41. [PMID: 28163061 DOI: 10.1016/j.neuint.2017.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022]
Abstract
The nucleus of a eukaryotic cell is separated from the cytoplasm by a nuclear envelope, and nuclear pores within the envelope facilitate nucleocytoplasmic transport and the exchange of information. Gene regulation is a key component of biological activity regulation in the cell. Transcription factors control the expression levels of various genes that are necessary for the maintenance or conversion of cellular states during animal development. Because transcription factor activities determine the extent of transcription of target genes, the number of active transcription factors must be tightly regulated. In this regard, the nuclear translocation of a transcription factor is an important determinant of its activity. Therefore, it is becoming clear that the nucleocytoplasmic transport machinery is involved in cell differentiation and organism development. This review examines the regulation of transcription factors by the nucleocytoplasmic transport machinery in ES cells.
Collapse
|
13
|
Jump DB, Botolin D, Wang Y, Xu J, Christian B. Fatty acids and gene transcription. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601069318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Donald B. Jump
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Daniela Botolin
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Yun Wang
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Jinghua Xu
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| | - Barbara Christian
- Departments of Physiology, Biochemistry and Molecular BiologyMichigan State UniversityMichiganUSA
| |
Collapse
|
14
|
van der Watt PJ, Chi A, Stelma T, Stowell C, Strydom E, Carden S, Angus L, Hadley K, Lang D, Wei W, Birrer MJ, Trent JO, Leaner VD. Targeting the Nuclear Import Receptor Kpnβ1 as an Anticancer Therapeutic. Mol Cancer Ther 2016; 15:560-73. [PMID: 26832790 DOI: 10.1158/1535-7163.mct-15-0052] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
Abstract
Karyopherin beta 1 (Kpnβ1) is a nuclear transport receptor that imports cargoes into the nucleus. Recently, elevated Kpnβ1 expression was found in certain cancers and Kpnβ1 silencing with siRNA was shown to induce cancer cell death. This study aimed to identify novel small molecule inhibitors of Kpnβ1, and determine their anticancer activity. An in silico screen identified molecules that potentially bind Kpnβ1 and Inhibitor of Nuclear Import-43, INI-43 (3-(1H-benzimidazol-2-yl)-1-(3-dimethylaminopropyl)pyrrolo[5,4-b]quinoxalin-2-amine) was investigated further as it interfered with the nuclear localization of Kpnβ1 and known Kpnβ1 cargoes NFAT, NFκB, AP-1, and NFY and inhibited the proliferation of cancer cells of different tissue origins. Minimum effect on the proliferation of noncancer cells was observed at the concentration of INI-43 that showed a significant cytotoxic effect on various cervical and esophageal cancer cell lines. A rescue experiment confirmed that INI-43 exerted its cell killing effects, in part, by targeting Kpnβ1. INI-43 treatment elicited a G2-M cell-cycle arrest in cancer cells and induced the intrinsic apoptotic pathway. Intraperitoneal administration of INI-43 significantly inhibited the growth of subcutaneously xenografted esophageal and cervical tumor cells. We propose that Kpnβ1 inhibitors could have therapeutic potential for the treatment of cancer. Mol Cancer Ther; 15(4); 560-73. ©2016 AACR.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Catherine Stowell
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Erin Strydom
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Carden
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liselotte Angus
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kate Hadley
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Lang
- Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Wei Wei
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John O Trent
- Department of Medicine, J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
15
|
Wang ZY, Shi M, Li Y. Importin-β1 plays a key role in the nucleocytoplasmic transportation process of MARVELD1. Mol Biol 2015. [DOI: 10.1134/s002689331503019x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
17
|
Xu X, So JS, Park JG, Lee AH. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 2013; 33:301-11. [PMID: 24222088 PMCID: PMC4035704 DOI: 10.1055/s-0033-1358523] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The liver is a central organ that controls systemic energy homeostasis and nutrient metabolism. Dietary carbohydrates and lipids, and fatty acids derived from adipose tissue are delivered to the liver, and utilized for gluconeogenesis, lipogenesis, and ketogenesis, which are tightly regulated by hormonal and neural signals. Hepatic lipogenesis is activated primarily by insulin that is secreted from the pancreas after a high-carbohydrate meal. Sterol regulatory element binding protein-1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) are major transcriptional regulators that induce key lipogenic enzymes to promote lipogenesis in the liver. Sterol regulatory element binding protein-1c is activated by insulin through complex signaling cascades that control SREBP-1c at both transcriptional and posttranslational levels. Carbohydrate-responsive element-binding protein is activated by glucose independently of insulin. Here, the authors attempt to summarize the current understanding of the molecular mechanism for the transcriptional regulation of hepatic lipogenesis, focusing on recent studies that explore the signaling pathways controlling SREBPs and ChREBP.
Collapse
Affiliation(s)
| | | | | | - Ann-Hwee Lee
- To whom correspondence should be addressed: Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA. , Tel: 1-212-746-9087
| |
Collapse
|
18
|
Gallo-Ebert C, Donigan M, Liu HY, Pascual F, Manners M, Pandya D, Swanson R, Gallagher D, Chen W, Carman GM, Nickels JT. The yeast anaerobic response element AR1b regulates aerobic antifungal drug-dependent sterol gene expression. J Biol Chem 2013; 288:35466-77. [PMID: 24163365 DOI: 10.1074/jbc.m113.526087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections.
Collapse
Affiliation(s)
- Christina Gallo-Ebert
- From the Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, New Jersey 08691
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population.
Collapse
Affiliation(s)
- Donald B Jump
- Nutrition Program, School of Biological and Population Health Science, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
20
|
Daemen S, Kutmon M, Evelo CT. A pathway approach to investigate the function and regulation of SREBPs. GENES AND NUTRITION 2013; 8:289-300. [PMID: 23516131 PMCID: PMC3639327 DOI: 10.1007/s12263-013-0342-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/05/2013] [Indexed: 02/06/2023]
Abstract
The essential function of sterol regulatory element-binding proteins (SREBPs) in cellular lipid metabolism and homeostasis has been recognized for a long time, and the basic biological pathway involving SREBPs has been well described; however, a rapidly growing number of studies reveal the complex regulation of these SREBP transcription factors at multiple levels. This regulation allows the integration of signals of diverse pathways involving nutrients, contributing to cellular lipid and energy homeostasis. This review attempts to integrate this knowledge. The description of the SREBP pathway is Web-linked as it refers to the online version of the pathway on wikipathways.org , which is interactively linked to genomics databases and literature. This allows a more extensive study of the pathway through reviewing these links.
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Bioinformatics, BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Martina Kutmon
- Department of Bioinformatics, BiGCaT, Maastricht University, Maastricht, The Netherlands
- Netherlands Consortium for Systems Biology (NCSB), Amsterdam, The Netherlands
| | - Chris T. Evelo
- Department of Bioinformatics, BiGCaT, Maastricht University, Maastricht, The Netherlands
- Netherlands Consortium for Systems Biology (NCSB), Amsterdam, The Netherlands
| |
Collapse
|
21
|
Fernández-Cid A, Vega M, Herrero P, Moreno F. Yeast importin-β is required for nuclear import of the Mig2 repressor. BMC Cell Biol 2012; 13:31. [PMID: 23131016 PMCID: PMC3531251 DOI: 10.1186/1471-2121-13-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/04/2012] [Indexed: 12/25/2022] Open
Abstract
Background Mig2 has been described as a transcriptional factor that in the absence of Mig1 protein is required for glucose repression of the SUC2 gene. Recently it has been reported that Mig2 has two different subcellular localizations. In high-glucose conditions it is a nuclear modulator of several Mig1-regulated genes, but in low-glucose most of the Mig2 protein accumulates in mitochondria. Thus, the Mig2 protein enters and leaves the nucleus in a glucose regulated manner. However, the mechanism by which Mig2 enters into the nucleus was unknown until now. Results Here, we report that the Mig2 protein is an import substrate of the carrier Kap95 (importin-β). The Mig2 nuclear import mechanism bypasses the requirement for Kap60 (importin-α) as an adaptor protein, since Mig2 directly binds to Kap95 in the presence of Gsp1(GDP). We also show that the Mig2 nuclear import and the binding of Mig2 with Kap95 are not glucose-dependent processes and require a basic NLS motif, located between lysine-32 and arginine-37. Mig2 interaction with Kap95 was assessed in vitro using purified proteins, demonstrating that importin-β, together with the GTP-binding protein Gsp1, is able to mediate efficient Mig2-Kap95 interaction in the absence of the importin-α (Kap60). It was also demonstrated, that the directionality of Mig2 transport is regulated by association with the small GTPase Gsp1 in the GDP- or GTP-bound forms, which promote cargo recognition and release, respectively. Conclusions The Mig2 protein accumulates in the nucleus through a Kap95 and NLS-dependent nuclear import pathway, which is independent of importin-α in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Alejandra Fernández-Cid
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006, Oviedo, Spain
| | | | | | | |
Collapse
|
22
|
Kawazu T, Kanzaki H, Uno A, Azuma H, Nagasaki T. HVJ-E/importin-β hybrid vector for overcoming cytoplasmic and nuclear membranes as double barrier for non-viral gene delivery. Biomed Pharmacother 2012; 66:519-24. [DOI: 10.1016/j.biopha.2012.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022] Open
|
23
|
Ogawa Y, Miyamoto Y, Oka M, Yoneda Y. The interaction between importin-α and Nup153 promotes importin-α/β-mediated nuclear import. Traffic 2012; 13:934-46. [PMID: 22510057 DOI: 10.1111/j.1600-0854.2012.01367.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/06/2012] [Accepted: 04/17/2012] [Indexed: 12/01/2022]
Abstract
Nuclear transport is mediated by transport factors, including the importin β family members. The directionality of nuclear transport is governed by the asymmetrical distribution of the small GTPase Ran. Of note, importin α/β-mediated import of classical nuclear localization signal (cNLS)--containing cargo is more efficient than other Ran-dependent import pathways that do not require importin α. In this study, we characterized the role of importin α in nuclear transport by examining import efficiencies of cNLS-cargo/importin α/β complexes. We first depleted digitonin-permeabilized semi-intact cells of endogenous importin α and used the cells to show that the interaction between importin α and Nup153--a component of the nuclear pore complex (NPC)--is essential for efficient import of importin β-binding domain containing substrates, but not other cargoes that directly bind to importin β. Moreover, we found that the binding of importin α to Nup153 facilitates cNLS-mediated import, and demonstrated that importin α in import complexes and cargo-free importin α prebound to Nup153 promote efficient import of cNLS-containing proteins. This is the first in vitro study showing that in conjunction with Nup153, importin α contributes to directionally biased exit of cNLS-containing cargo to the nuclear side of NPCs.
Collapse
Affiliation(s)
- Yutaka Ogawa
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | |
Collapse
|
24
|
Miyamoto Y, Boag PR, Hime GR, Loveland KL. Regulated nucleocytoplasmic transport during gametogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:616-30. [PMID: 22326858 DOI: 10.1016/j.bbagrm.2012.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Gametogenesis is the process by which sperm or ova are produced in the gonads. It is governed by a tightly controlled series of gene expression events, with some common and others distinct for males and females. Nucleocytoplasmic transport is of central importance to the fidelity of gene regulation that is required to achieve the precisely regulated germ cell differentiation essential for fertility. In this review we discuss the physiological importance for gamete formation of the molecules involved in classical nucleocytoplasmic protein transport, including importins/karyopherins, Ran and nucleoporins. To address what functions/factors are conserved or specialized for these developmental processes between species, we compare knowledge from mice, flies and worms. The present analysis provides evidence of the necessity for and specificity of each nuclear transport factor and for nucleoporins during germ cell differentiation. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
25
|
A highly organized structure mediating nuclear localization of a Myb2 transcription factor in the protozoan parasite Trichomonas vaginalis. EUKARYOTIC CELL 2011; 10:1607-17. [PMID: 22021237 DOI: 10.1128/ec.05177-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import.
Collapse
|
26
|
Mehmood R, Yasuhara N, Fukumoto M, Oe S, Tachibana T, Yoneda Y. Cross-talk between distinct nuclear import pathways enables efficient nuclear import of E47 in conjunction with its partner transcription factors. Mol Biol Cell 2011; 22:3715-24. [PMID: 21832153 PMCID: PMC3183024 DOI: 10.1091/mbc.e10-10-0809] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Study of the nuclear import behavior of E47 in conjunction with its partner transcription factors shows that although the nuclear import of E47 is importin α dependent, it is capable of accumulating in the nucleus under importin α–blocked conditions by virtue of its interaction with its binding partners NeuroD1 and MyoD. Nuclear import of karyophilic proteins is carried out by a variety of mechanisms. We previously showed that two basic helix-loop-helix proteins, NeuroD1 and E47, synergistically affect each other's nuclear import. In this study, we dissected the molecular pathways underlying nuclear import of the NeuroD1/E47 heterodimer. In vitro nuclear import assays indicated that importin α family members are the major nuclear import receptors for E47. However, inhibition of importin α resulted in cytoplasmic retention of E47 that could be rescued by its binding partner, NeuroD1, through heterodimerization. In addition, nuclear import of NeuroD1 was importin α independent but importin β1 dependent. In primary neurons, localization of endogenous E47 was not affected by importin α inhibition, suggesting that neuronal E47 could be imported into the nucleus as a heterodimer with NeuroD1 by using importin β1 alone. We also found that E47 had similar nuclear import characteristics in C2C12 cells, where E47 heterodimerized with MyoD, another helix-loop-helix protein, suggesting functional conservation within the same family of transcription factors. Collectively, our data reveal that E47 is imported into the nucleus via multiple pathways, depending on the molecular binding mode, establishing a previously uncharacterized cross-talk between two distinct nuclear import pathways.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Kawakatsu M, Goto S, Yoshida T, Urata Y, Li TS. Nuclear translocation of glutathione S-transferase π is mediated by a non-classical localization signal. Biochem Biophys Res Commun 2011; 411:745-50. [PMID: 21782793 DOI: 10.1016/j.bbrc.2011.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 11/30/2022]
Abstract
Glutathione S-transferase π (GSTπ), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GSTπ is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GSTπ appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GSTπ was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GSTπ195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GSTπ depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GSTπ, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.
Collapse
Affiliation(s)
- Miho Kawakatsu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | |
Collapse
|
28
|
Mizuguchi C, Moriyama T, Yoneda Y. Generation and characterization of a monoclonal antibody against importin α7/NPI-2. Hybridoma (Larchmt) 2011; 30:307-9. [PMID: 21707368 DOI: 10.1089/hyb.2011.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many nuclear proteins are transported into the nucleus via the importin α/β-mediated pathway. Importin α comprises a multigene family. In this study, we generated and characterized a rat monoclonal antibody (MAb) 3F8 to importin α7. The antibody was generated by the hybridization of mouse myeloma cells with lymph node cells from an immunized rat. The MAb 3F8 specifically recognized importin α7 among importin α isoforms as evidenced by immunoblotting analysis. Furthermore, MAb 3F8 detected exogenous importin α7 in COS-7 cells by immunofluorescence. This MAb will be useful in the analysis of the isoform-specific function of importin α7.
Collapse
Affiliation(s)
- Chiaki Mizuguchi
- Biomolecular Dynamics Group, Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka, Japan
| | | | | |
Collapse
|
29
|
Zhou T, Li S, Zhong W, Vihervaara T, Béaslas O, Perttilä J, Luo W, Jiang Y, Lehto M, Olkkonen VM, Yan D. OSBP-related protein 8 (ORP8) regulates plasma and liver tissue lipid levels and interacts with the nucleoporin Nup62. PLoS One 2011; 6:e21078. [PMID: 21698267 PMCID: PMC3115989 DOI: 10.1371/journal.pone.0021078] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/18/2011] [Indexed: 01/13/2023] Open
Abstract
We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum oxysterol-binding protein implicated in cellular lipid homeostasis. We now investigated its action in hepatic cells in vivo and in vitro. Adenoviral overexpression of ORP8 in mouse liver induced a decrease of cholesterol, phospholipids, and triglycerides in serum (−34%, −26%, −37%, respectively) and liver tissue (−40%, −12%, −24%), coinciding with reduction of nuclear (n)SREBP-1 and -2 and mRNA levels of their target genes. Consistently, excess ORP8 reduced nSREBPs in HuH7 cells, and ORP8 overexpression or silencing by RNA interference moderately suppressed or induced the expression of SREBP-1 and SREBP-2 target genes, respectively. In accordance, cholesterol biosynthesis was reduced by ORP8 overexpression and enhanced by ORP8 silencing in [3H]acetate pulse-labeling experiments. ORP8, previously shown to bind 25-hydroxycholesterol, was now shown to bind also cholesterol in vitro. Yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation analyses revealed the nuclear pore component Nup62 as an interaction partner of ORP8. Co-localization of ORP8 and Nup62 at the nuclear envelope was demonstrated by BiFC and confocal immunofluorescence microscopy. Furthermore, the impact of overexpressed ORP8 on nSREBPs and their target mRNAs was inhibited in cells depleted of Nup62. Our results reveal that ORP8 has the capacity to modulate lipid homeostasis and SREBP activity, probably through an indirect mechanism, and provide clues of an entirely new mode of ORP action.
Collapse
Affiliation(s)
- Tianhong Zhou
- Department of Biology, Jinan University, Guangzhou, China
| | - Shiqian Li
- Department of Biology, Jinan University, Guangzhou, China
| | - Wenbin Zhong
- Department of Biology, Jinan University, Guangzhou, China
| | - Terhi Vihervaara
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Olivier Béaslas
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Julia Perttilä
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Wei Luo
- Department of Biology, Jinan University, Guangzhou, China
| | | | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre Biomedicum, Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
- * E-mail: (VMO); (DY)
| | - Daoguang Yan
- Department of Biology, Jinan University, Guangzhou, China
- * E-mail: (VMO); (DY)
| |
Collapse
|
30
|
Cherezova L, Burnside KL, Rose TM. Conservation of complex nuclear localization signals utilizing classical and non-classical nuclear import pathways in LANA homologs of KSHV and RFHV. PLoS One 2011; 6:e18920. [PMID: 21559489 PMCID: PMC3084728 DOI: 10.1371/journal.pone.0018920] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/23/2011] [Indexed: 11/18/2022] Open
Abstract
ORF73 latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV), the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS) in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG)-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR)-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an increased ability to interact with different nuclear components in its multifunctional role to maintain viral latency.
Collapse
Affiliation(s)
- Lidia Cherezova
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Kellie L. Burnside
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Timothy M. Rose
- Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sekimoto T, Miyamoto Y, Arai S, Yoneda Y. Importin alpha protein acts as a negative regulator for Snail protein nuclear import. J Biol Chem 2011; 286:15126-31. [PMID: 21454664 DOI: 10.1074/jbc.m110.213579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Snail, a zinc finger-containing transcriptional regulator, migrates into the nucleus where it controls gene expression. We demonstrated previously that importin β1 directly recognizes the zinc finger domain of Snail and transports it into the nucleus. Here, using in vitro and in vivo assays, we show that importin α, an adaptor protein for importin β1, negatively regulates the nuclear import of Snail mediated by importin β1. In vitro binding assays indicated that importin α interacted with the zinc finger domain of Snail to compete with the binding of importin β1 and that Snail did not form a ternary complex with importin α/importin β1. Overexpression of importin α in A549 cells reduced the endogenous Snail protein level, which was restored by inhibitors of the proteasome and glycogen synthase kinase 3β. Furthermore, knockdown of importin α by siRNA treatment increased the endogenous Snail protein level in several cancer cell lines. This study provides a novel regulatory mechanism of the nuclear protein import process by importin α and gives an implication to control Snail activity by inhibiting its nuclear localization.
Collapse
Affiliation(s)
- Toshihiro Sekimoto
- Department of Biochemistry, Graduate School of Medicine, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
32
|
Belanger KD, Griffith AL, Baker HL, Hansen JN, Kovacs LAS, Seconi JS, Strine AC. The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae. DNA Cell Biol 2011; 30:641-51. [PMID: 21332387 DOI: 10.1089/dna.2010.1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.
Collapse
|
33
|
Fukumoto M, Sekimoto T, Yoneda Y. Proteomic analysis of importin α-interacting proteins in adult mouse brain. Cell Struct Funct 2011; 36:57-67. [PMID: 21307607 DOI: 10.1247/csf.10026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many transport factors, such as importins and exportins, have been identified, and the molecular mechanisms underlying nucleocytoplasmic transport have been characterized. The specific molecules that are carried by each transport factor and the temporal profiles that characterize the movements of various proteins into or out of the nucleus, however, have yet to be elucidated. Here, we used a proteomic approach to identify molecules that are transported into the nuclei of adult mouse brain cells via importin α5. We identified 48 proteins in total, among which we chose seven to characterize more extensively: acidic (leucine-rich) nuclear phosphoprotein 32 family member A (Anp32a), far upstream element binding protein 1 (FUBP1), thyroid hormone receptor β1 (TRβ1), transaldolase 1, CDC42 effector protein 4 (CDC42-ep4), Coronin 1B, and brain-specific creatine kinase (CK-B). Analyses using green fluorescent protein (GFP)-fused proteins showed that Anp32a, FUBP1, and TRβ1 were localized in the nucleus, whereas transaldolase 1, CDC42-ep4, CK-B, and Coronin 1B were distributed in both the cytoplasm and nucleus. Using a digitonin-permeabilized in vitro transport assay, we demonstrated that, with the exception of CK-B, these proteins were transported into the nucleus by importin α5 together with importin β and Ran. Further, we found that leptomycin B (LMB) treatment increased nuclear CK-B-GFP signals, suggesting that CK-B enters the nucleus and is then exported in a CRM1-dependent manner. Thus, we identified a comprehensive set of candidate proteins that are transported into the nucleus in a manner dependent on importin α5, which enhances our understanding of nucleocytoplasmic signaling in neural cells.
Collapse
Affiliation(s)
- Masahiro Fukumoto
- Department of Frontier Biosciences, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
34
|
Marfori M, Mynott A, Ellis JJ, Mehdi AM, Saunders NFW, Curmi PM, Forwood JK, Bodén M, Kobe B. Molecular basis for specificity of nuclear import and prediction of nuclear localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1562-77. [PMID: 20977914 DOI: 10.1016/j.bbamcr.2010.10.013] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 01/03/2023]
Abstract
Although proteins are translated on cytoplasmic ribosomes, many of these proteins play essential roles in the nucleus, mediating key cellular processes including but not limited to DNA replication and repair as well as transcription and RNA processing. Thus, understanding how these critical nuclear proteins are accurately targeted to the nucleus is of paramount importance in biology. Interaction and structural studies in the recent years have jointly revealed some general rules on the specificity determinants of the recognition of nuclear targeting signals by their specific receptors, at least for two nuclear import pathways: (i) the classical pathway, which involves the classical nuclear localization sequences (cNLSs) and the receptors importin-α/karyopherin-α and importin-β/karyopherin-β1; and (ii) the karyopherin-β2 pathway, which employs the proline-tyrosine (PY)-NLSs and the receptor transportin-1/karyopherin-β2. The understanding of specificity rules allows the prediction of protein nuclear localization. We review the current understanding of the molecular determinants of the specificity of nuclear import, focusing on the importin-α•cargo recognition, as well as the currently available databases and predictive tools relevant to nuclear localization. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Mary Marfori
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Bilayer synthesis during membrane biogenesis involves the concerted assembly of multiple lipid species, requiring coordination of the level of lipid synthesis, uptake, turnover, and subcellular distribution. In this review, we discuss some of the salient conclusions regarding the coordination of lipid synthesis that have emerged from work in mammalian and yeast cells. The principal instruments of global control are a small number of transcription factors that target a wide range of genes encoding enzymes that operate in a given metabolic pathway. Critical in mammalian cells are sterol regulatory element binding proteins (SREBPs) that stimulate expression of genes for the uptake and synthesis of cholesterol and fatty acids. From work with Saccharomyces cerevisiae, much has been learned about glycerophospholipid and ergosterol regulation through Ino2p/Ino4p and Upc2p transcription factors, respectively. Lipid supply is fine-tuned through a multitude of negative feedback circuits initiated by both end products and intermediates of lipid synthesis pathways. Moreover, there is evidence that the diversity of membrane lipids is maintained through cross-regulatory effects, whereby classes of lipids activate the activity of enzymes operating in another metabolic branch.
Collapse
Affiliation(s)
- Axel Nohturfft
- Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, SW17 0RE United Kingdom.
| | | |
Collapse
|
36
|
Conservation of the sterol regulatory element-binding protein pathway and its pathobiological importance in Cryptococcus neoformans. EUKARYOTIC CELL 2009; 8:1770-9. [PMID: 19749173 DOI: 10.1128/ec.00207-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian sterol regulatory element-binding protein (SREBP) homolog, Sre1, is important for adaptation and growth of Cryptococcus neoformans in the mouse brain, where oxygen concentration and nutritional conditions are suboptimal for fungal growth. The extent of conservation of the SREBP pathway in C. neoformans or in any other fungi, however, has not been investigated. We generated mutants susceptible to low oxygen and identified six genes that play a role in the SREBP pathway. Three of these genes (SFB2, KAP123, and GSK3) are not known to be involved in the SREBP pathway in other fungi. Furthermore, we show that C. neoformans contains an additional gene, DAM1, which functions in the SREBP pathway but is yet to be described. Mutants associated with the steps prior to formation of the nuclear Sre1 form dramatically reduced accumulation of the nuclear form under low-oxygen conditions. Concurrently, two mutant strains, scp1Delta and stp1Delta, and the previously isolated sre1Delta strain showed reduction in ergosterol levels, hypersensitivity to several chemical agents, including azole antifungals, CoCl(2), and compounds producing reactive oxygen or nitrogen species, and most importantly, reduced virulence in mice. Mutants affecting genes involved in later steps of the Sre1 pathway, such as those required for import and phosphorylation of proteins in the nucleus, showed less compelling phenotypes. These findings suggest that the SREBP pathway is highly conserved in C. neoformans and it serves as an important link between sterol biosynthesis, oxygen sensing, CoCl(2) sensitivity, and virulence in C. neoformans.
Collapse
|
37
|
Identification of cholesterol-regulating genes by targeted RNAi screening. Cell Metab 2009; 10:63-75. [PMID: 19583955 DOI: 10.1016/j.cmet.2009.05.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/07/2009] [Accepted: 05/26/2009] [Indexed: 11/24/2022]
Abstract
Elevated plasma cholesterol levels are considered responsible for excess cardiovascular morbidity and mortality. Cholesterol in plasma is tightly controlled by cholesterol within cells. Here, we developed and applied an integrative functional genomics strategy that allows systematic identification of regulators of cellular cholesterol levels. Candidate genes were identified by genome-wide gene-expression profiling of sterol-depleted cells and systematic literature queries. The role of these genes in cholesterol regulation was then tested by targeted siRNA knockdown experiments quantifying cellular cholesterol levels and the efficiency of low-density lipoprotein (LDL) uptake. With this strategy, 20 genes were identified as functional regulators of cellular cholesterol homeostasis. Of these, we describe TMEM97 as SREBP target gene that under sterol-depleted conditions localizes to endo-/lysosomal compartments and binds to LDL cholesterol transport-regulating protein Niemann-Pick C1 (NPC1). Taken together, TMEM97 and other factors described here are promising to yield further insights into how cells control cholesterol levels.
Collapse
|
38
|
The role of the nuclear transport system in cell differentiation. Semin Cell Dev Biol 2009; 20:590-9. [PMID: 19465141 DOI: 10.1016/j.semcdb.2009.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 04/24/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022]
Abstract
The eukaryotic cell nuclear transport system selectively mediates molecular trafficking to facilitate the regulation of cellular processes. The components of this system include diverse transport factors such as importins and nuclear pore components that are precisely organized to coordinate cellular events. A number of studies have demonstrated that the nuclear transport system is indispensible in many types of cellular responses. In particular, the nuclear transport machinery has been shown to be an important regulator of development, organogenesis, and tissue formation, wherein altered nuclear transport of key transcription factors can lead to disease. Importantly, precise switching between distinct forms of importin alpha is central to neural lineage specification, consistent with the hypothesis that importin expression can be a key mediator of cell differentiation.
Collapse
|
39
|
Miki T, Okawa K, Sekimoto T, Yoneda Y, Watanabe S, Ishizaki T, Narumiya S. mDia2 shuttles between the nucleus and the cytoplasm through the importin-{alpha}/{beta}- and CRM1-mediated nuclear transport mechanism. J Biol Chem 2009; 284:5753-62. [PMID: 19117945 DOI: 10.1074/jbc.m806191200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian homolog of Drosophila diaphanous (mDia) consisting of three isoforms, mDia1, mDia2, and mDia3, is an effector of Rho GTPases that catalyzes actin nucleation and polymerization. Although the mDia actions on actin dynamics in the cytoplasm have been well studied, whether mDia accumulates and functions in the nucleus remains largely unknown. Given the presence of actin and actin-associated proteins in the nucleus, we have examined nuclear localization of mDia isoforms. We expressed each of mDia isoforms as a green fluorescent protein fusion protein and examined their localization. Although all the mDia isoforms were localized predominantly in the cytoplasm under the steady-state conditions, mDia2 and not mDia1 or mDia3 accumulated extensively in the nucleus upon treatment with leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export. The LMB-induced nuclear accumulation was confirmed for endogenous mDia2 by using an antibody specific to mDia2. Studies using green fluorescent protein fusions of various truncation mDia2 mutants and point mutants of some of these proteins identified a functional nuclear localization signal in the N terminus of mDia2 and at least one functional nuclear export signal in the C terminus. The nuclear localization signal of mDia2 bound to importin-alpha and was imported into the nucleus by importin-alpha/beta complex in an in vitro transport assay. Consistently, depletion of importin-beta with RNA interference suppressed the LMB-induced nuclear localization of endogenous mDia2. These results suggest that mDia2 continuously shuttles between the nucleus and the cytoplasm using specific nuclear transport machinery composing of importin-alpha/beta and CRM1.
Collapse
Affiliation(s)
- Takashi Miki
- Department of Pharmacology and Frontier Technology Center, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling. ACTA ACUST UNITED AC 2008; 15:940-9. [PMID: 18804031 DOI: 10.1016/j.chembiol.2008.07.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/07/2008] [Accepted: 07/21/2008] [Indexed: 02/07/2023]
Abstract
Despite the current availability of selective inhibitors for the classical nuclear export pathway, no inhibitor for the classical nuclear import pathway has been developed. Here we describe the development of specific inhibitors for the importin alpha/beta pathway using a novel method of peptide inhibitor design. An activity-based profile was created via systematic mutational analysis of a peptide template of a nuclear localization signal. An additivity-based design using the activity-based profile generated two peptides with affinities for importin alpha that were approximately 5 million times higher than that of the starting template sequence. The high affinity of these peptides resulted in specific inhibition of the importin alpha/beta pathway. These peptide inhibitors provide a useful tool for studying nuclear import events. Moreover, our inhibitor design method should enable the development of potent inhibitors from a peptide seed.
Collapse
|
42
|
Kabuta T, Take K, Kabuta C, Hakuno F, Takahashi SI. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin beta. Biochem Biophys Res Commun 2008; 377:741-6. [PMID: 18835249 DOI: 10.1016/j.bbrc.2008.09.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin beta directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin beta interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin beta with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.
Collapse
Affiliation(s)
- Tomohiro Kabuta
- Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
43
|
Sakiyama H, Wynn RM, Lee WR, Fukasawa M, Mizuguchi H, Gardner KH, Repa JJ, Uyeda K. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J Biol Chem 2008; 283:24899-908. [PMID: 18606808 PMCID: PMC3259841 DOI: 10.1074/jbc.m804308200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/02/2008] [Indexed: 01/08/2023] Open
Abstract
Carbohydrate response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in the glucose-mediated induction of gene products involved in hepatic glycolysis and lipogenesis. Glucose affects the activity of ChREBP largely through post-translational mechanisms involving phosphorylation-dependent cellular localization. In this work we show that the N-terminal region of ChREBP (residues 1-251) regulates its subcellular localization via an interaction with 14-3-3. 14-3-3 binds an alpha-helix in this region (residues 125-135) to retain ChREBP in the cytosol, and binding of 14-3-3 is facilitated by phosphorylation of nearby Ser-140 and Ser-196. Phosphorylation of ChREBP at these sites was essential for its interaction with CRM1 for export to the cytosol, whereas nuclear import of ChREBP requires dephosphorylated ChREBP to interact with importin alpha. Notably, 14-3-3 appears to compete with importin alpha for ChREBP binding. 14-3-3beta bound to a synthetic peptide spanning residues 125-144 and bearing a phosphate at Ser-140 with a dissociation constant of 1.1 microm, as determined by isothermal calorimetry. The interaction caused a shift in the fluorescence maximum of the tryptophan residues of the peptide. The corresponding unphosphorylated peptide failed to bind 14-3-3beta. These results suggest that interactions with importin alpha and 14-3-3 regulate movement of ChREBP into and out of the nucleus, respectively, and that these interactions are regulated by the ChREBP phosphorylation status.
Collapse
Affiliation(s)
- Haruhiko Sakiyama
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| | - R. Max Wynn
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| | - Wan-Ru Lee
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| | - Masashi Fukasawa
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| | - Hiroyuki Mizuguchi
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| | - Kevin H. Gardner
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| | - Joyce J. Repa
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| | - Kosaku Uyeda
- Departments of Biochemistry,
Pharmacology and
Physiology, University of Texas
Southwestern Medical Center, Dallas, Texas 75390, the
Department of Pharmaceutical
Sciences, Tokushima University, Tokushima, Japan, and the
Dallas Veterans Affairs Medical Center,
Dallas, Texas 75216
| |
Collapse
|
44
|
Novel expression of importin alpha homologue in marine teleost, Pagrus major. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:420-7. [PMID: 18789395 DOI: 10.1016/j.cbpb.2008.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 12/25/2022]
Abstract
Importin alpha proteins are critical modulators of the classical nuclear protein import pathway. Although the physiological roles of importin alpha have been extensively studied in invertebrates and mammals, very little is known about their counterparts in lower vertebrates. In this study, to elucidate the roles of importin alpha in a teleost species, we isolated and characterized red seabream (Pagrus major) importin alpha cDNA derived from ovary and found changes in the mRNA levels of importin alpha in male and female red seabream during sexual maturation. The 1846-bp cDNA encodes a 520 amino acid protein that includes the importin beta-binding domain, a short acidic domain, and an armadillo (arm) repeat domain. Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) showed transcription of red seabream importin alpha in testis and ovary but not in the other tissues. The importin alpha mRNA levels in males increase in association with testicular development, whereas those in females remain high throughout sexual maturation. These findings suggest that red seabream ovary-derived importin alpha may be controlled in a tissue-specific manner and may perform unique functions in the gonad in addition to its involvement in nuclear transport.
Collapse
|
45
|
Fiky AE, Pioli P, Azam A, Yoo K, Nastiuk KL, Krolewski JJ. Nuclear transit of the intracellular domain of the interferon receptor subunit IFNaR2 requires Stat2 and Irf9. Cell Signal 2008; 20:1400-8. [PMID: 18456457 PMCID: PMC2494602 DOI: 10.1016/j.cellsig.2008.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/17/2008] [Indexed: 01/15/2023]
Abstract
Regulated intramembrane proteolysis (RIP) is the primary signaling mechanism for some receptors, such as Notch and the amyloid precursor protein. In addition, some receptor type tyrosine kinases, such as HER4, are able to signal via both kinase activation and regulated receptor proteolysis. Previously, we showed that the IFNaR2 subunit of the type I interferon receptor can be cleaved in a two step process that resembles RIP and that the IFNaR2 intracellular domain (IFNaR2-ICD) can mediate gene transcription in a Stat2 dependent manner. Here, we demonstrate that IFNaR2-ICD, Stat2 and Irf9 form a ternary complex. Furthermore, Stat2 and Irf9 are required for the nuclear transit of a GFP-linked IFNaR2-ICD construct (GFP-ICD). Additional experiments monitoring the nuclear localization of GFP-ICD demonstrate that Stat2 serves an adaptor role, mediating the interaction between the IFNaR2-ICD and Irf9, while the bipartite nuclear localization signal within Irf9 is the primary determinant driving nuclear transit of the ICD containing complex. Overall, the data suggest that liberation of the IFNaR2-ICD by regulated proteolysis could trigger a novel mechanism for moving the transcription factor Stat2 to the nucleus.
Collapse
Affiliation(s)
- Ashraf El Fiky
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, IRVINE, Irvine, CA 92679
| | - Pete Pioli
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, IRVINE, Irvine, CA 92679
| | - Arif Azam
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, IRVINE, Irvine, CA 92679
| | - Kiwon Yoo
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, IRVINE, Irvine, CA 92679
| | - Kent L. Nastiuk
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, IRVINE, Irvine, CA 92679
| | - John J. Krolewski
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, IRVINE, Irvine, CA 92679
- Chao Family Comprehensive Cancer Center, School of Medicine, University of California, IRVINE, Irvine, CA 92679
| |
Collapse
|
46
|
Abstract
The type and quantity of dietary fat ingested contributes to the onset and progression of chronic diseases, like diabetes and atherosclerosis. The liver plays a central role in whole body lipid metabolism and responds rapidly to changes in dietary fat composition. Polyunsaturated fatty acids (PUFA) play a key role in membrane composition and function, metabolism and the control of gene expression. Certain PUFA, like the n-3 PUFA, enhance hepatic fatty acid oxidation and inhibit fatty acid synthesis and VLDL secretion, in part, by regulating gene expression. Our studies have established that key transcription factors, like PPARalpha, SREBP-1, ChREBP and MLX, are regulated by n-3 PUFA, which in turn control levels of proteins involved in lipid and carbohydrate metabolism. Of the n-3 PUFA, 22:6,n-3 has recently been established as a key controller of hepatic lipid synthesis. 22:6,n-3 controls the 26S proteasomal degradation of the nuclear form of SREBP-1. SREBP-1 is a major transcription factor that controls the expression of multiple genes involved fatty acid synthesis and desaturation. 22:6,n-3 suppresses nuclear SREBP-1, which in turn suppresses lipogenesis. This mechanism is achieved, in part, through control of the phosphorylation status of protein kinases. This review will examine both the general features of PUFA-regulated hepatic gene transcription and highlight the unique mechanisms by which 22:6,n-3 impacts gene expression. The outcome of this analysis will reveal that changes in hepatic 22:6,n-3 content has a major impact on hepatic lipid and carbohydrate metabolism. Moreover, the mechanisms involve 22:6,n-3 control of several well-known signaling pathways, such as Akt, Erk1/2, Gsk3beta and PKC (novel or atypical). 22:6,n-3 control of these same signaling pathways in non-hepatic tissues may help to explain the diverse actions of n-3 PUFA on such complex physiological processes as visual acuity and learning.
Collapse
Affiliation(s)
- Donald B Jump
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| | | | | | | | | | | |
Collapse
|
47
|
Martini C, Pallottini V. Cholesterol: from feeding to gene regulation. GENES & NUTRITION 2007; 2:181-93. [PMID: 18850174 PMCID: PMC2474947 DOI: 10.1007/s12263-007-0049-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 11/16/2006] [Indexed: 01/20/2023]
Abstract
We present here a brief description of the path that cholesterol covers from its intestinal absorption to its effects exerted on gene regulation. In particular, the relationship between cholesterol and the protein complexes involved in the intricate gene regulation mechanism implicated in cholesterol homeostasis will be discussed. In addition, a new target role for the pharmacological interventions of one of these factors, the insulin-induced gene (Insig) protein, will be introduced.
Collapse
Affiliation(s)
- C. Martini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| | - V. Pallottini
- Department of Biology, University of Rome “Roma Tre”, Viale Marconi, 446, 00146 Rome, Italy
| |
Collapse
|
48
|
Roth DM, Moseley GW, Glover D, Pouton CW, Jans DA. A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 2007; 8:673-86. [PMID: 17511743 DOI: 10.1111/j.1600-0854.2007.00564.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nuclear protein import is dependent on specific targeting signals within cargo proteins recognized by importins (IMPs) that mediate translocation through the nuclear pore. Recent evidence, however, implicates a role for the microtubule (MT) network in facilitating nuclear import of the cancer regulatory proteins parathyroid hormone-related protein (PTHrP) and p53 tumor suppressor. Here we assess the extent to which MT and actin integrity may be generally required for nuclear protein import for the first time. We examine 10 nuclear-localizing proteins with diverse IMP-dependent nuclear import pathways, our results indicating that the cytoskeleton does not have a general mechanistic role in nuclear localization sequence-dependent nuclear protein import. Of the proteins examined, only the p110(Rb) tumor suppressor protein Rb, together with p53 and PTHrP, was found to require MT integrity for optimal nuclear import. Fluorescence recovery after photobleaching experiments indicated that the MT-dependent nuclear transport pathway increases both the rate and extent of Rb nuclear import but does not affect Rb nuclear export. Dynamitin overexpression experiments implicate the MT motor dynein in the import process. The results indicate that, additional to IMP/diffusion-dependent processes, certain cancer regulatory proteins utilize an MT-enhanced pathway for accelerated nuclear import that is presumably required for their nuclear functions.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
49
|
Waldmann I, Wälde S, Kehlenbach RH. Nuclear import of c-Jun is mediated by multiple transport receptors. J Biol Chem 2007; 282:27685-92. [PMID: 17652081 DOI: 10.1074/jbc.m703301200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
c-Jun and c-Fos are major components of the transcriptional complex AP-1. Here, we investigate the nuclear import pathway(s) of the transcription factor c-Jun. c-Jun bound specifically to the nuclear import receptors importin beta, transportin, importin 5, importin 7, importin 9, and importin 13. In digitonin-permeabilized cells, importin beta, transportin, importin 7, and importin 9 promoted efficient import of c-Jun into the nucleus. Importin alpha, by contrast, inhibited nuclear import of c-Jun in vitro. A single basic region preceding the leucine zipper of c-Jun functions as a nuclear localization signal (NLS) and was required for interaction with all tested import receptors. In vivo, nuclear import of a c-Jun reporter protein lacking the leucine zipper strictly depended on this NLS. In a leucine zipper-dependent manner, c-Jun with mutations in its NLS was still imported into the nucleus in a complex with endogenous leucine zipper proteins or, for example, with cotransfected c-Fos. Together, these results explain the highly efficient nuclear import of the transcription factor c-Jun.
Collapse
Affiliation(s)
- Inga Waldmann
- Universität Göttingen, Zentrum für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
50
|
Ying M, Chen B, Tian Y, Hou Y, Li Q, Shang X, Sun J, Cheng H, Zhou R. Nuclear import of human sexual regulator DMRT1 is mediated by importin-beta. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:804-13. [PMID: 17459496 DOI: 10.1016/j.bbamcr.2007.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 01/12/2023]
Abstract
Human DMRT1 (Doublesex-Mab3-Related Transcription factor 1) encodes a male-specific transcriptional regulator with a conserved zinc-finger-like DNA-binding domain, so called DM domain, which is similar to male sexual regulatory genes doublesex of Drosophila and mab-3 of Caenorhabditis elegans. As a key transcription factor critical to sex determination and differentiation, however, human DMRT1 nuclear import mechanism remains unknown. We have identified a functional nuclear localization signal (NLS) located between the two intertwined zinc-binding sites of the DM domain. Site-directed mutagenesis indicates that K92 and R93 within the DM domain are critical for DMRT1 nuclear localization. Analysis of deletion mutants shows that importin-beta1 binds directly to DMRT1 via the DM domain, mediating its nuclear import. Co-immunoprecipitation analysis confirms the interaction of mouse Dmrt1 in Sertoli cells with importin-beta1 in vivo. In addition, in vitro docking or nuclear transport assay in digitonin-permeabilized cells shows that DMRT1 is docked at the nuclear pore complex (NPC) or accumulated in the nucleus when importin-beta1, but not importin-alpha1 added. Furthermore, transduction of anti-importin-beta1 antibody into live Sertoli cells effectively inhibits DMRT1 nuclear import. These results suggest that zinc finger domain of DMRT1 functions as a nuclear localization signal and DMRT1 is transported into the nucleus in an importinbeta1-mediated manner. Thus, effective nuclear import of DMRT1 and its interaction with importin-beta1 insure the nuclear retention of the DMRT1 and further exertion of its influence on downstream targets in the cascade of sexual development.
Collapse
Affiliation(s)
- Ming Ying
- Department of Genetics and Center for Developmental Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|