1
|
Guseva EA, Buev VS, Mirzaeva SE, Pletnev PI, Dontsova OA, Sergiev PV. Structure and Composition of Spermatozoa Fibrous Sheath in Diverse Groups of Metazoa. Int J Mol Sci 2024; 25:7663. [PMID: 39062905 PMCID: PMC11276731 DOI: 10.3390/ijms25147663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein structures, and high tissue and cell specificity. One of the open questions for investigation is the attachment of longitudinal columns to the doublets 3 and 8 of axonemal microtubules through the outer dense fibers. A number of mutations affecting the assembly of flagella in model organisms are known. Additionally, evolutionary genomics data and comparative analysis of flagella morphology are available for a set of non-model species. This review is devoted to the analysis of diverse ultrastructures of sperm flagellum of Metazoa combined with an overview of the evolutionary distribution and function of the mammalian fibrous sheath proteins.
Collapse
Affiliation(s)
- Ekaterina A. Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Vitaly S. Buev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Faculty of Bioengeneering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sabina E. Mirzaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Philipp I. Pletnev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| |
Collapse
|
2
|
Members of the AP-1 Family of Transcription Factors Regulate the Expression of Gja1 in Mouse GC-1 Spermatogonial Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gap junctions, mainly formed by Gja1 (Connexin43), play an essential role in the regulation of proliferation and differentiation of spermatogonia in the testis. Regulation of the abundance of Gja1 in spermatogonia involves various processes, including gene transcription, mRNA maturation, protein synthesis, post-translational modifications, plasma membrane integration and protein degradation. However, gene expression of Gja1 is abnormally decreased in most testicular germ cell tumors. Hence, a better understanding of the mechanisms of transcriptional regulation of Gja1 in spermatogonia is essential to understand how the loss of its expression occurs during the development of testicular cancer. As in other cell types, activator protein-1 (AP-1) transcription factors may be involved in such regulatory process. Thus, AP-1 members were overexpressed in GC-1 cells to assess their impact on Gja1 expression. We showed that Jun and Fosl2 cooperate to activate the Gja1 promoter in GC-1 cells. Furthermore, the recruitment of Jun to the proximal region (−153 to +46 bp) of the Gja1 promoter has been confirmed via chromatin immunoprecipitation. Protein kinase A and calcium-calmodulin protein kinase I also contribute to the activation of Gja1 expression by improving the cooperation between AP-1 factors. Therefore, the reduction in Gja1 expression in testicular germ cell tumors may involve a loss of cooperation between AP-1 factors.
Collapse
|
3
|
PKA Cβ: a forgotten catalytic subunit of cAMP-dependent protein kinase opens new windows for PKA signaling and disease pathologies. Biochem J 2021; 478:2101-2119. [PMID: 34115095 DOI: 10.1042/bcj20200867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits are encoded by the two major genes PRKACA and PRKACB, respectively. The PRKACA gene encodes two known splice variants, the ubiquitously expressed Cα1 and the sperm-specifically expressed Cα2. In contrast, the PRKACB gene encodes several splice variants expressed in a highly cell and tissue-specific manner. The Cβ proteins are called Cβ1, Cβ2, Cβ3, Cβ4 and so-called abc variants of Cβ3 and Cβ4. Whereas Cβ1 is ubiquitously expressed, Cβ2 is enriched in immune cells and the Cβ3, Cβ4 and their abc variants are solely expressed in neuronal cells. All Cα and Cβ splice variants share a kinase-conserved catalytic core and a C-terminal tail encoded by exons 2 through 10 in the PRKACA and PRKACB genes, respectively. All Cα and Cβ splice variants with the exception of Cα1 and Cβ1 are hyper-variable at the N-terminus. Here, we will discuss how the PRKACA and PRKACB genes have developed as paralogs that encode distinct and functionally non-redundant proteins. The fact that Cα and Cβ splice variant mutations are associated with numerous diseases further opens new windows for PKA-induced disease pathologies.
Collapse
|
4
|
Postler TS. A most versatile kinase: The catalytic subunit of PKA in T-cell biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:301-318. [PMID: 34074497 DOI: 10.1016/bs.ircmb.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cAMP-dependent protein kinase, more commonly referred to as protein kinase A (PKA), is one of the most-studied enzymes in biology. PKA is ubiquitously expressed in mammalian cells, can be activated in response to a plethora of biological stimuli, and phosphorylates more than 250 known substrates. Indeed, PKA is of central importance to a wide range of organismal processes, including energy homeostasis, memory formation and immunity. It serves as the primary effector of the second-messenger molecule 3',5'-cyclic adenosine monophosphate (cAMP), which is believed to have mostly inhibitory effects on the adaptive immune response. In particular, elevated levels of intracellular cAMP inhibit the activation of conventional T cells by limiting signal transduction through the T-cell receptor and altering gene expression, primarily in a PKA-dependent manner. Regulatory T cells have been shown to increase the cAMP levels in adjacent T cells by direct and indirect means, but the role of cAMP within regulatory T cells themselves remains incompletely understood. Paradoxically, cAMP has been implicated in promoting T-cell activation as well, adding another functional dimension beyond its established immunosuppressive effects. Furthermore, PKA can phosphorylate the NF-κB subunit p65, a transcription factor that is essential for T-cell activation, independently of cAMP. This phosphorylation of p65 drastically enhances NF-κB-dependent transcription and thus is likely to facilitate immune activation. How these immunosuppressive and immune-activating properties of PKA balance in vivo remains to be elucidated. This review provides a brief overview of PKA regulation, its ability to affect NF-κB activation, and its diverse functions in T-cell biology.
Collapse
Affiliation(s)
- Thomas S Postler
- Department of Microbiology & Immunology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
5
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
6
|
Gust KA, Lotufo GR, Thiyagarajah A, Barker ND, Ji Q, Marshall K, Wilbanks MS, Chappell P. Molecular Evaluation of Impacted Reproductive Physiology in Fathead Minnow Testes Provides Mechanistic Insights into Insensitive Munitions Toxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105204. [PMID: 31185427 DOI: 10.1016/j.aquatox.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Previous toxicological investigations of the insensitive munition (IM), 3-nitro-1,2,4-triazol-5-one (NTO), demonstrated histopathological and physiological impacts in mammalian testes. The implications of these findings for fish was unknown, therefore we investigated the effects of chronic (21 day) exposures to NTO and an NTO-containing IM formulation called IMX-101 (composed of 2,4-dinitroanisole (DNAN), nitroguanidine (NQ), and NTO) in adult male fathead minnows to assess if impacts on testes were conserved. The NTO exposure caused no significant mortality through the maximum exposure concentration (720 mg/L, measured), however NTO elicited testicular impacts causing significant asynchrony in spermatogenesis and necrosis in secondary spermatocytes at the two highest exposure concentrations (383 mg/L and 720 mg/L) and testicular degeneration at the highest exposure. Microarray-based transcriptomics analysis identified significant enrichment of steroid metabolism pathways and mTORC-signal control of spermatogonia differentiation in NTO exposures each having logical connections to observed asynchronous spermatogenesis. Additionally, NTO impaired transcriptional expression for genes supporting sperm structural and flagellar development including sperm-associated antigen 6 (Spag6). These functional transcriptomic responses are hypothesized contributors to impacted reproductive physiology in NTO exposures that ultimately lead to reductions in spermatozoa. In contrast to NTO, the IMX-101 formulation elicited significant mortality at the two highest exposure concentrations of 25.2 and 50.9 mg/L (DNAN nominal + NTO measured + NQ measured). Unlike NTO and NQ, the DNAN component of the IMX-101 formulation underwent significant transformation in the 21d exposure. From previous investigations, neither NTO nor NQ caused mortality in fish at >1000 mg/L suggesting that mortality in the present study arose from DNAN / DNAN-attributable transformation products. The 12.6 mg/L IMX-101 exposure caused significant sublethal impacts on testes including sperm necrosis, interstitial fibrosis, and Sertoli-like cell hyperplasia. Transcriptional profiles for IMX-101 indicated significant enrichment on multiple signaling pathways supporting spermatogenesis, mitosis / meiosis, and flagellar structure, all logically connected to observed sperm necrosis. Additionally, pronounced transcriptional increases within the PPARα-RXRα pathway, a known DNAN target, has been hypothesized to correspond to Sertoli cell hyperplasia, presumably as a compensatory response to fulfill the nurse-function of Sertoli cells during spermatogenesis. Overall, the transcriptional results indicated unique molecular responses for NTO and IMX-101. Regarding chemical hazard, NTO impacted testes and impaired spermatogenesis, but at high exposure concentrations (≥ 192 mg/L), whereas the IMX-101 formulation, elicited mortality and impacts on reproductive physiology likely caused by DNAN and its transformation products present at concentrations well below the NTO-component concentration within the IMX-101 mixture formulation.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | - Guilherme R Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | | | | - Qing Ji
- Bennett Aerospace, Cary, NC, 27511, USA.
| | | | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA.
| | | |
Collapse
|
7
|
Stanger SJ, Law EA, Jamsai D, O'Bryan MK, Nixon B, McLaughlin EA, Aitken RJ, Roman SD. A novel germ cell protein, SPIF (sperm PKA interacting factor), is essential for the formation of a PKA/TCP11 complex that undergoes conformational and phosphorylation changes upon capacitation. FASEB J 2016; 30:2777-91. [DOI: 10.1096/fj.201500136r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Simone J. Stanger
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Estelle A. Law
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Duangporn Jamsai
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Moira K. O'Bryan
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Anatomy and Developmental BiologyMonash UniversityMelbourneVictoriaAustralia
| | - Brett Nixon
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Eileen A. McLaughlin
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - R. John Aitken
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Shaun D. Roman
- Centre for Chemical Biology, University of NewcastleCallaghanNew South WalesAustralia
- Priority Research Centre for Reproductive ScienceUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- Australian Research Council Centre of Excellence in Biotechnology and DevelopmentUniversity of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
8
|
San Agustin JT, Pazour GJ, Witman GB. Intraflagellar transport is essential for mammalian spermiogenesis but is absent in mature sperm. Mol Biol Cell 2015; 26:4358-72. [PMID: 26424803 PMCID: PMC4666132 DOI: 10.1091/mbc.e15-08-0578] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
Intraflagellar transport (IFT) is necessary for the assembly and maintenance of most cilia, with the exception of gametic flagella in some organisms. IFT is required for assembly of mouse sperm flagella, and defects in IFT lead to male infertility. However, mature sperm lack IFT proteins and thus do not require IFT for maintenance of the axoneme. Drosophila sperm are unusual in that they do not require the intraflagellar transport (IFT) system for assembly of their flagella. In the mouse, the IFT proteins are very abundant in testis, but we here show that mature sperm are completely devoid of them, making the importance of IFT to mammalian sperm development unclear. To address this question, we characterized spermiogenesis and fertility in the Ift88Tg737Rpw mouse. This mouse has a hypomorphic mutation in the gene encoding the IFT88 subunit of the IFT particle. This mutation is highly disruptive to ciliary assembly in other organs. Ift88−/− mice are completely sterile. They produce ∼350-fold fewer sperm than wild-type mice, and the remaining sperm completely lack or have very short flagella. The short flagella rarely have axonemes but assemble ectopic microtubules and outer dense fibers and accumulate improperly assembled fibrous sheath proteins. Thus IFT is essential for the formation but not the maintenance of mammalian sperm flagella.
Collapse
Affiliation(s)
- Jovenal T San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
9
|
Sinha N, Pilder S, Vijayaraghavan S. Significant expression levels of transgenic PPP1CC2 in testis and sperm are required to overcome the male infertility phenotype of Ppp1cc null mice. PLoS One 2012; 7:e47623. [PMID: 23082183 PMCID: PMC3474748 DOI: 10.1371/journal.pone.0047623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
PPP1CC2, one of four isoforms of the ser/thr protein phosphatase PP1, is a mammalian-specific splice variant of the Ppp1cc gene, and the only isoform whose expression is confined almost completely to spermatogenic cells. Additionally, PPP1CC2 is the sole isoform found in mammalian spermatozoa. Although PPP1CC1, the other Ppp1cc product, is expressed in many tissues including testis, the only phenotype resulting from deletion of Ppp1cc gene is male infertility. To determine which of the products of Ppp1cc is essential for male fertility, we created two PPP1CC2 transgenes, eTg-G2 and pTg-G2, where Ppp1cc2 expression was driven by the putative endogenous promoter of Ppp1cc or by the testis specific human Pgk2 promoter, respectively. Our results demonstrate that the 2.6-kb genomic region directly upstream of the Ppp1cc structural gene can drive expression of Ppp1cc2, and recapitulate the wild-type tissue specificity of PPP1CC2 in transgenic mice. More importantly, we show that expression of PPP1CC2 alone, via either promoter, is able not only to restore normal spermatogenesis, but the fertility of Ppp1cc null mice as well, provided that transgenic PPP1CC2 expression in testis reaches at least a lower threshold level equivalent to approximately 50% of its expression by a Ppp1cc +/- male. We conclude that the endogenous Ppp1cc promoter normally functions in the testis to maintain a sufficient level of PPP1CC2 expression for normal spermatogenesis to occur, and that production of spermatozoa capable of fertilization in vivo can take place in the complete absence of PPP1CC1 expression.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| | - Stephen Pilder
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| |
Collapse
|
10
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
11
|
Abstract
Temporal and spatial regulation of PKA activity are essential for vigorous sperm motility and for the resumption of meiosis in oocytes, two events required for successful fertilization. Genetic mutations in mice that affect PKA signaling in germ cells lead to infertility and illustrate the importance of this pathway in mammalian reproduction.
Collapse
Affiliation(s)
- Kimberly A Burton
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
12
|
Tabish M, Clegg RA, Turner PC, Jonczy J, Rees HH, Fisher MJ. Molecular characterisation of cAMP-dependent protein kinase (PK-A) catalytic subunit isoforms in the male tick, Amblyomma hebraeum. Mol Biochem Parasitol 2006; 150:330-9. [PMID: 17049629 DOI: 10.1016/j.molbiopara.2006.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
The cAMP-dependent protein kinase (protein kinase A, PK-A) plays a central role in the regulation of diverse aspects of cellular activity. Specifically, PK-A appears to play a key controlling role in the maturation of spermatids. Using a PCR-based approach, with degenerate primers from the highly conserved regions of the PK-A catalytic (C) subunit in combination with 5' and 3' RACE, we have cloned three cDNAs for the PK-A C-subunit of the male tick, Amblyomma hebraeum. The three cDNAs have open reading frames of 1059, 1275 and 1404bp which encode proteins of 40.6, 48.2 and 52.5kDa, respectively. These transcripts appear to arise from 5' alternative splicing of RNA derived from a single gene for the PK-A C-subunit. One isoform (AH-PK-A C1), in common with PK-A C-subunits from a range of species, contains a consensus sequence for N-myristoylation. RT-PCR and Western blot experiments suggest that the three splice variants are expressed ubiquitously; however, expression of the myristoylatable AH-PK-A C1 isoform is predominant in all investigated tissues (accessory gland, midgut, Malpighian tubules, salivary gland, testis and immature spermatids). There is no evidence for a sperm-specific PK-A C-subunit (Cs) in tick sperm; however, tyrosine protein phosphorylation, previously shown to be modulated by PK-A activity during mammalian sperm maturation, was observed in tick sperm.
Collapse
Affiliation(s)
- Mohammad Tabish
- Cellular Regulation and Signalling Group, School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
13
|
Burton KA, McDermott DA, Wilkes D, Poulsen MN, Nolan MA, Goldstein M, Basson CT, McKnight GS. Haploinsufficiency at the protein kinase A RI alpha gene locus leads to fertility defects in male mice and men. Mol Endocrinol 2006; 20:2504-13. [PMID: 16728532 PMCID: PMC1850980 DOI: 10.1210/me.2006-0060] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Carney complex (CNC) is a familial multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac and cutaneous myxomas, and endocrine tumors. CNC is inherited as an autosomal dominant trait and is transmitted with greater frequency by women vs. men. Nearly two thirds of CNC patients are heterozygous for inactivating mutations in the gene encoding the protein kinase A (PKA) type I alpha regulatory subunit (RI alpha), PRKAR1. We report here that male mice heterozygous for the Prkar1a gene have severely reduced fertility. Sperm from Prkar1a heterozygous mice are morphologically abnormal and reduced in number. Genetic rescue experiments reveal that this phenotype results from elevated PKA catalytic activity in germ cells as early as the pachytene stage of spermatogenesis. Consistent with this defect in the male mutant mice, sperm from CNC patients heterozygous for PRKAR1A mutations were also found to be morphologically aberrant and decreased in number. We conclude that unregulated PKA activity in male meiotic or postmeiotic germ cells leads to structural defects in mature sperm and results in reduced fertility in mice and humans, contributing to the strikingly reduced transmission of PRKAR1A inactivating mutations by male patients with CNC.
Collapse
Affiliation(s)
- Kimberly A. Burton
- Department of Pharmacology, University of Washington School of Medicine, Box 357750, Seattle, WA 98195-7750, USA
| | - Deborah A. McDermott
- Molecular Cardiology Laboratory, Greenberg Division of Cardiology, Dept. of Medicine
| | - David Wilkes
- Molecular Cardiology Laboratory, Greenberg Division of Cardiology, Dept. of Medicine
| | - Melissa N. Poulsen
- Department of Pharmacology, University of Washington School of Medicine, Box 357750, Seattle, WA 98195-7750, USA
| | - Michael A. Nolan
- Department of Pharmacology, University of Washington School of Medicine, Box 357750, Seattle, WA 98195-7750, USA
| | - Marc Goldstein
- Dept. of Reproductive Medicine and Urology, Weill Medical College of Cornell University, 525 E. 68th Street, New York, New York 10021, USA
| | - Craig T. Basson
- Molecular Cardiology Laboratory, Greenberg Division of Cardiology, Dept. of Medicine
| | - G. Stanley McKnight
- Department of Pharmacology, University of Washington School of Medicine, Box 357750, Seattle, WA 98195-7750, USA
- Correspondence should be addressed to: G.S.M. Ph: (206) 616-4237, Fax: (206) 616-4230,
| |
Collapse
|
14
|
Béjar P, Villamarín JA. Catalytic subunit of cAMP-dependent protein kinase from a catch muscle of the bivalve mollusk Mytilus galloprovincialis: purification, characterization, and phosphorylation of muscle proteins. Arch Biochem Biophys 2006; 450:133-40. [PMID: 16579959 DOI: 10.1016/j.abb.2006.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 11/17/2022]
Abstract
cAMP-dependent protein kinase (PKA) plays a crucial role in the release of the catch state of molluskan muscles, but the nature of the enzyme in such tissues is unknown. In this paper, we report the purification of the catalytic (C) subunit of PKA from the posterior adductor muscle (PAM) of the sea mussel Mytilus galloprovincialis. It is a monomeric protein with an apparent molecular mass of 40.0+/-2.0kDa and Stoke's radius 25.1+/-0.3A. The protein kinase activity of the purified enzyme was inhibited by both isoforms of the PKA regulatory (R) subunit that we had previously characterized in the mollusk, and also by the inhibitor peptide PKI(5-24). On the other hand, the main proteins of the contractile apparatus of PAM were partially purified and their ability to be phosphorylated in vitro by purified PKA C subunit was analyzed. The results showed that twitchin, a high molecular mass protein associated with thick filaments, was the better substrate for endogenous PKA. It was rapidly phosphorylated with a stoichiometry of 3.47+/-0.24mol Pmol(-1) protein. Also, catchin, paramyosin, and actin were phosphorylated, although more slowly and to a lesser extent. On the contrary, myosin heavy chain (MHC) and tropomyosin were not phosphorylated under the conditions used.
Collapse
Affiliation(s)
- Pablo Béjar
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | |
Collapse
|
15
|
Kotaja N, Macho B, Sassone-Corsi P. Microtubule-independent and protein kinase A-mediated function of kinesin KIF17b controls the intracellular transport of activator of CREM in testis (ACT). J Biol Chem 2005; 280:31739-45. [PMID: 16002395 DOI: 10.1074/jbc.m505971200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Kinesins are motor proteins that transport their cargos along microtubules in an ATP-dependent manner. The testis-specific kinesin KIF17b was shown to directly regulate cAMP-response element modulator (CREM)-dependent transcription by determining the subcellular localization of the activator of CREM in testis (ACT), the testis-specific coactivator of CREM in postmeiotic male germ cells. CREM is a crucial transcriptional regulator of many important genes required for spermatid maturation, as demonstrated by the complete block of sperm development at the first steps of spermiogenesis in crem-null mice. To better understand the complex regulation of postmeiotic germ cell differentiation, we further characterized the ACT-KIF17b interaction, the function of KIF17b, and the signaling pathways governing its action. In this study, we demonstrated that the abilities of KIF17b to shuttle between the nuclear and the cytoplasmic compartments and to transport ACT are neither dependent on its motor domain nor on microtubules, thus revealing a novel microtubule-independent function for kinesins. We also showed that the cyclic AMP-dependent protein kinase A mediates the phosphorylation of KIF17b, and this modification is important for its subcellular localization. These results indicate that cyclic AMP signaling controls CREM-mediated transcription in male germ cells through modification of KIF17b function.
Collapse
Affiliation(s)
- Noora Kotaja
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, B.P. 10142, 67404 Illkirch-Strasbourg, France
| | | | | |
Collapse
|
16
|
Wang H, San Agustin JT, Witman GB, Kilpatrick DL. Novel role for a sterol response element binding protein in directing spermatogenic cell-specific gene expression. Mol Cell Biol 2004; 24:10681-8. [PMID: 15572673 PMCID: PMC533981 DOI: 10.1128/mcb.24.24.10681-10688.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/01/2004] [Accepted: 09/26/2004] [Indexed: 11/20/2022] Open
Abstract
Sperm are highly specialized cells, and their formation requires the synthesis of a large number of unique mRNAs. However, little is known about the transcriptional mechanisms that direct male germ cell differentiation. Sterol response element binding protein 2gc (SREBP2gc) is a spermatogenic cell-enriched isoform of the ubiquitous transcription factor SREBP2, which in somatic cells is required for homeostatic regulation of cholesterol. SREBP2gc is selectively enriched in spermatocytes and spermatids, and, due to its novel structure, its synthesis is not subject to cholesterol feedback control. This suggested that SREBP2gc has unique cell- and stage-specific functions during spermatogenesis. Here, we demonstrate that this factor activates the promoter for the spermatogenesis-related gene proacrosin in a cell-specific manner. Multiple SREBP2gc response elements were identified within the 5'-flanking and proximal promoter regions of the proacrosin promoter. Mutating these elements greatly diminished in vivo expression of this promoter in spermatogenic cells of transgenic mice. These studies define a totally new function for an SREBP as a transactivator of male germ cell-specific gene expression. We propose that SREBP2gc is part of a cadre of spermatogenic cell-enriched isoforms of ubiquitously expressed transcriptional coregulators that were specifically adapted in concert to direct differentiation of the male germ cell lineage.
Collapse
Affiliation(s)
- Hang Wang
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue N, Worcester, MA 01655-0127. USA
| | | | | | | |
Collapse
|
17
|
Fujinoki M, Kawamura T, Toda T, Ohtake H, Ishimoda-Takagi T, Shimizu N, Yamaoka S, Okuno M. Identification of 36 kDa phosphoprotein in fibrous sheath of hamster spermatozoa. Comp Biochem Physiol B Biochem Mol Biol 2004; 137:509-20. [PMID: 15082001 DOI: 10.1016/j.cbpc.2004.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 01/13/2004] [Accepted: 02/12/2004] [Indexed: 11/25/2022]
Abstract
In our previous studies (Fujinoki et al., 2001, 2003), we reported that two types of 36 kDa proteins, designated 36K-A protein and 36K-B protein, obtained from hamster sperm flagella, are associated with motility activation and phosphorylated in a cAMP-dependent manner at serine residues. In the present experiments, we focused on the hamster (Mesocricetus auratus) 36K-A protein, which was analyzed by peptide mass finger printing and amino acid sequencing. The results suggest that 36K-A protein is a pyruvate dehydrogenase E1 component beta subunit lacking the N-terminal 30 amino acids. Moreover, our results suggest that 36 K-A protein is localized in the fibrous sheath of the principal piece of hamster spermatazoa.
Collapse
Affiliation(s)
- Masakatsu Fujinoki
- Department of Physiology, Dokkyo University School of Medicine, 880 kitakobayasi, Mibu, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA, McKnight GS. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci U S A 2004; 101:13483-8. [PMID: 15340140 PMCID: PMC518783 DOI: 10.1073/pnas.0405580101] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An unusual cAMP signaling system mediates many of the events that prepare spermatozoa to meet the egg. Its components include the atypical, bicarbonate-stimulated, sperm adenylyl cyclase and a cAMP-dependent protein kinase (PKA) with the unique catalytic subunit termed Calpha(2) or C(s). We generated mice that lack Calpha(2) to determine its importance in the events downstream of cAMP production. Male Calpha(2) null mice produce normal numbers of sperm that swim spontaneously in vitro. Thus, Calpha(2) has no required role in formation of a functional flagellum or the initiation of motility. In contrast, we find that Calpha(2) is required for bicarbonate to speed the flagellar beat and facilitate Ca(2+) entry channels. In addition, Calpha(2) is needed for the protein tyrosine phosphorylation that occurs late in the sequence of sperm maturation and for a negative feedback control of cAMP production, revealed here. Consistent with these specific defects in several important sperm functions, Calpha(2) null males are infertile despite normal mating behavior. These results define several crucial roles of PKA in sperm cell biology, bringing together both known and unique PKA-mediated events that are necessary for male fertility.
Collapse
Affiliation(s)
- Michael A Nolan
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ullas KS, Rao MRS. Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus. J Biol Chem 2003; 278:52673-80. [PMID: 14514679 DOI: 10.1074/jbc.m308365200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transition protein 2 (TP2), which is expressed during stages 12-15 of mammalian spermiogenesis, has been shown to undergo phosphorylation immediately after its synthesis. We reported earlier that TP2 is phosphorylated in vitro at threonine 101 and serine 109 by the salt extract of sonication-resistant (elongating and elongated) spermatid nuclei and the protein kinase phosphorylating TP2 was identified to be protein kinase A (PKA). We now report that the cytosol from haploid spermatids but not from premeiotic germ cells is able to phosphorylate recombinant TP2 in vitro at threonine 101 and serine 109. The kinase present in the haploid spermatid cytosol that phosphorylates TP2 has been identified to be the sperm-specific isoform of protein kinase A (Cs-PKA). Reverse transcription-PCR analysis indicated that Cs-PKA was present in the haploid spermatids and absent from premeiotic germ cells. The rat Cs-PKA transcript was amplified and sequenced using the isoform-specific primers. The sequence of rat Cs-PKA at the N terminus differs from mouse and human by one amino acid. Western blot analysis using specific anti-Calpha1 antibodies revealed that Calpha1-PKA is absent in haploid spermatid cytosol. We have also established an in vitro nuclear transport assay for the haploid round spermatids. Using this assay, we have found that the cytoplasmic factors and ATP are absolutely essential for translocation of TP2 into the nucleus. Phosphorylation was found to positively modulate the NLS dependent import of TP2 into the nucleus.
Collapse
Affiliation(s)
- Kolthur S Ullas
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
20
|
Itoh A, Inaba K, Ohtake H, Fujinoki M, Morisawa M. Characterization of a cAMP-dependent protein kinase catalytic subunit from rainbow trout spermatozoa. Biochem Biophys Res Commun 2003; 305:855-61. [PMID: 12767909 DOI: 10.1016/s0006-291x(03)00840-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyclic AMP-dependent phosphorylation of proteins is essential for the initiation of sperm motility in salmonid fishes. This study isolated cDNA for the catalytic subunit of a cAMP-dependent protein kinase (PKA-C) from rainbow trout testis. The deduced amino acid sequence shows 75-80% identity to sequences previously reported in other organisms. However, the N-terminal regions of PKA-C from the testis as well as ovary in the trout appear slightly shorter than those from other tissues, suggesting that small PKA-C might be specific to germ cells. An immunofluorescence study using polyclonal antibody against trout testis PKA-C shows that it localizes along sperm flagellum. Furthermore, immunoelectron microscopy revealed that PKA-C is anchored to the outer arm dynein of flagellar axonemes. These results suggest that PKA-C is involved in regulating the flagellar motility of sperm via phosphorylation of a subunit of the outer arm dynein.
Collapse
Affiliation(s)
- Atsuko Itoh
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan.
| | | | | | | | | |
Collapse
|
21
|
Wennemuth G, Carlson AE, Harper AJ, Babcock DF. Bicarbonate actions on flagellar and Ca2+ -channel responses: initial events in sperm activation. Development 2003; 130:1317-26. [PMID: 12588848 DOI: 10.1242/dev.00353] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At mating, mammalian sperm are diluted in the male and female reproductive fluids, which brings contact with HCO(3)(-) and initiates several cellular responses. We have identified and studied two of the most rapid of these responses. Stop-motion imaging and flagellar waveform analysis show that for mouse epididymal sperm in vitro, the resting flagellar beat frequency is 2-3 Hz at 22-25 degrees C. Local perfusion with HCO(3)(-) produces a robust, reversible acceleration to 7 Hz or more. At 15 mM the action of HCO(3)(-) begins within 5 seconds and is near-maximal by 30 seconds. The half-times of response are 8.8+/-0.2 seconds at 15 mM HCO(3)(-) and 17.5+/-0.4 seconds at 1 mM HCO(3)(-). Removal of external HCO(3)(-) allows a slow return to basal beat frequency over approximately 10 minutes. Increases in beat symmetry accompany the accelerating action of HCO(3)(-). As in our past work, HCO(3)(-) also facilitates opening of voltagegated Ca(2+) channels, increasing the depolarization-evoked rate of rise of intracellular Ca(2+) concentration by more than fivefold. This action also is detectable at 1 mM HCO(3)(-) and occurs with an apparent halftime of approximately 60 seconds at 15 mM HCO(3)(-). The dual actions of HCO(3)(-) respond similarly to pharmacological intervention. Thus, the phosphodiesterase inhibitor IBMX promotes the actions of HCO(3)(-) on flagellar and channel function, and the protein kinase A inhibitor H89 blocks these actions. In addition, a 30 minute incubation with 60 micro M cAMP acetoxylmethyl ester increases flagellar beat frequency to nearly 7 Hz and increases the evoked rates of rise of intracellular Ca(2+) concentration from 17+/-4 to 41+/-6 nM second(-1). However, treatment with several other analogs of cAMP produces only scant evidence of the expected mimicry or blockade of the actions of HCO(3)(-), perhaps as a consequence of limited permeation. Our findings indicate a requirement for cAMP-mediated protein phosphorylation in the enhancement of flagellar and channel functions that HCO(3)(-) produces during sperm activation.
Collapse
Affiliation(s)
- Gunther Wennemuth
- Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, WA 98195-7290, USA
| | | | | | | |
Collapse
|
22
|
Inaba K, Padma P, Satouh Y, Shin-I T, Kohara Y, Satoh N, Satou Y. EST analysis of gene expression in testis of the ascidian Ciona intestinalis. Mol Reprod Dev 2002; 62:431-45. [PMID: 12112576 DOI: 10.1002/mrd.10131] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To explore the gene expression underlying spermatogenesis, a large-scale analysis has been done on the cDNAs from testis of the ascidian, Ciona intestinalis. A set of 5,461 expressed sequence tags was analyzed and grouped into 2,806 independent clusters. Approximately 30% of the clusters showed significant sequence matches to the proteins reported in DDBJ/GenBank/EMBL database including a set of proteins closely related to the gene regulation during spermatogenesis, functional and morphological changes of spermatogenic cells during spermiogenesis, and physiological functions of sperm, as well as those with housekeeping functions commonly expressed in other cells. Some clones show similarities to the proteins present in vertebrate lymphocytes, suggesting a primitive immune system in ascidians. We have also found some genes that are known to participate in hormonal regulation of spermatogenesis in vertebrates. The large majority of the genes expressed in Ciona testis show no significant matches to known proteins and the further analysis of these genes may shed new light on the molecular mechanism of spermatogenesis and sperm functions.
Collapse
Affiliation(s)
- Kazuo Inaba
- Asamushi Marine Biological Station, Graduate School of Science, Tohoku University, Asamushi, Aomori, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS. Dynamics of cAMP-dependent protein kinase. Chem Rev 2001; 101:2243-70. [PMID: 11749372 DOI: 10.1021/cr000226k] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D A Johnson
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0654, USA
| | | | | | | | | |
Collapse
|
24
|
San Agustin JT, Witman GB. Differential expression of the C(s) and Calpha1 isoforms of the catalytic subunit of cyclic 3',5'-adenosine monophosphate-dependent protein kinase testicular cells. Biol Reprod 2001; 65:151-64. [PMID: 11420235 DOI: 10.1095/biolreprod65.1.151] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The amino terminus of the sperm cAMP-dependent protein kinase catalytic subunit (termed C(s)) differs from that of the Calpha1 isoform expressed in most tissues due to the use of alternative transcripts of the Calpha gene. Both Calpha1 and C(s) transcripts are present in testis; C(s) is expressed specifically in spermatogenic cells and is the only C isoform detected in mature sperm. Immunohistochemistry of mouse testis using antibodies specific for C(s) and Calpha1 now shows that Calpha1 is present in somatic testicular cells, spermatogonia, and preleptotene spermatocytes but not in cells that are in later stages of spermatogenesis. In contrast, C(s) is expressed only in midpachytene and later stage spermatocytes and in spermatids. Therefore, C(s) and Calpha1 expression do not overlap. Immunofluorescence microscopic localization of C(s) in murine and ovine sperm reveals that C(s) is located primarily in sperm tail components, including the midpiece mitochondria and the axoneme. Quantitative analysis of Western blots indicates that individual ovine sperm contain approximately 4 x 10(5) molecules of C(s), a seemingly large number for a protein that acts catalytically.
Collapse
Affiliation(s)
- J T San Agustin
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|