1
|
Scholey JM. Mitotic spindle membranes. Mol Biol Cell 2025; 36:re1. [PMID: 40067152 PMCID: PMC12005112 DOI: 10.1091/mbc.e24-10-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
The mitotic spindle, which uses microtubules (MTs) and MT-based motor proteins to separate sister chromosomes prior to cell division, contains abundant membranes, organelles, and protein assemblies derived from the familiar interphase intracellular membrane network. In this essay, mainly with reference to selected animal and fungal cells, I summarize current ideas about the reciprocal functional relationship between these mitotic spindle-associated membranes and the spindle MT cytoskeleton, in which; 1) spindle membranes control the composition, Ca++ ion concentration and mechanical performance of the spindle MT cytoskeleton; and conversely 2) the spindle MT cytoskeleton contributes to membrane/organelle partitioning and inheritance during cell division and serves as a reservoir of membranes, organelles, and vesicles for delivery to the interphase cytoplasm, plasma membrane, and cleavage furrow.
Collapse
Affiliation(s)
- Jonathan M. Scholey
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
2
|
Beltrán-Rivera A, García-Arrarás JE. Cellular dedifferentiation. Revisiting Betty Hay's legacy. Dev Biol 2025; 523:1-8. [PMID: 40164323 DOI: 10.1016/j.ydbio.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The concept of mature specialized cells and the stability of the differentiated state was fundamentally challenged by Elizabeth Hay's groundbreaking observations on amphibian limb regeneration, published in 1959. Building on previous work by C.S. Thornton, she discovered that muscle cells could dedifferentiate and transform into progenitor cells within the regeneration blastema reshaping our understanding of cell differentiation. This pivotal finding reshaped our understanding of cell differentiation, opening new avenues of research. Though controversial, her findings significantly advanced the fields of cell plasticity and regenerative biology.
Collapse
|
3
|
Tago T, Fujii S, Sasaki S, Shirae-Kurabayashi M, Sakamoto N, Yamamoto T, Maeda M, Ueki T, Satoh T, Satoh AK. Cell-wide arrangement of Golgi/RE units depends on the microtubule organization. Cell Struct Funct 2024; 49:101-110. [PMID: 39358226 PMCID: PMC11930777 DOI: 10.1247/csf.24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
We have previously shown that Golgi stacks and recycling endosomes (REs) exist as Golgi/RE units in sea urchin embryos. In this study, we showed that Golgi/RE units were scattered throughout the cytoplasm at early developmental stages but gathered to form a "Golgi ring" surrounding the centric REs at the blastula stage. This change in the cell-wide arrangement of Golgi/RE units coincided with a dramatic change in microtubule organization from a randomly oriented cortical pattern to radial arrays under the apical plasma membrane. A single gigantic Golgi apparatus surrounding centric RE is clearly associated with the center of the radial microtubule arrays. Furthermore, we found that in some animal species belonging to different clades, Golgi stacks lack lateral connections but are likely centralized by microtubule motors. These results suggest that Golgi centralization depends on the organization of the microtubule array in addition to the lateral linking between Golgi stacks.Key words: Golgi stack, recycling endosome, Golgi-ribbon, microtubule, cilium, sea urchin, ascidian.
Collapse
Affiliation(s)
- Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Shogo Sasaki
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Naoaki Sakamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takashi Yamamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Makoto Maeda
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tatsuya Ueki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K. Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
4
|
Tago T, Yamada Y, Goto Y, Toyooka K, Ochi Y, Satoh T, Satoh AK. Golgi clustering by the deficiency of COPI-SNARE in Drosophila photoreceptors. Front Cell Dev Biol 2024; 12:1442198. [PMID: 39296936 PMCID: PMC11408282 DOI: 10.3389/fcell.2024.1442198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
A comprehensive study of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the fly genome by RNAi in Drosophila photoreceptors indicated that knockdown of any of the COPI-SNAREs, Syx18, Sec20, and Use1, resulted in the same characteristic phenotypes: Golgi stacks gathering on their trans-side, laterally expanded Golgi cisternae, and a reduced number of discrete Golgi stacks. These Golgi stacks are reminiscent of mammalian Golgi ribbons and Brefeldin A (BFA)-bodies in Drosophila S2 cells. As previously reported, BFA suppresses trans-Golgi network (TGN) fission and Golgi stack separation to form a BFA-body, which is a cluster of Golgi stacks cored by recycling endosomes. We found that the impairing each of COPI-SNAREs results in clustered Golgi stacks similar to BFA-bodies, indicating that COPI-SNAREs have a role to separate clustered Golgi stacks. These results further support the idea that the movement of Golgi stacks and the balance of fusion and fission of the TGN determine the level of clustering and ribbon formation of Golgi stacks within cells.
Collapse
Affiliation(s)
- Tatsuya Tago
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Yumi Yamada
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Yumi Goto
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yuka Ochi
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Takunori Satoh
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Akiko K Satoh
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Yu F, Courjaret R, Assaf L, Elmi A, Hammad A, Fisher M, Terasaki M, Machaca K. Mitochondria-ER contact sites expand during mitosis. iScience 2024; 27:109379. [PMID: 38510124 PMCID: PMC10951641 DOI: 10.1016/j.isci.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondria-ER contact sites (MERCS) are involved in energy homeostasis, redox and Ca2+ signaling, and inflammation. MERCS are heavily studied; however, little is known about their regulation during mitosis. Here, we show that MERCS expand during mitosis in three cell types using various approaches, including transmission electron microscopy, serial EM coupled to 3D reconstruction, and a split GFP MERCS marker. We further show enhanced Ca2+ transfer between the ER and mitochondria using either direct Ca2+ measurements or by quantifying the activity of Ca2+-dependent mitochondrial dehydrogenases. Collectively, our results support a lengthening of MERCS in mitosis that is associated with improved Ca2+ coupling between the two organelles. This augmented Ca2+ coupling could be important to support the increased energy needs of the cell during mitosis.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Melanie Fisher
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Benvenuto G, Leone S, Astoricchio E, Bormke S, Jasek S, D'Aniello E, Kittelmann M, McDonald K, Hartenstein V, Baena V, Escrivà H, Bertrand S, Schierwater B, Burkhardt P, Ruiz-Trillo I, Jékely G, Ullrich-Lüter J, Lüter C, D'Aniello S, Arnone MI, Ferraro F. Evolution of the ribbon-like organization of the Golgi apparatus in animal cells. Cell Rep 2024; 43:113791. [PMID: 38428420 DOI: 10.1016/j.celrep.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.
Collapse
Affiliation(s)
- Giovanna Benvenuto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Emanuele Astoricchio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | | | - Sanja Jasek
- Living Systems Institute, University of Exeter, Exeter, UK; Heidelberg University, Centre for Organismal Studies (COS), Heidelberg, Germany
| | - Enrico D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Kent McDonald
- Electron Microscope Lab, University of California Berkeley, Berkeley, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Valentina Baena
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Héctor Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Bernd Schierwater
- Institute of Ecology and Evolution, Hannover University of Veterinary Medicine Foundation, Hannover, Germany
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK; Heidelberg University, Centre for Organismal Studies (COS), Heidelberg, Germany
| | | | | | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy
| | - Francesco Ferraro
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Naples, Italy.
| |
Collapse
|
7
|
Fung CW, Chau KY, Tong DCS, Knox C, Tam SST, Tan SY, Loi DSC, Leung Z, Xu Y, Lan Y, Qian PY, Chan KYK, Wu AR. Parentage influence on gene expression under acidification revealed through single-embryo sequencing. Mol Ecol 2023; 32:6796-6808. [PMID: 37888909 DOI: 10.1111/mec.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kin Yung Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Daniel Chun Sang Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Knox
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
8
|
Rollins KR, Blankenship JT. Dysregulation of the endoplasmic reticulum blocks recruitment of centrosome-associated proteins resulting in mitotic failure. Development 2023; 150:dev201917. [PMID: 37971218 PMCID: PMC10690056 DOI: 10.1242/dev.201917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
The endoplasmic reticulum (ER) undergoes a remarkable transition in morphology during cell division to aid in the proper portioning of the ER. However, whether changes in ER behaviors modulate mitotic events is less clear. Like many animal embryos, the early Drosophila embryo undergoes rapid cleavage cycles in a lipid-rich environment. Here, we show that mitotic spindle formation, centrosomal maturation, and ER condensation occur with similar time frames in the early syncytium. In a screen for Rab family GTPases that display dynamic function at these stages, we identified Rab1. Rab1 disruption led to an enhanced buildup of ER at the spindle poles and produced an intriguing 'mini-spindle' phenotype. ER accumulation around the mitotic space negatively correlates with spindle length/intensity. Importantly, centrosomal maturation is defective in these embryos, as mitotic recruitment of key centrosomal proteins is weakened after Rab1 disruption. Finally, division failures and ER overaccumulation is rescued by Dynein inhibition, demonstrating that Dynein is essential for ER spindle recruitment. These results reveal that ER levels must be carefully tuned during mitotic processes to ensure proper assembly of the division machinery.
Collapse
Affiliation(s)
| | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
9
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
10
|
Khuntia P, Rawal S, Marwaha R, Das T. Actin-driven Golgi apparatus dispersal during collective migration of epithelial cells. Proc Natl Acad Sci U S A 2022; 119:e2204808119. [PMID: 35749357 PMCID: PMC9245705 DOI: 10.1073/pnas.2204808119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
As a sedentary epithelium turns motile during wound healing, morphogenesis, and metastasis, the Golgi apparatus moves from an apical position, above the nucleus, to a basal position. This apical-to-basal repositioning of Golgi is critical for epithelial cell migration. Yet the molecular mechanism underlying it remains elusive, although microtubules are believed to play a role. Using live-cell and super-resolution imaging, we show that at the onset of collective migration of epithelial cells, Golgi stacks get dispersed to create an unpolarized transitional structure, and surprisingly, this dispersal process depends not on microtubules but on actin cytoskeleton. Golgi-actin interaction involves Arp2/3-driven actin projections emanating from the actin cortex, and a Golgi-localized actin elongation factor, MENA. While in sedentary epithelial cells, actin projections intermittently interact with the apically located Golgi, and the frequency of this event increases before the dispersion of Golgi stacks, at the onset of cell migration. Preventing Golgi-actin interaction with MENA-mutants eliminates Golgi dispersion and reduces the persistence of cell migration. Taken together, we show a process of actin-driven Golgi dispersion that is mechanistically different from the well-known Golgi apparatus fragmentation during mitosis and is essential for collective migration of epithelial cells.
Collapse
Affiliation(s)
- Purnati Khuntia
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Rituraj Marwaha
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
11
|
Nakano A. The Golgi Apparatus and its Next-Door Neighbors. Front Cell Dev Biol 2022; 10:884360. [PMID: 35573670 PMCID: PMC9096111 DOI: 10.3389/fcell.2022.884360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus represents a central compartment of membrane traffic. Its apparent architecture, however, differs considerably among species, from unstacked and scattered cisternae in the budding yeast Saccharomyces cerevisiae to beautiful ministacks in plants and further to gigantic ribbon structures typically seen in mammals. Considering the well-conserved functions of the Golgi, its fundamental structure must have been optimized despite seemingly different architectures. In addition to the core layers of cisternae, the Golgi is usually accompanied by next-door compartments on its cis and trans sides. The trans-Golgi network (TGN) can be now considered as a compartment independent from the Golgi stack. On the cis side, the intermediate compartment between the ER and the Golgi (ERGIC) has been known in mammalian cells, and its functional equivalent is now suggested for yeast and plant cells. High-resolution live imaging is extremely powerful for elucidating the dynamics of these compartments and has revealed amazing similarities in their behaviors, indicating common mechanisms conserved along the long course of evolution. From these new findings, I would like to propose reconsideration of compartments and suggest a new concept to describe their roles comprehensively around the Golgi and in the post-Golgi trafficking.
Collapse
|
12
|
A role for endoplasmic reticulum dynamics in the cellular distribution of microtubules. Proc Natl Acad Sci U S A 2022; 119:e2104309119. [PMID: 35377783 PMCID: PMC9169640 DOI: 10.1073/pnas.2104309119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) and the microtubule (MT) cytoskeleton form a coextensive, dynamic system that pervades eukaryotic cells. The shape of the ER is generated by a set of evolutionarily conserved membrane proteins that are able to control ER morphology and dynamics independently of MTs. Here we uncover that the molecular machinery that determines ER network dynamics can influence the subcellular distribution of MTs. We show that active control of local ER tubule junction density by ER tethering and fusion is important for the spatial organization of the combined ER–MT system. Our work suggests that cells might alter ER junction dynamics to drive formation of MT bundles, which are important structures, e.g., in migrating cells or in neuronal axons. The dynamic distribution of the microtubule (MT) cytoskeleton is crucial for the shape, motility, and internal organization of eukaryotic cells. However, the basic principles that control the subcellular position of MTs in mammalian interphase cells remain largely unknown. Here we show by a combination of microscopy and computational modeling that the dynamics of the endoplasmic reticulum (ER) plays an important role in distributing MTs in the cell. Specifically, our physics-based model of the ER–MT system reveals that spatial inhomogeneity in the density of ER tubule junctions results in an overall contractile force that acts on MTs and influences their distribution. At steady state, cells rapidly compensate for local variability of ER junction density by dynamic formation, release, and movement of ER junctions across the ER. Perturbation of ER junction tethering and fusion by depleting the ER fusogens called atlastins disrupts the dynamics of junction equilibration, rendering the ER–MT system unstable and causing the formation of MT bundles. Our study points to a mechanical role of ER dynamics in cellular organization and suggests a mechanism by which cells might dynamically regulate MT distribution in, e.g., motile cells or in the formation and maintenance of neuronal axons.
Collapse
|
13
|
Li Y, Jiang J, Yang J, Xiao L, Hua Q, Zou Y. PI3K/AKT/mTOR signaling participates in insulin-mediated regulation of pathological myopia-related factors in retinal pigment epithelial cells. BMC Ophthalmol 2021; 21:218. [PMID: 34001063 PMCID: PMC8127189 DOI: 10.1186/s12886-021-01946-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/13/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Insulin positively correlates with the length of the eye axis and is increased in the vitreous and serum of patients with pathological myopia (PM). How insulin influences the physiological process of retinal pigment epithelial (RPE) cells in PM remains unclear. This study aimed to explore the effect of insulin on the ultrastructure and function of RPE cells and the role of PI3K/AKT/mTOR signaling involved in the development of PM. METHODS The ARPE-19 cells were treated with different concentrations of insulin to analyze the cell morphology, cell viability, the protein level of insulin receptor β, and the mRNA and protein levels of and PM-related factors (TIMP-2, MMP-2, bFGF, and IGF-1). The ultrastructure of APRE-19 cells was also observed after insulin treatment. Besides, the PI3K/AKT/mTOR signaling was studied with or without the PI3K inhibitor LY294002 in ARPE-19 cells. RESULTS Insulin enhanced the cell viability of ARPE-19 cells and caused the endoplasmic reticulum to expand and vesiculate, suggesting increased secretion of growth factors and degeneration in ARPE-19 cells. Furthermore, the insulin receptor β was stimulated with insulin treatment, subsequently, the phosphorylation of AKT and mTOR was positively activated, which was adversely suppressed in the presence of LY294002. The secretion of TIMP-2 and bFGF was significantly decreased, and the secretion of MMP-2 and IGF-1 was highly elevated with insulin treatment depending on the concentration in ARPE-19 cells. Furthermore, the effect of insulin on PM-related proteins was restored with the addition of LY294002. CONCLUSIONS Our results indicated that insulin regulated the secretion of PM-related factors via the PI3K/AKT/mTOR signaling pathway in retinal pigment epithelial cells, and thus probably promoted the development of PM through transducing regulation signals from retina to choroid and sclera.
Collapse
Affiliation(s)
- Yunqin Li
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Junliang Jiang
- Orthopedics and Traumatology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, 650021, Kunming, Yunnan Province, China
| | - Jin Yang
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Libo Xiao
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Qiyun Hua
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Yue Zou
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China.
| |
Collapse
|
14
|
Fujii S, Tago T, Sakamoto N, Yamamoto T, Satoh T, Satoh AK. Recycling endosomes associate with Golgi stacks in sea urchin embryos. Commun Integr Biol 2020; 13:59-62. [PMID: 32395196 PMCID: PMC7202783 DOI: 10.1080/19420889.2020.1761069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
The trans-Golgi network (TGN) and recycling endosome (RE) have been recognized as sorting centers, the former for newly synthesized and the latter for endocytosed proteins. However, recent findings have revealed that TGN also receives endocytosed materials and RE accepts newly synthesized proteins destined to the plasma membrane. Recently, we reported that in both Drosophila and microtubule-disrupted HeLa cells, REs are associated with the trans-side of Golgi stacks. REs are highly dynamic: their separation from and association with Golgi stacks are often observed. Importantly, a newly synthesized cargo, glycosylphosphatidylinositol-anchored-GFP was found to be concentrated in Golgi-associated REs (GA-REs), while another cargo VSVG-GFP was excluded from GA-REs before post-Golgi trafficking to the plasma membrane. This suggested that the sorting of cargos takes place at the interface of Golgi stacks and GA-REs. In this study, we demonstrated that REs could associate with Golgi stacks in sea urchin embryos, further indicating that the association of REs with Golgi stacks is a well-conserved phenomenon in the animal kingdom.
Collapse
Affiliation(s)
- Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Naoaki Sakamoto
- Program of Mathematical and Life Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Yamamoto
- Program of Mathematical and Life Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Lee CA, Blackstone C. ER morphology and endo-lysosomal crosstalk: Functions and disease implications. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158544. [PMID: 31678515 DOI: 10.1016/j.bbalip.2019.158544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/03/2023]
Abstract
The endoplasmic reticulum (ER) is a continuous endomembrane system comprising the nuclear envelope, ribosome-studded sheets, dense peripheral matrices, and an extensive polygonal network of interconnected tubules. In addition to performing numerous critical cellular functions, the ER makes extensive contacts with other organelles, including endosomes and lysosomes. The molecular and functional characterization of these contacts has advanced significantly over the past several years. These contacts participate in key functions such as cholesterol transfer, endosome tubule fission, and Ca2+ exchange. Disruption of key proteins at these sites can result in often severe diseases, particularly those affecting the nervous system.
Collapse
Affiliation(s)
- Crystal A Lee
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
|
17
|
Karabasheva D, Smyth JT. A novel, dynein-independent mechanism focuses the endoplasmic reticulum around spindle poles in dividing Drosophila spermatocytes. Sci Rep 2019; 9:12456. [PMID: 31462700 PMCID: PMC6713755 DOI: 10.1038/s41598-019-48860-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 01/04/2023] Open
Abstract
In dividing animal cells the endoplasmic reticulum (ER) concentrates around the poles of the spindle apparatus by associating with astral microtubules (MTs), and this association is essential for proper ER partitioning to progeny cells. The mechanisms that associate the ER with astral MTs are unknown. Because astral MT minus-ends are anchored by centrosomes at spindle poles, we hypothesized that the MT minus-end motor dynein mediates ER concentration around spindle poles. Live in vivo imaging of Drosophila spermatocytes revealed that dynein is required for ER concentration around centrosomes during late interphase. In marked contrast, however, dynein suppression had no effect on ER association with astral MTs and concentration around spindle poles in early M-phase. In fact, there was a sudden onset of ER association with astral MTs in dynein RNAi cells, revealing activation of an M-phase specific mechanism of ER-MT association. ER redistribution to spindle poles also did not require non-claret disjunctional (ncd), the other known Drosophila MT minus-end motor, nor Klp61F, a MT plus-end motor that generates spindle poleward forces. Collectively, our results suggest that a novel, M-phase specific mechanism of ER-MT association that is independent of MT minus-end motors is required for proper ER partitioning in dividing cells.
Collapse
Affiliation(s)
- Darya Karabasheva
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, 20814, USA
| | - Jeremy T Smyth
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, 20814, USA.
| |
Collapse
|
18
|
Voigt F, Zhang H, Cui XA, Triebold D, Liu AX, Eglinger J, Lee ES, Chao JA, Palazzo AF. Single-Molecule Quantification of Translation-Dependent Association of mRNAs with the Endoplasmic Reticulum. Cell Rep 2019; 21:3740-3753. [PMID: 29281824 DOI: 10.1016/j.celrep.2017.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 10/25/2022] Open
Abstract
It is well established that mRNAs encoding secretory or membrane-bound proteins are translated on the surface of the endoplasmic reticulum (ER). The extent to which mRNAs that encode cytosolic proteins associate with the ER, however, remains controversial. To address this question, we quantified the number of cytosolic protein-encoding mRNAs that co-localize with the ER using single-molecule RNA imaging in fixed and living cells. We found that a small but significant number of mRNAs that encode cytosolic proteins associate with the ER and show that this interaction is translation dependent. Furthermore, we demonstrate that cytosolic protein-encoding transcripts can remain on the ER with dwell times consistent with multiple rounds of translation and have higher ribosome occupancies than transcripts translated in the cytosol. These results advance our understanding of the diversity and dynamics of localized translation on the ER.
Collapse
Affiliation(s)
- Franka Voigt
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Hui Zhang
- Department of Biochemistry, University of Toronto, 1 King's College Circle, MSB Room 5336, Toronto, ON M5S 1A8, Canada
| | - Xianying A Cui
- Department of Biochemistry, University of Toronto, 1 King's College Circle, MSB Room 5336, Toronto, ON M5S 1A8, Canada
| | - Désirée Triebold
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Ai Xin Liu
- Department of Biochemistry, University of Toronto, 1 King's College Circle, MSB Room 5336, Toronto, ON M5S 1A8, Canada
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Eliza S Lee
- Department of Biochemistry, University of Toronto, 1 King's College Circle, MSB Room 5336, Toronto, ON M5S 1A8, Canada
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | - Alexander F Palazzo
- Department of Biochemistry, University of Toronto, 1 King's College Circle, MSB Room 5336, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Cheng X, Lang I, Adeniji OS, Griffing L. Plasmolysis-deplasmolysis causes changes in endoplasmic reticulum form, movement, flow, and cytoskeletal association. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4075-4087. [PMID: 28922772 PMCID: PMC5853952 DOI: 10.1093/jxb/erx243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/10/2017] [Indexed: 05/21/2023]
Abstract
Plasmolysis of hypocotyl cells of transgenic Arabidopsis thaliana and Nicotiana benthamiana diminishes the dynamics of the remodeling of the endoplasmic reticulum (ER) in the central protoplast, namely that withdrawn from the cell wall, and more persistent cisternae are formed, yet little change in the actin network in the protoplast occurs. Also, protein flow within the ER network in the protoplast, as detected with fluorescence recovery after photobleaching (FRAP), is not affected by plasmolysis. After plasmolysis, another network of strictly tubular ER remains attached to the plasma membrane-wall interface and is contained within the Hechtian strands and reticulum. FRAP studies indicate that protein flow within these ER tubules diminishes. Actin is largely absent from the Hechtian reticulum and the ER becomes primarily associated with altered, branched microtubules. The smaller volume of the central protoplast is accompanied by decreased movement rates of tubules, cisternae, and spheroid organelles, but this reduced movement is not readily reversed by the increase in volume that accompanies deplasmolysis.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Biology Department, Texas A&M University, TAMU, College Station, TX, USA
| | - Ingeborg Lang
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse, Vienna, Austria
| | | | - Lawrence Griffing
- Biology Department, Texas A&M University, TAMU, College Station, TX, USA
| |
Collapse
|
20
|
Labeling membrane domains in dividing echinoderm eggs. Methods Cell Biol 2017. [PMID: 28065299 DOI: 10.1016/bs.mcb.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Sea urchins have long been used as a model organism to address questions in cell biology and development. Work utilizing this model has elucidated processes of fertilization, the description of centrosomes, the separation of chromosomes during mitosis, and numerous other landmark discoveries. They have been a favorite among researchers for a variety of reasons: Eggs are large and malleable, making them relatively easy to work with; the embryos have synchronized, rapid divisions; they are easy to microinject and manipulate; and their genome sequence is available. In this Chapter, we focus on methods used to study the membrane dynamics during cytokinesis using sea urchin embryos. The focus of this chapter is to provide methods for live-cell imaging of membrane domains in sea urchin embryos.
Collapse
|
21
|
Lee ZY, Prouteau M, Gotta M, Barral Y. Compartmentalization of the endoplasmic reticulum in the early C. elegans embryos. J Cell Biol 2016; 214:665-76. [PMID: 27597753 PMCID: PMC5021094 DOI: 10.1083/jcb.201601047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Lee et al. show that the ER in the C. elegans embryo is continuous, but its membrane is compartmentalized, as found in budding yeast and mouse NSCs. This compartmentalization plays a potential role in the polarity of the early embryo. The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an anterior and a posterior domain, indicating that a diffusion barrier forms in the ER membrane between these two domains. Using mutants with disorganized ER, we show that ER compartmentalization is independent of the morphological transition that the ER undergoes in mitosis. In contrast, compartmentalization takes place at the position of the future cleavage plane in a par-3–dependent manner. Together, our data indicate that the ER membrane is compartmentalized in cells as diverse as budding yeast, mouse neural stem cells, and the early C. elegans embryo.
Collapse
Affiliation(s)
- Zuo Yen Lee
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| | - Manoël Prouteau
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
22
|
Smyth JT, Schoborg TA, Bergman ZJ, Riggs B, Rusan NM. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules. Open Biol 2016; 5:rsob.150067. [PMID: 26289801 PMCID: PMC4554919 DOI: 10.1098/rsob.150067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Todd A Schoborg
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zane J Bergman
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Blake Riggs
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Sepich DS, Solnica-Krezel L. Intracellular Golgi Complex organization reveals tissue specific polarity during zebrafish embryogenesis. Dev Dyn 2016; 245:678-91. [PMID: 27043944 DOI: 10.1002/dvdy.24409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cell polarity is essential for directed migration of mesenchymal cells and morphogenesis of epithelial tissues. Studies in cultured cells indicate that a condensed Golgi Complex (GC) is essential for directed protein trafficking to establish cell polarity underlying directed cell migration. Dynamic changes of the GC intracellular organization during early vertebrate development remain to be investigated. RESULTS We used antibody labeling and fusion proteins in vivo to study the organization and intracellular placement of the GC during early zebrafish embryogenesis. We found that the GC was dispersed into several puncta containing cis- and trans-Golgi Complex proteins, presumably ministacks, until the end of the gastrula period. By early segmentation stages, the GC condensed in cells of the notochord, adaxial mesoderm, and neural plate, and its intracellular position became markedly polarized away from borders between these tissues. CONCLUSIONS We find that GC is dispersed in early zebrafish cells, even when cells are engaged in massive gastrulation movements. The GC accumulates into patches in a stage and cell-type specific manner, and becomes polarized away from borders between the embryonic tissues. With respect to tissue borders, intracellular GC polarity in notochord is independent of mature apical/basal polarity, Wnt/PCP, or signals from adaxial mesoderm. Developmental Dynamics 245:678-691, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diane S Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| | - Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
24
|
Guven J, Huber G, Valencia DM. Terasaki spiral ramps in the rough endoplasmic reticulum. PHYSICAL REVIEW LETTERS 2014; 113:188101. [PMID: 25396396 DOI: 10.1103/physrevlett.113.188101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 06/04/2023]
Abstract
We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data.
Collapse
Affiliation(s)
- Jemal Guven
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México DF, Mexico
| | - Greg Huber
- Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, California 93106-4030, USA
| | - Dulce María Valencia
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México DF, Mexico
| |
Collapse
|
25
|
Abstract
During cellular division, centrosomes are tasked with building the bipolar mitotic spindle, which partitions the cellular contents into two daughter cells. While every cell will receive an equal complement of chromosomes, not every organelle is symmetrically passaged to the two progeny in many cell types. In this review, we highlight the conservation of nonrandom centrosome segregation in asymmetrically dividing stem cells, and we discuss how the asymmetric function of centrosomes could mediate nonrandom segregation of organelles and mRNA. We propose that such a mechanism is critical for insuring proper cell fitness, function, and fate.
Collapse
|
26
|
Ramadas R, Thattai M. New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution. Biophys J 2014; 104:2553-63. [PMID: 23746528 DOI: 10.1016/j.bpj.2013.03.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Extant eukaryotic cells have a dynamic traffic network that consists of diverse membrane-bound organelles exchanging matter via vesicles. This endomembrane system arose and diversified during a period characterized by massive expansions of gene families involved in trafficking after the acquisition of a mitochondrial endosymbiont by a prokaryotic host cell >1.8 billion years ago. Here we investigate the mechanistic link between gene duplication and the emergence of new nonendosymbiotic organelles, using a minimal biophysical model of traffic. Our model incorporates membrane-bound compartments, coat proteins and adaptors that drive vesicles to bud and segregate cargo from source compartments, and SNARE proteins and associated factors that cause vesicles to fuse into specific destination compartments. In simulations, arbitrary numbers of compartments with heterogeneous initial compositions segregate into a few compositionally distinct subsets that we term organelles. The global structure of the traffic system (i.e., the number, composition, and connectivity of organelles) is determined completely by local molecular interactions. On evolutionary timescales, duplication of the budding and fusion machinery followed by loss of cross-interactions leads to the emergence of new organelles, with increased molecular specificity being necessary to maintain larger organellar repertoires. These results clarify potential modes of early eukaryotic evolution as well as more recent eukaryotic diversification.
Collapse
Affiliation(s)
- Rohini Ramadas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
27
|
Yasuno Y, Kawano JI, Inoue YH, Yamamoto MT. Distribution and morphological changes of the Golgi apparatus during Drosophila spermatogenesis. Dev Growth Differ 2013; 55:635-47. [PMID: 23855356 DOI: 10.1111/dgd.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/01/2022]
Abstract
In spermatogenesis, the Golgi apparatus is important for the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. Comprehensive examinations of the spatiotemporal distribution and morphological characterizations of the Golgi in various cells during spermatogenesis are necessary for functional analyses and mutant screenings in the model eukaryote Drosophila. Here, we examined the distribution and morphology of the Golgi during Drosophila spermatogenesis with immunofluorescence and electron microscopy. In pre-meiotic germ cells, the Golgi apparatuses were distributed evenly in the cytoplasm. In contrast, they were located exclusively in two regions near the poles during the meiotic metaphase, where they were segregated prior to the chromosomes. In cells in anaphase to telophase, the Golgi were predominantly left behind in the equatorial region between the separating daughter nuclei. After completion of meiosis, the dispersed Golgi were assembled at the apical side of the spermatid nucleus to form the acrosome. Further investigation of the Golgi distribution in β2-tubulin mutants showed aberrant and uneven distributions of the Golgi among sister cells in the meiotic spermatocytes and in the post-meiotic spermatids. At the ultrastructural level, the Golgi apparatus in pre-meiotic spermatocytes comprised a pair of stacks. The two stacks were situated adjacent to each other, as if they had duplicated before entering into meiotic division. These results highlight the dynamic nature of the Golgi during spermatogenesis and provide a framework for analyzing the correlations between the dynamics of the Golgi and its function in sperm development.
Collapse
Affiliation(s)
- Yusaku Yasuno
- Drosophila Genetic Resource Center, Kyoto Institute of Technology, Saga-Ippongi-cho, Ukyo-ku, Kyoto, Japan.
| | | | | | | |
Collapse
|
28
|
Abstract
Mitosis is the process of one cell dividing into two daughters, such that each inherits a single and complete copy of the genome of their mother. This is achieved through the equal segregation of the sister chromatids between the daughter cells. However, beyond this simple principle, the partitioning of other cellular components between daughter cells appears to follow a large variety of patterns. We discuss here how the organization of the nuclear envelope during mitosis influences cell division and, subsequently, cellular identity.
Collapse
Affiliation(s)
- Barbara Boettcher
- Institute of Biochemistry, Department of Biology, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | | |
Collapse
|
29
|
Roles for focal adhesion kinase (FAK) in blastomere abscission and vesicle trafficking during cleavage in the sea urchin embryo. Mech Dev 2013; 130:290-303. [PMID: 23313141 DOI: 10.1016/j.mod.2012.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/23/2012] [Accepted: 12/27/2012] [Indexed: 11/23/2022]
Abstract
Is focal adhesion kinase (FAK) needed for embryonic cleavage? We find that FAK is expressed during early cleavage divisions of sea urchin embryos as determined by polyclonal antibodies to the Lytechinus variegatus protein. FAK is absent in eggs and zygotes and then cycles in abundance during the first cleavages after fertilization. It is maximal at anaphase, similar to the destruction and synthesis of cyclin proteins. To investigate whether FAK is needed during early cleavage, we interfered with its function by microinjecting eggs with anti-FAK antibodies or with FAK antisense morpholino oligonucleotides. Both treatments led to regression of the cleavage furrow. FAK knockdown with antibodies or morpholino oligonucleotides also resulted in an over-accumulation of endocytic vesicles. Thus, FAK could be restricting endocytosis or increasing exocytosis in localized areas important for abscission. FAK appears to be necessary for successful cleavage. These results are the first to document a functional role for FAK during embryonic cleavage.
Collapse
|
30
|
Abstract
The Golgi complex of mammalian cells is composed of interconnected stacks of flattened cisternae that form a continuous membrane system in the pericentriolar region of the cell. At the onset of mitosis, this so-called Golgi ribbon is converted into small tubular-vesicular clusters in a tightly regulated fragmentation process, which leads to a temporary loss of the physical Golgi-centrosome proximity. Mitotic Golgi breakdown is required for Golgi partitioning into the two daughter cells, cell cycle progression and may contribute to the dispersal of Golgi-associated signaling molecules. Here, we review our current understanding of the mechanisms that control mitotic Golgi reorganization, its biological significance, and assays that are used to study this process.
Collapse
|
31
|
Marie M, Dale HA, Kouprina N, Saraste J. Division of the intermediate compartment at the onset of mitosis provides a mechanism for Golgi inheritance. J Cell Sci 2012; 125:5403-16. [PMID: 22946056 DOI: 10.1242/jcs.108100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As mammalian cells prepare for mitosis, the Golgi ribbon is first unlinked into its constituent stacks and then transformed into spindle-associated, pleiomorphic membrane clusters in a process that remains enigmatic. Also, it remains unclear whether Golgi inheritance involves the incorporation of Golgi enzymes into a pool of coat protein I (COPI) vesicles, or their COPI-independent transfer to the endoplasmic reticulum (ER). Based on the observation that the intermediate compartment (IC) at the ER-Golgi boundary is connected to the centrosome, we examined its mitotic fate and possible role in Golgi breakdown. The use of multiple imaging techniques and markers revealed that the IC elements persist during the M phase, maintain their compositional and structural properties and remain associated with the mitotic spindle, forming circular arrays at the spindle poles. At G2/M transition, the movement of the pericentrosomal domain of the IC (pcIC) to the cell centre and its expansion coincide with the unlinking of the Golgi ribbon. At prophase, coupled to centrosome separation, the pcIC divides together with recycling endosomes, providing novel landmarks for mitotic entry. We provide evidence that the permanent IC elements function as way stations during the COPI-dependent dispersal of Golgi components at prometa- and metaphase, indicating that they correspond to the previously described Golgi clusters. In addition, they continue to communicate with the vesicular 'Golgi haze' and thus are likely to provide templates for Golgi reassembly. These results implicate the IC in mitotic Golgi inheritance, resulting in a model that integrates key features of the two previously proposed pathways.
Collapse
Affiliation(s)
- Michaël Marie
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
32
|
Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr Biol 2012; 22:1487-93. [PMID: 22748319 DOI: 10.1016/j.cub.2012.05.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/03/2012] [Accepted: 05/31/2012] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) undergoes significant reorganization between interphase and mitosis, but the underlying mechanisms are unknown. Stromal interaction molecule 1 (STIM1) is an ER Ca(2+) sensor that activates store-operated Ca(2+) entry (SOCE) and also functions in ER morphogenesis through its interaction with the microtubule +TIP protein end binding 1 (EB1). We previously demonstrated that phosphorylation of STIM1 during mitosis suppresses SOCE. We now show that STIM1 phosphorylation is a major regulatory mechanism that excludes ER from the mitotic spindle. In mitotic HeLa cells, the ER forms concentric sheets largely excluded from the mitotic spindle. We show that STIM1 dissociates from EB1 in mitosis and localizes to the concentric ER sheets. However, a nonphosphorylatable STIM1 mutant (STIM1(10A)) colocalized extensively with EB1 and drove ER mislocalization by pulling ER tubules into the spindle. This effect was rescued by mutating the EB1 interaction site of STIM1(10A), demonstrating that aberrant association of STIM1(10A) with EB1 is responsible for the ER mislocalization. A STIM1 phosphomimetic exhibited significantly impaired +TIP tracking in interphase but was ineffective at inhibiting SOCE, suggesting different mechanisms of regulation of these two STIM1 functions by phosphorylation. Thus, ER spindle exclusion and ER-dependent Ca(2+) signaling during mitosis require multimodal STIM1 regulation by phosphorylation.
Collapse
|
33
|
Riggs B, Bergman ZJ, Heald R. Altering membrane topology with Sar1 does not impair spindle assembly in Xenopus egg extracts. Cytoskeleton (Hoboken) 2012; 69:591-9. [PMID: 22605651 DOI: 10.1002/cm.21036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/13/2012] [Accepted: 04/24/2012] [Indexed: 11/12/2022]
Abstract
Intracellular membrane networks including the endoplasmic reticulum (ER) and the Golgi apparatus experience dramatic reorganization upon entry into mitosis. However, the mechanisms driving these rearrangements and their importance for cell division are poorly understood. The GTPase Sar1 is a component of the secretory pathway and a key activator of anterograde transport of cargo from the ER to the Golgi. Here we show that Sar1 mutant proteins added to metaphase-arrested Xenopus laevis egg extracts cause dramatic effects on membrane organization. Live analysis of membrane structures in egg extract cytoplasm revealed a distinct network of sheets and tubules reflective of the organization of the ER in other systems. Addition of a constitutively active Sar1 GTPase mutant (H79G) increased membrane tubulation, while a dominant negative version Sar1 (T39N) impaired tubule organization. Although microtubule pelleting assays revealed that Sar1 associates with microtubules in the egg extract, and addition of Sar1 (H79G) mutant slightly destabilized spindle poles, bipolar spindle assembly was largely unaffected. Thus, spindles are stable to dramatic changes in mitotic membrane organization at metaphase, suggesting that mitotic membrane is not an upstream regulator of the mitotic spindle apparatus in Xenopus egg extracts.
Collapse
Affiliation(s)
- Blake Riggs
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| | | | | |
Collapse
|
34
|
Puhka M, Joensuu M, Vihinen H, Belevich I, Jokitalo E. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol Biol Cell 2012; 23:2424-32. [PMID: 22573885 PMCID: PMC3386207 DOI: 10.1091/mbc.e10-12-0950] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During mitosis, ER network reorganization can lead to packing of the ER into tight concentric layers at the cell cortex and occurs in tandem with rounding of the cell. Morphometric and 3D EM analysis shows that in addition to reorganization, ER sheets undergo transformation toward more fenestrated and tubular forms before anaphase in mammalian cells. The endoplasmic reticulum (ER) is both structurally and functionally complex, consisting of a dynamic network of interconnected sheets and tubules. To achieve a more comprehensive view of ER organization in interphase and mitotic cells and to address a discrepancy in the field (i.e., whether ER sheets persist, or are transformed to tubules, during mitosis), we analyzed the ER in four different mammalian cell lines using live-cell imaging, high-resolution electron microscopy, and three dimensional electron microscopy. In interphase cells, we found great variation in network organization and sheet structures among different cell lines. In mitotic cells, we show that the ER undergoes both spatial reorganization and structural transformation of sheets toward more fenestrated and tubular forms. However, the extent of spatial reorganization and sheet-to-tubule transformation varies among cell lines. Fenestration and tubulation of the ER correlates with a reduced number of membrane-bound ribosomes.
Collapse
Affiliation(s)
- Maija Puhka
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
35
|
Abstract
The Golgi apparatus lies at the heart of the secretory pathway where it receives, modifies and sorts protein cargo to the proper intracellular or extracellular location. Although this secretory function is highly conserved throughout the eukaryotic kingdom, the structure of the Golgi complex is arranged very differently among species. In particular, Golgi membranes in vertebrate cells are integrated into a single compact entity termed the Golgi ribbon that is normally localized in the perinuclear area and in close vicinity to the centrosomes. This organization poses a challenge for cell division when the single Golgi ribbon needs to be partitioned into the two daughter cells. To ensure faithful inheritance in the progeny, the Golgi ribbon is divided in three consecutive steps in mitosis, namely disassembly, partitioning and reassembly. However, the structure of the Golgi ribbon is only present in higher animals and Golgi disassembly during mitosis is not ubiquitous in all organisms. Therefore, there must be unique reasons to build up the Golgi in this particular conformation and to preserve it over generations. In this review, we first highlight the diversity of the Golgi architecture in different organisms and revisit the concept of the Golgi ribbon. Following on, we discuss why the ribbon is needed and how it forms in vertebrate cells. Lastly, we conclude with likely purposes of mitotic ribbon disassembly and further propose mechanisms by which it regulates mitosis.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
36
|
Fujimoto M, Hayashi T. New Insights into the Role of Mitochondria-Associated Endoplasmic Reticulum Membrane. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:73-117. [DOI: 10.1016/b978-0-12-386033-0.00002-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Peters NT, Kropf DL. Asymmetric microtubule arrays organize the endoplasmic reticulum during polarity establishment in the brown alga Silvetia compressa. Cytoskeleton (Hoboken) 2010; 67:102-11. [PMID: 20169534 DOI: 10.1002/cm.20427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/16/2009] [Indexed: 11/09/2022]
Abstract
Polarity is a fundamental characteristic of most cell types, and is crucial to early development of the brown alga Silvetia compressa. In eukaryotes the cytoskeleton plays an important role in generating cellular asymmetries. While it is known that F-actin is required for polarization and growth in most tip-growing cells, the roles of microtubules are less clear. We examined the distribution and function of microtubules in S. compressa zygotes as they polarized and initiated tip growth. Microtubules formed asymmetric arrays oriented toward the rhizoid hemisphere early in the polarization process. These arrays were spatially coupled with polar adhesive deposition, a marker of the rhizoid pole. Reorientation of the light vector during polarization led to sequential redistribution of polar axis components, with the microtubules and the polar axis reorienting nearly simultaneously, followed by cell wall loosening and then deposition of new polar adhesive. These findings suggested that microtubules may organize and target endomembrane arrays. We therefore examined the distribution of the endoplasmic reticulum during polarization and found it colocalized with microtubules and became targeted toward the rhizoid pole as microtubule asymmetry was generated. Endoplasmic reticulum association with microtubules remained fully intact following pharmacological disruption of F-actin, whereas microtubule disruption led to aggregation of the endoplasmic reticulum around the nucleus. We propose that brown algae utilize microtubules for organization of the endoplasmic reticulum and migration of exocytotic components to the rhizoid cortex, and present a model for polarity establishment to account for these new findings.
Collapse
Affiliation(s)
- Nick T Peters
- Department of Biology, University of Utah, Salt Lake City, USA.
| | | |
Collapse
|
38
|
Dagnino-Acosta A, Guerrero-Hernández A. Variable luminal sarcoplasmic reticulum Ca2+ buffer capacity in smooth muscle cells. Cell Calcium 2009; 46:188-96. [DOI: 10.1016/j.ceca.2009.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
|
39
|
Colston J, Horobin RW, Rashid-Doubell F, Pediani J, Johal KK. Why fluorescent probes for endoplasmic reticulum are selective: an experimental and QSAR-modelling study. Biotech Histochem 2009; 78:323-32. [PMID: 15473580 DOI: 10.1080/10520290310001646659] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The basis of the selectivity of fluorochromes routinely used to visualize the endoplasmic reticulum (ER) in live cells remains obscure. To clarify this, interactions of living cells with fluorochromes of varied physicochemical properties were analyzed experimentally and numerically using a quantitative structure activity relationship analysis (QSAR). Routine selective ER probes were found to be amphipathic, lipophilic cations with moderate-sized conjugated systems. The moderately lipophilic character permits probe uptake by passive diffusion without nonspecific accumulation in biomembranes. The moderately amphipathic character favors uptake into the ER, perhaps owing to its high concentration of zwitterionic lipid head-groups. The QSAR model rationalizes the impractical character of some ER probes mentioned in the literature, and could permit design of novel ER probes with different emission colors. The possibility of using the QSAR model as a tool to predict the accumulation of xenobiotics in the ER of living cells is illustrated by the localization of certain antipsychotic drugs in cultured cells.
Collapse
Affiliation(s)
- J Colston
- Institute of Biomedical & Life Sciences, West Medical Building, The University of Glasgow, Glasgow G12 8QQ, Scotland.
| | | | | | | | | |
Collapse
|
40
|
Lu L, Ladinsky MS, Kirchhausen T. Cisternal organization of the endoplasmic reticulum during mitosis. Mol Biol Cell 2009; 20:3471-80. [PMID: 19494040 DOI: 10.1091/mbc.e09-04-0327] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The endoplasmic reticulum (ER) of animal cells is a single, dynamic, and continuous membrane network of interconnected cisternae and tubules spread out throughout the cytosol in direct contact with the nuclear envelope. During mitosis, the nuclear envelope undergoes a major rearrangement, as it rapidly partitions its membrane-bound contents into the ER. It is therefore of great interest to determine whether any major transformation in the architecture of the ER also occurs during cell division. We present structural evidence, from rapid, live-cell, three-dimensional imaging with confirmation from high-resolution electron microscopy tomography of samples preserved by high-pressure freezing and freeze substitution, unambiguously showing that from prometaphase to telophase of mammalian cells, most of the ER is organized as extended cisternae, with a very small fraction remaining organized as tubules. In contrast, during interphase, the ER displays the familiar reticular network of convolved cisternae linked to tubules.
Collapse
Affiliation(s)
- Lei Lu
- Department of Cell Biology and Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Doihara T, Miguchi Y, Miyawaki K, Shimokawa T, Hamada F, Kobayashi N, Matsuda S. Spatiotemporal distribution patterns of oligosaccharides during early embryogenesis in the starfish Patiria pectinifera. Dev Genes Evol 2009; 219:199-206. [PMID: 19290538 DOI: 10.1007/s00427-009-0280-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 03/02/2009] [Indexed: 11/28/2022]
Abstract
To examine embryogenic mechanisms in the starfish Patiria (Asterina) pectinifera, we histochemically analyzed several larval stages using Alcian Blue (AB, which stains acidic mucins), Periodic Acid Schiff (PAS, which stains neutral mucins), and 21 types of lectins. Carbohydrate distribution patterns were observed in the cytoplasm, basement membrane, and blastocoel as follows: (1) The first group of lectins showed granular signals in the mesendodermal cells, and these lectins may be useful as mesendoderm markers. (2) The second class of lectins showed diffuse signals across the entire cytoplasm from the hatched blastula until the mid gastrula. These signals became localized to the basal cytoplasm of archenteron cells at the early bipinnaria. (3) Lectin reactivity in the basement membrane peaked at the early-to-mid gastrula and was nearly gone by the early bipinnaria. These results suggest the existence of various substances in the basement membrane and imply the importance of these substances during archenteron elongation and the induction of mesenchyme differentiation. (4) Signal colors with AB-PAS double staining in the blastocoel changed from magenta (by PAS staining) into blue (by AB staining) during these stages, thus, indicating that mucin located in the blastocoel changed from neutral to acidic. The most significant part of this report is the first description regarding temporal changes in the characteristics of intra- and extracellular components with the combination of many different lectins and stains.
Collapse
Affiliation(s)
- Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Nakajima H, Yonemura S, Murata M, Nakamura N, Piwnica-Worms H, Nishida E. Myt1 protein kinase is essential for Golgi and ER assembly during mitotic exit. ACTA ACUST UNITED AC 2008; 181:89-103. [PMID: 18378775 PMCID: PMC2287290 DOI: 10.1083/jcb.200708176] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myt1 was originally identified as an inhibitory kinase for Cdc2 (Cdk1), the master engine of mitosis, and has been thought to function, together with Wee1, as a negative regulator of mitotic entry. In this study, we report an unexpected finding that Myt1 is essential for Golgi and endoplasmic reticulum (ER) assembly during telophase in mammalian cells. Our analyses reveal that both cyclin B1 and cyclin B2 serve as targets of Myt1 for proper Golgi and ER assembly to occur. Thus, our results show that Myt1-mediated suppression of Cdc2 activity is not indispensable for the regulation of a broad range of mitotic events but is specifically required for the control of intracellular membrane dynamics during mitosis.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Evidence of a continuous endoplasmic reticulum in the protozoan parasite Entamoeba histolytica. EUKARYOTIC CELL 2008; 7:1222-6. [PMID: 18281599 DOI: 10.1128/ec.00007-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica, the cause of amebiasis, is believed to have no continuous endoplasmic reticulum (ER), with ER functions occurring in vesicles. Here, using an ER-targeted green fluorescent protein fusion protein and fluorescence loss in photobleaching, we have unambiguously demonstrated the presence of a continuous ER compartment in living E. histolytica trophozoites.
Collapse
|
44
|
Puhka M, Vihinen H, Joensuu M, Jokitalo E. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. ACTA ACUST UNITED AC 2007; 179:895-909. [PMID: 18056408 PMCID: PMC2099207 DOI: 10.1083/jcb.200705112] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The endoplasmic reticulum (ER) is a multifaceted cellular organelle both structurally and functionally, and its cell cycle–dependent morphological changes are poorly understood. Our quantitative confocal and EM analyses show that the ER undergoes dramatic reorganization during cell division in cultured mammalian cells as mitotic ER profiles become shorter and more branched. 3D modeling by electron tomography reveals that the abundant interphase structures, sheets, are lost and subsequently transform into a branched tubular network that remains continuous. This is confirmed by observing the most prominent ER subdomain, the nuclear envelope (NE). A NE marker protein spreads to the mitotic ER tubules, although it does not show a homogenous distribution within the network. We mimicked the mitotic ER reorganization using puromycin to strip the membrane-bound ribosomes from the interphase ER corresponding to the observed loss of ribosomes normally occurring during mitosis. We propose that the structural changes in mitotic ER are linked to ribosomal action on the ER membranes.
Collapse
Affiliation(s)
- Maija Puhka
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
45
|
Browne CL, Swan JB, Rankin EE, Calvert H, Griffiths S, Tytell M. Extracellular heat shock protein 70 has novel functional effects on sea urchin eggs and coelomocytes. ACTA ACUST UNITED AC 2007; 210:1275-87. [PMID: 17371926 DOI: 10.1242/jeb.02743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous reports document that the 70 kDa heat shock proteins are not only intracellular proteins but are also present in blood and other extracellular compartments. How they affect cell function from the extracellular space remains unclear. Using two well-characterized cell types from the sea urchin, we show that extracellular mixtures of the constitutive and inducible forms of the 70 kDa heat shock proteins (Hsc70 and Hsp70, respectively) have dramatic effects on initiation of cell division in fertilized eggs and on the clotting reaction of hypotonically stressed coelomocytes. In suspensions of fertilized eggs to which Hsc70 or a 2:3 mixture of Hsc and Hsp70 was added, progression to the first mitotic division was accelerated. Evidence is provided that the extracellular Hsc70 passes into the egg cells in an unconventional manner, being distributed through the cytoplasm, and that it may alter the intracellular signaling cascade initiated by sperm penetration. In coelomocytes that were stimulated by hypotonic shock to mimic injury, the spreading reaction of the clotting response was significantly inhibited when either Hsp70 or Hsc70 was in the medium. These results suggest that the presence of Hsc and/or Hsp70 in the extracellular fluid may promote mitosis of dividing cells and suppress the reactivity of immune system cells.
Collapse
Affiliation(s)
- Carole L Browne
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Mühlhäusser P, Kutay U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. ACTA ACUST UNITED AC 2007; 178:595-610. [PMID: 17698605 PMCID: PMC2064467 DOI: 10.1083/jcb.200703002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
During prophase, vertebrate cells disassemble their nuclear envelope (NE) in the process of NE breakdown (NEBD). We have established an in vitro assay that uses mitotic Xenopus laevis egg extracts and semipermeabilized somatic cells bearing a green fluorescent protein–tagged NE marker to study the molecular requirements underlying the dynamic changes of the NE during NEBD by live microscopy. We applied our in vitro system to analyze the role of the Ran guanosine triphosphatase (GTPase) system in NEBD. Our study shows that high levels of RanGTP affect the dynamics of late steps of NEBD in vitro. Also, inhibition of RanGTP production by RanT24N blocks the dynamic rupture of nuclei, suggesting that the local generation of RanGTP around chromatin may serve as a spatial cue in NEBD. Furthermore, the microtubule-depolymerizing drug nocodazole interferes with late steps of nuclear disassembly in vitro. High resolution live cell imaging reveals that microtubules are involved in the completion of NEBD in vivo by facilitating the efficient removal of membranes from chromatin.
Collapse
|
47
|
Anderson DJ, Hetzer MW. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol 2007; 9:1160-6. [PMID: 17828249 DOI: 10.1038/ncb1636] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/30/2007] [Indexed: 11/09/2022]
Abstract
The formation of the nuclear envelope (NE) around chromatin is a major membrane-remodelling event that occurs during cell division of metazoa. It is unclear whether the nuclear membrane reforms by the fusion of NE fragments or if it re-emerges from an intact tubular network of the endoplasmic reticulum (ER). Here, we show that NE formation and expansion requires a tubular ER network and occurs efficiently in the presence of the membrane fusion inhibitor GTPgammaS. Chromatin recruitment of membranes, which is initiated by tubule-end binding, followed by the formation, expansion and sealing of flat membrane sheets, is mediated by DNA-binding proteins residing in the ER. Thus, chromatin plays an active role in reshaping of the ER during NE formation.
Collapse
Affiliation(s)
- Daniel J Anderson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
48
|
Lowe M, Barr FA. Inheritance and biogenesis of organelles in the secretory pathway. Nat Rev Mol Cell Biol 2007; 8:429-39. [PMID: 17505521 DOI: 10.1038/nrm2179] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, cellular functions are compartmentalized into membrane-bound organelles. This has many advantages, as shown by the success of the eukaryotic lineage, but creates many problems for cells, such as the need to build and partition these organelles during cell growth and division. Diverse mechanisms for biogenesis of the endoplasmic reticulum and Golgi apparatus have evolved, ranging from de novo synthesis to the copying of a template organelle. The different mechanisms by which organelles are inherited in yeasts, protozoa and metazoans probably reflect the differences in the structure and copy number of these organelles.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
49
|
Abstract
The endoplasmic reticulum (ER) is a contiguous network of interconnected membrane sheets and tubules. The ER is differentiated into distinct domains, including the peripheral ER and nuclear envelope. Inhibition of two ER proteins, Rtn4a and DP1/NogoA, was previously shown to inhibit the formation of ER tubules in vitro. We show that the formation of ER tubules in vitro also requires a Rab family GTPase. Characterization of the 29 Caenorhabditis elegans Rab GTPases reveals that depletion of RAB-5 phenocopies the defects in peripheral ER structure that result from depletion of RET-1 and YOP-1, the C. elegans homologues of Rtn4a and DP1/NogoA. Perturbation of endocytosis by other means did not affect ER structure; the role of RAB-5 in ER morphology is thus independent of its well-studied requirement for endocytosis. RAB-5 and YOP-1/RET-1 also control the kinetics of nuclear envelope disassembly, which suggests an important role for the morphology of the peripheral ER in this process.
Collapse
Affiliation(s)
- Anjon Audhya
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
50
|
FitzHarris G, Marangos P, Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol 2007; 305:133-44. [PMID: 17368610 DOI: 10.1016/j.ydbio.2007.02.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/20/2022]
Abstract
Oocyte maturation in mouse is associated with a dramatic reorganisation of the endoplasmic reticulum (ER) from a network of cytoplasmic accumulations in the germinal vesicle-stage oocyte (GV) to a network of distinctive cortical clusters in the metaphase II egg (MII). Multiple lines of evidence suggest that this redistribution of the ER is important to prepare the oocyte for the generation of repetitive Ca2+ transients which trigger egg activation at fertilisation. The aim of the current study was therefore to investigate the timecourse and mechanism of ER reorganisation during oocyte maturation. The ER is first restructured at the time of GV-breakdown (GVBD) into a dense network of membranes which envelop and invade the developing meiotic spindle. GVBD is essential for the initiation of ER reorganisation, since ER structure does not change in GV-arrested oocytes. ER reorganisation is also prevented by the microtubule inhibitor nocodazole and by the inhibition of cytoplasmic dynein, a microtubule-associated motor protein. ER redistribution at GVBD is therefore dynein-driven and cell cycle-dependent. Following GVBD the dense network of ER surrounds the spindle during its migration to the oocyte cortex. Cortical clusters of ER are formed close to the time of, but independently of the metaphase I-metaphase II transition. Formation of the characteristic ER clusters is prevented by the depolymerisation of microfilaments, but not of microtubules. These experiments reveal that ER reorganisation during oocyte maturation is a complex multi-step process involving distinct microtubule- and microfilament-dependent phases and indicate a role for dynein in the cytoplasmic changes which prepare the oocyte for fertilisation.
Collapse
Affiliation(s)
- Greg FitzHarris
- Department of Physiology, University College London, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|