1
|
Veloso Ribeiro Franco L, Barros MH. Biolistic transformation of the yeast Saccharomyces cerevisiae mitochondrial DNA. IUBMB Life 2023; 75:972-982. [PMID: 37470229 DOI: 10.1002/iub.2769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.
Collapse
Affiliation(s)
| | - Mario H Barros
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Franco LVR, Su CH, Simas Teixeira L, Almeida Clarck Chagas J, Barros MH, Tzagoloff A. Allotopic expression of COX6 elucidates Atco-driven co-assembly of cytochrome oxidase and ATP synthase. Life Sci Alliance 2023; 6:e202301965. [PMID: 37604582 PMCID: PMC10442929 DOI: 10.26508/lsa.202301965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.
Collapse
Affiliation(s)
- Leticia Veloso R Franco
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
3
|
Franco LVR, Su CH, Burnett J, Teixeira LS, Tzagoloff A. Atco, a yeast mitochondrial complex of Atp9 and Cox6, is an assembly intermediate of the ATP synthase. PLoS One 2020; 15:e0233177. [PMID: 32413073 PMCID: PMC7228087 DOI: 10.1371/journal.pone.0233177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (oxphos) is the process by which the ATP synthase conserves the energy released during the oxidation of different nutrients as ATP. The yeast ATP synthase consists of three assembly modules, one of which is a ring consisting of 10 copies of the Atp9 subunit. We previously reported the existence in yeast mitochondria of high molecular weight complexes composed of mitochondrially encoded Atp9 and of Cox6, an imported structural subunit of cytochrome oxidase (COX). Pulse-chase experiments indicated a correlation between the loss of newly translated Atp9 complexed to Cox6 and an increase of newly formed Atp9 ring, but did not exclude the possibility of an alternate source of Atp9 for ring formation. Here we have extended studies on the functions and structure of this complex, referred to as Atco. We show that Atco is the exclusive source of Atp9 for the ATP synthase assembly. Pulse-chase experiments show that newly translated Atp9, present in Atco, is converted to a ring, which is incorporated into the ATP synthase with kinetics characteristic of a precursor-product relationship. Even though Atco does not contain the ring form of Atp9, cross-linking experiments indicate that it is oligomeric and that the inter-subunit interactions are similar to those of the bona fide ring. We propose that, by providing Atp9 for biogenesis of ATP synthase, Atco complexes free Cox6 for assembly of COX. This suggests that Atco complexes may play a role in coordinating assembly and maintaining proper stoichiometry of the two oxphos enzymes
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- Department of Microbiology, University of São Paulo, São Paulo, SP, Brazil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Julia Burnett
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Lorisa Simas Teixeira
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
4
|
Jones JL, Hofmann KB, Cowan AT, Temiakov D, Cramer P, Anikin M. Yeast mitochondrial protein Pet111p binds directly to two distinct targets in COX2 mRNA, suggesting a mechanism of translational activation. J Biol Chem 2019; 294:7528-7536. [PMID: 30910813 DOI: 10.1074/jbc.ra118.005355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/10/2019] [Indexed: 11/06/2022] Open
Abstract
The genes in mitochondrial DNA code for essential subunits of the respiratory chain complexes. In yeast, expression of mitochondrial genes is controlled by a group of gene-specific translational activators encoded in the nucleus. These factors appear to be part of a regulatory system that enables concerted expression of the necessary genes from both nuclear and mitochondrial genomes to produce functional respiratory complexes. Many of the translational activators are believed to act on the 5'-untranslated regions of target mRNAs, but the molecular mechanisms involved in this regulation remain obscure. In this study, we used a combination of in vivo and in vitro analyses to characterize the interactions of one of these translational activators, the pentatricopeptide repeat protein Pet111p, with its presumed target, COX2 mRNA, which encodes subunit II of cytochrome c oxidase. Using photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation analysis, we found that Pet111p binds directly and specifically to a 5'-end proximal region of the COX2 transcript. Further, we applied in vitro RNase footprinting and mapped two binding targets of the protein, of which one is located in the 5'-untranslated leader and the other is within the coding sequence. Combined with the available genetic data, these results suggest a plausible mechanism of translational activation, in which binding of Pet111p may prevent inhibitory secondary structures from forming in the translation initiation region, thus rendering the mRNA available for interaction with the ribosome.
Collapse
Affiliation(s)
- Julia L Jones
- From the Graduate Program in Cell and Molecular Biology, Graduate School of Biomedical Sciences and.,the Department of Cell Biology & Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Katharina B Hofmann
- the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Andrew T Cowan
- the Department of Cell Biology & Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084
| | - Dmitry Temiakov
- the Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Patrick Cramer
- the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany, and
| | - Michael Anikin
- the Department of Cell Biology & Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084,
| |
Collapse
|
5
|
Montanari A, Leo M, De Luca V, Filetici P, Francisci S. Gcn5 histone acetyltransferase is present in the mitoplasts. Biol Open 2019; 8:8/2/bio041244. [PMID: 30777878 PMCID: PMC6398455 DOI: 10.1242/bio.041244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Saccharomyces cerevisiae the Lysine-acetyltransferase Gcn5 (KAT2) is part of the SAGA complex and is responsible for histone acetylation widely or at specific lysines. In this paper we report that GCN5 deletion differently affects the growth of two strains. The defective mitochondrial phenotype is related to a marked decrease in mtDNA content, which also involves the deletion of specific regions of the molecule. We also show that in wild-type mitochondria the Gcn5 protein is present in the mitoplasts, suggesting a new mitochondrial function independent from the SAGA complex and possibly a new function for this protein connecting epigenetics and metabolism. Summary: In yeast mitochondria the Gcn5 protein is present in the mitoplasts and is localized in the inner mitochondrial membrane. Its deletion affects the mitochondrial phenotype and is related to a marked decrease of mitochondrial DNA content.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy .,Pasteur Institute Italy - Cenci Bolognetti Foundation, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Manuela Leo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Veronica De Luca
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology - CNR, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Francisci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Rubalcava-Gracia D, Vázquez-Acevedo M, Funes S, Pérez-Martínez X, González-Halphen D. Mitochondrial versus nuclear gene expression and membrane protein assembly: the case of subunit 2 of yeast cytochrome c oxidase. Mol Biol Cell 2018; 29:820-833. [PMID: 29437907 PMCID: PMC5905295 DOI: 10.1091/mbc.e17-09-0560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
Deletion of the yeast mitochondrial gene COX2, encoding subunit 2 (mtCox2) of cytochrome c oxidase (CcO), results in a respiratory-incompetent Δcox2 strain. For a cytosol-synthesized Cox2 to restore respiratory growth, it must carry the W56R mutation (cCox2W56R). Nevertheless, only a fraction of cCox2W56R is matured in mitochondria, allowing ∼60% steady-state accumulation of CcO. This can be attributed either to the point mutation or to an inefficient biogenesis of cCox2W56R. We generated a strain expressing the mutant protein mtCox2W56R inside mitochondria which should follow the canonical biogenesis of mitochondria-encoded Cox2. This strain exhibited growth rates, CcO steady-state levels, and CcO activity similar to those of the wild type; therefore, the efficiency of Cox2 biogenesis is the limiting step for successful allotopic expression. Upon coexpression of cCox2W56R and mtCox2, each protein assembled into CcO independently from its genetic origin, resulting in a mixed population of CcO with most complexes containing the mtCox2 version. Notably, the presence of the mtCox2 enhances cCox2W56R incorporation. We provide proof of principle that an allotopically expressed Cox2 may complement a phenotype due to a mutant mitochondrial COX2 gene. These results are relevant to developing a rational design of genes for allotopic expression intended to treat human mitochondrial diseases.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| |
Collapse
|
7
|
Derbikova KS, Levitsky SA, Chicherin IV, Vinogradova EN, Kamenski PA. Activation of Yeast Mitochondrial Translation: Who Is in Charge? BIOCHEMISTRY (MOSCOW) 2018; 83:87-97. [DOI: 10.1134/s0006297918020013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Di Nottia M, Montanari A, Verrigni D, Oliva R, Torraco A, Fernandez-Vizarra E, Diodato D, Rizza T, Bianchi M, Catteruccia M, Zeviani M, Dionisi-Vici C, Francisci S, Bertini E, Carrozzo R. Novel mutation in mitochondrial Elongation Factor EF-Tu associated to dysplastic leukoencephalopathy and defective mitochondrial DNA translation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:961-967. [PMID: 28132884 PMCID: PMC5335904 DOI: 10.1016/j.bbadis.2017.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
The mitochondrial Elongation Factor Tu (EF-Tu), encoded by the TUFM gene, is a highly conserved GTPase, which is part of the mitochondrial protein translation machinery. In its activated form it delivers the aminoacyl-tRNAs to the A site of the mitochondrial ribosome. We report here on a baby girl with severe infantile macrocystic leukodystrophy with micropolygyria and a combined defect of complexes I and IV in muscle biopsy, caused by a novel mutation identified in TUFM. Using human mutant cells and the yeast model, we demonstrate the pathological role of the novel variant. Moreover, results of a molecular modeling study suggest that the mutant is inactive in mitochondrial polypeptide chain elongation, probably as a consequence of its reduced ability to bind mitochondrial aa-tRNAs. Four patients have so far been described with mutations in TUFM, and, following the first description of the disease in a single patient, we describe similar clinical and neuroradiological features in an additional patient.
Collapse
Affiliation(s)
- Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arianna Montanari
- Pasteur Institute Italy - Cenci Bolognetti Foundation, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Daniela Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marzia Bianchi
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Francisci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Francisci S, Montanari A. Mitochondrial diseases: Yeast as a model for the study of suppressors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:666-673. [PMID: 28089773 DOI: 10.1016/j.bbamcr.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 11/27/2022]
Abstract
Mitochondrial (mt) tRNA gene mutations are an important cause of human morbidity and are associated with different syndromes. We have previously shown that the mitochondrial protein synthesis elongation factor EF-Tu and isolated sequences from the carboxy-terminal domain of yeast and human mt leucyl-tRNA synthetases (LeuRS), have a wide range of suppression capability among different yeast mt tRNA mutants having defective respiratory phenotype. Here we show that the rescuing capability can be restricted to a specific sequence of six amino acids from the carboxy-terminal domain of mt LeuRS. On the other hand by overexpressing a mutated version of mt EF-Tu in a yeast strain deleted for the endogenous nuclear gene we identified the specific region involved in suppression. Results support the possibility that a small peptide could correct defects associated with many mt tRNA mutations, suggesting a novel therapy for mitochondrial diseases treatment. The involvement of the mt EF-Tu in cellular heat stress response has also been suggested.
Collapse
Affiliation(s)
- Silvia Francisci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy.
| | - Arianna Montanari
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy; Pasteur Institute Italy - Cenci Bolognetti Foundation, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| |
Collapse
|
10
|
Kruszewski J, Golik P. Pentatricopeptide Motifs in the N-Terminal Extension Domain of Yeast Mitochondrial RNA Polymerase Rpo41p Are Not Essential for Its Function. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1101-1110. [PMID: 27908235 DOI: 10.1134/s0006297916100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The core mitochondrial RNA polymerase is a single-subunit enzyme that in yeast Saccharomyces cerevisiae is encoded by the nuclear RPO41 gene. It is an evolutionary descendant of the bacteriophage RNA polymerases, but it includes an additional unconserved N-terminal extension (NTE) domain that is unique to the organellar enzymes. This domain mediates interactions between the polymerase and accessory regulatory factors, such as yeast Sls1p and Nam1p. Previous studies demonstrated that deletion of the entire NTE domain results only in a temperature-dependent respiratory deficiency. Several sequences related to the pentatricopeptide (PPR) motifs were identified in silico in Rpo41p, three of which are located in the NTE domain. PPR repeat proteins are a large family of organellar RNA-binding factors, mostly involved in posttranscriptional gene expression mechanisms. To study their function, we analyzed the phenotype of strains bearing Rpo41p variants where each of these motifs was deleted. We found that deletion of any of the three PPR motifs in the NTE domain does not affect respiratory growth at normal temperature, and it results in a moderate decrease in mtDNA stability. Steady-state levels of COX1 and COX2 mRNAs are also moderately affected. Only the deletion of the second motif results in a partial respiratory deficiency, manifested only at elevated temperature. Our results thus indicate that the PPR motifs do not play an essential role in the function of the NTE domain of the mitochondrial RNA polymerase.
Collapse
Affiliation(s)
- J Kruszewski
- University of Warsaw, Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw, 02-106, Poland.
| | | |
Collapse
|
11
|
Di Micco P, Fazzi D'Orsi M, Morea V, Frontali L, Francisci S, Montanari A. The yeast model suggests the use of short peptides derived from mt LeuRS for the therapy of diseases due to mutations in several mt tRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:3065-74. [PMID: 25261707 DOI: 10.1016/j.bbamcr.2014.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/23/2023]
Abstract
We have previously established a yeast model of mitochondrial (mt) diseases. We showed that defective respiratory phenotypes due to point-mutations in mt tRNA(Leu(UUR)), tRNA(Ile) and tRNA(Val) could be relieved by overexpression of both cognate and non-cognate nuclearly encoded mt aminoacyl-tRNA synthetases (aaRS) LeuRS, IleRS and ValRS. More recently, we showed that the isolated carboxy-terminal domain (Cterm) of yeast mt LeuRS, and even short peptides derived from the human Cterm, have the same suppressing abilities as the whole enzymes. In this work, we extend these results by investigating the activity of a number of mt aaRS from either class I or II towards a panel of mt tRNAs. The Cterm of both human and yeast mt LeuRS has the same spectrum of activity as mt aaRS belonging to class I and subclass a, which is the most extensive among the whole enzymes. Yeast Cterm is demonstrated to be endowed with mt targeting activity. Importantly, peptide fragments β30_31 and β32_33, derived from the human Cterm, have even higher efficiency as well as wider spectrum of activity, thus opening new avenues for therapeutic intervention. Bind-shifting experiments show that the β30_31 peptide directly interacts with human mt tRNA(Leu(UUR)) and tRNA(Ile), suggesting that the rescuing activity of isolated peptide fragments is mediated by a chaperone-like mechanism. Wide-range suppression appears to be idiosyncratic of LeuRS and its fragments, since it is not shared by Cterminal regions derived from human mt IleRS or ValRS, which are expected to have very different structures and interactions with tRNAs.
Collapse
Affiliation(s)
- Patrizio Di Micco
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Mario Fazzi D'Orsi
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Veronica Morea
- National Research Council of Italy (CNR) - Institute of Biology, Molecular Medicine and Nanobiotechnology (IBMN), Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Laura Frontali
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Silvia Francisci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Arianna Montanari
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
12
|
Montanari A, Francisci S, Fazzi D'Orsi M, Bianchi MM. Strain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae. Microbiologyopen 2014; 3:288-98. [PMID: 24700775 PMCID: PMC4082703 DOI: 10.1002/mbo3.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/09/2014] [Accepted: 01/20/2014] [Indexed: 01/18/2023] Open
Abstract
In the course of our studies on mitochondrial defects, we have observed important phenotypic variations in Saccharomyces cerevisiae strains suggesting that a better characterization of the genetic variability will be essential to define the relationship between the mitochondrial efficiency and the presence of different nuclear backgrounds. In this manuscript, we have extended the study of such relations by comparing phenotypic assays related to mitochondrial functions of three wild-type laboratory strains. In addition to the phenotypic variability among the wild-type strains, important differences have been observed among strains bearing identical mitochondrial tRNA mutations that could be related only to the different nuclear background of the cells. Results showed that strains exhibited an intrinsic variability in the severity of the effects of the mitochondrial mutations and that specific strains might be used preferentially to evaluate the phenotypic effect of mitochondrial mutations on carbon metabolism, stress responses, and mitochondrial DNA stability. In particular, while W303-1B and MCC123 strains should be used to study the effect of severe mitochondrial tRNA mutations, D273-10B/A1 strain is rather suitable for studying the effects of milder mutations.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Piazzale A. Moro 5, Rome, 00185, Italy; Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, Rome, 00185, Italy
| | | | | | | |
Collapse
|
13
|
Abstract
The yeast cytochrome oxidase Cox3p assembly module is shown to consist of Cox3p, Cox4p, Cox7p, Cox13p, and accessory factor Rcf1p. The results support an assembly model in which three modules, each containing one of the three core subunits and a unique subset of nuclear-derived subunits, interact to form the holoenzyme. Yeast cytochrome oxidase (COX) was previously inferred to assemble from three modules, each containing one of the three mitochondrially encoded subunits and a different subset of the eight nuclear gene products that make up this respiratory complex. Pull-down assays of pulse-labeled mitochondria enabled us to characterize Cox3p subassemblies that behave as COX precursors and contain Cox4p, Cox7p, and Cox13p. Surprisingly, Cox4p is a constituent of two other complexes, one of which was previously proposed to be an intermediate of Cox1p biogenesis. This suggests that Cox4p, which contacts Cox1p and Cox3p in the holoenzyme, can be incorporated into COX by two alternative pathways. In addition to subunits of COX, some Cox3p intermediates contain Rcf1p, a protein associated with the supercomplex that stabilizes the interaction of COX with the bc1 (ubiquinol-cytochrome c reductase) complex. Finally, our results indicate that although assembly of the Cox1p module is not contingent on the presence of Cox3p, the converse is not true, as none of the Cox3p subassemblies were detected in a mutant blocked in translation of Cox1p. These studies support our proposal that Cox3p and Cox1p are separate assembly modules with unique compositions of ancillary factors and subunits derived from the nuclear genome.
Collapse
Affiliation(s)
- Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | |
Collapse
|
14
|
Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2013; 100:132-40. [PMID: 23954798 PMCID: PMC3978653 DOI: 10.1016/j.biochi.2013.07.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Mitochondrially-encoded proteins are mostly respiratory chain components. The mitochondrial translation system is thus organized in a very specific way. Initiation involves mRNA-specific activators and bacteria-like initiation factors. We show that Saccharomyces cerevisiae Aim23p is a functional ortholog of bacterial IF3. We review the lineage specific features of mitochondrial translation initiation.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Sergey Levitskii
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
15
|
Herbert CJ, Golik P, Bonnefoy N. Yeast PPR proteins, watchdogs of mitochondrial gene expression. RNA Biol 2013; 10:1477-94. [PMID: 24184848 DOI: 10.4161/rna.25392] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or translation of mitochondrially encoded RNAs. At present, some information concerning the target RNA(s) of most of these proteins is available, the next challenge will be to refine our understanding of the function of the proteins and to resolve the yeast PPR-RNA-binding code, which might differ significantly from the plant PPR code.
Collapse
Affiliation(s)
- Christopher J Herbert
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| | - Pawel Golik
- Department of Genetics and Biotechnology; Faculty of Biology; University of Warsaw; Pawinskiego 5A; Warsaw, Poland
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| |
Collapse
|
16
|
Montanari A, Zhou YF, D'Orsi MF, Bolotin-Fukuhara M, Frontali L, Francisci S. Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 2013; 527:1-9. [PMID: 23727608 DOI: 10.1016/j.gene.2013.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 12/01/2022]
Abstract
The respiratory defects associated with mutations in human mitochondrial tRNA genes can be mimicked in yeast, which is the only organism easily amenable to mitochondrial transformation. This approach has shown that overexpression of several nuclear genes coding for factors involved in mitochondrial protein synthesis can alleviate the respiratory defects both in yeast and in human cells. The present paper analyzes in detail the effects of overexpressed yeast and human mitochondrial translation elongation factors EF-Tu. We studied the suppressing activity versus the function in mt translation of mutated versions of this factor and we obtained indications on the mechanism of suppression. Moreover from a more extended search for suppressor genes we isolated factors which might be active in mitochondrial biogenesis. Results indicate that the multiplicity of mitochondrial factors as well as their high variability of expression levels can account for the variable severity of mitochondrial diseases and might suggest possible therapeutic approaches.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies C. Darwin, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Herrmann JM, Woellhaf MW, Bonnefoy N. Control of protein synthesis in yeast mitochondria: the concept of translational activators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:286-94. [PMID: 22450032 DOI: 10.1016/j.bbamcr.2012.03.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria contain their own genome which codes for a small number of proteins. Most mitochondrial translation products are part of the membrane-embedded reaction centers of the respiratory chain complexes. In the yeast Saccharomyces cerevisiae, the expression of these proteins is regulated by translational activators that bind mitochondrial mRNAs, in most cases to their 5'-untranslated regions, and each mitochondrial mRNA appears to have its own translational activator(s). Recent studies showed that these translational activators can be part of feedback control loops which only permit translation if the downstream assembly of nascent translation products can occur. In several cases, the accumulation of a non-assembled protein prevents further synthesis of this protein but not translation in general. These control loops prevent the synthesis of potentially harmful assembly intermediates of the reaction centers of mitochondrial enzymes. Since such regulatory feedback loops only work if translation occurs in the compartment in which the complexes of the respiratory chain are assembled, these control mechanisms require the presence of a translation machinery in mitochondria. This might explain why eukaryotic cells maintained DNA in mitochondria during the last two billion years of evolution. This review gives an overview of the mitochondrial translation system and summarizes the current knowledge on translational activators and their role in the regulation of mitochondrial protein synthesis. This article is part of a Special Issue entitled: Protein import and quality control in mitochondria and plastids.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, Erwin-Schrödinger-Strasse 13, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
18
|
Montanari A, De Luca C, Di Micco P, Morea V, Frontali L, Francisci S. Structural and functional role of bases 32 and 33 in the anticodon loop of yeast mitochondrial tRNAIle. RNA (NEW YORK, N.Y.) 2011; 17:1983-1996. [PMID: 21914842 PMCID: PMC3198592 DOI: 10.1261/rna.2878711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
Previous work has demonstrated the usefulness of the yeast model to investigate the molecular mechanisms underlying defects due to base substitutions in mitochondrial tRNA genes, and to identify suppressing molecules endowed with potential clinical relevance. The present paper extends these investigations to two human equivalent yeast mutations located at positions 32 and 33 in the anticodon loop of tRNA(Ile). Notwithstanding the proximity of the two T>C base substitutions, the effects of these mutations have been found to be quite different in yeast, as they are in human. The T32C substitution has a very severe effect in yeast, consisting in a complete inhibition of growth on nonfermentable substrates. Conversely, respiratory defects caused by the T33C mutation could only be observed in a defined genetic context. Analyses of available sequences and selected tRNA three-dimensional structures were performed to provide explanations for the different behavior of these adjacent mutations. Examination of the effects of previously identified suppressors demonstrated that overexpression of the TUF1 gene did not rescue the defective phenotypes determined by either mutation, possibly as a consequence of the lack of interactions between EF-Tu and the tRNA anticodon arm in known structures. On the contrary, both the cognate IleRS and the noncognate LeuRS and ValRS are endowed with suppressing activities toward both mutations. This allows us to extend to the tRNA(Ile) mutants the cross-suppression activity of aminoacyl-tRNA synthetases previously demonstrated for tRNA(Leu) and tRNA(Val) mutants.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnology, Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina De Luca
- Department of Biology and Biotechnology, Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizio Di Micco
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Veronica Morea
- CNR—National Research Council of Italy, Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Laura Frontali
- Department of Biology and Biotechnology, Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Francisci
- Department of Biology and Biotechnology, Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
19
|
Francisci S, Montanari A, De Luca C, Frontali L. Peptides from aminoacyl-tRNA synthetases can cure the defects due to mutations in mt tRNA genes. Mitochondrion 2011; 11:919-23. [PMID: 21903180 PMCID: PMC3210327 DOI: 10.1016/j.mito.2011.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022]
Abstract
Recent results from several laboratories have confirmed that human and yeast leucyl- and valyl-tRNA synthetases can rescue the respiratory defects due to mutations in mitochondrial tRNA genes. In this report we show that this effect cannot be ascribed to the catalytic activity per se and that isolated domains of aminoacyl-tRNA synthetases and even short peptides thereof have suppressing effects.
Collapse
Affiliation(s)
- Silvia Francisci
- Department of Biology and Biotechnologies Charles Darwin, Pasteur Institute-Cenci Bolognetti Foundation and Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
20
|
Deleterious effect of the Qo inhibitor compound resistance-conferring mutation G143A in the intron-containing cytochrome b gene and mechanisms for bypassing it. Appl Environ Microbiol 2011; 77:2088-93. [PMID: 21278281 DOI: 10.1128/aem.02548-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mutation G143A in the inhibitor binding site of cytochrome b confers a high level of resistance to fungicides targeting the bc(1) complex. The mutation, reported in many plant-pathogenic fungi, has not evolved in fungi that harbor an intron immediately after the codon for G143 in the cytochrome b gene, intron bi2. Using Saccharomyces cerevisiae as a model organism, we show here that a codon change from GGT to GCT, which replaces glycine 143 with alanine, hinders the splicing of bi2 by altering the exon/intron structure needed for efficient intron excision. This lowers the levels of cytochrome b and respiratory growth. We then investigated possible bypass mechanisms that would restore the respiratory fitness of a resistant mutant. Secondary mutations in the mitochondrial genome were found, including a point mutation in bi2 restoring the correct exon/intron structure and the deletion of intron bi2. We also found that overexpression of nuclear genes MRS2 and MRS3, encoding mitochondrial metal ion carriers, partially restores the respiratory growth of the G143A mutant. Interestingly, the MRS3 gene from the plant-pathogenic fungus Botrytis cinerea, overexpressed in an S. cerevisiae G143A mutant, had a similar compensatory effect. These bypass mechanisms identified in yeast could potentially arise in pathogenic fungi.
Collapse
|
21
|
Montanari A, De Luca C, Frontali L, Francisci S. Aminoacyl-tRNA synthetases are multivalent suppressors of defects due to human equivalent mutations in yeast mt tRNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:1050-7. [PMID: 20471434 DOI: 10.1016/j.bbamcr.2010.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/22/2010] [Accepted: 05/05/2010] [Indexed: 12/01/2022]
Abstract
The use of the yeast model for the study of the molecular and cellular effects of the pathogenic base substitutions in human mitochondrial tRNA genes has recently been validated by the finding that the suppressing factors identified in yeast (the mitochondrial protein elongation factor EF-Tu and the cognate aminoacyl-tRNA synthetase) have suppressing activities also in human cells. In this paper we report a detailed analysis of the cross-suppressing activities of valyl- and leucyl-tRNA synthetases on different tRNA mutants. Glycerol growth, respiration, Northern analysis consistently show that similar suppressing effects can be obtained by these two yeast synthetases and by the orthologous human enzymes. As a whole the present data indicate that the suppression by mt aa-RS is probably not related to the enzyme activities per se, and may be due to a stabilizing chaperon-like effect of the synthetase molecules on the tRNA structure altered by the mutations.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Cell and Developmental Biology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | | |
Collapse
|
22
|
DMR1 (CCM1/YGR150C) of Saccharomyces cerevisiae encodes an RNA-binding protein from the pentatricopeptide repeat family required for the maintenance of the mitochondrial 15S ribosomal RNA. Genetics 2010; 184:959-73. [PMID: 20124025 DOI: 10.1534/genetics.110.113969] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins form the largest known RNA-binding protein family and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly in mitochondria and chloroplasts, where they modulate organellar genome expression on the post-transcriptional level. The Saccharomyces cerevisiae DMR1 (CCM1, YGR150C) encodes a PPR protein that localizes to mitochondria. Deletion of DMR1 results in a complete and irreversible loss of respiratory capacity and loss of wild-type mtDNA by conversion to rho(-)/rho(0) petites, regardless of the presence of introns in mtDNA. The phenotype of the dmr1Delta mitochondria is characterized by fragmentation of the small subunit mitochondrial rRNA (15S rRNA), that can be reversed by wild-type Dmr1p. Other mitochondrial transcripts, including the large subunit mitochondrial rRNA (21S rRNA), are not affected by the lack of Dmr1p. The purified Dmr1 protein specifically binds to different regions of 15S rRNA in vitro, consistent with the deletion phenotype. Dmr1p is therefore the first yeast PPR protein, which has an rRNA target and is probably involved in the biogenesis of mitochondrial ribosomes and translation.
Collapse
|
23
|
De Luca C, Zhou Y, Montanari A, Morea V, Oliva R, Besagni C, Bolotin-Fukuhara M, Frontali L, Francisci S. Can yeast be used to study mitochondrial diseases? Biolistic tRNA mutants for the analysis of mechanisms and suppressors. Mitochondrion 2009; 9:408-17. [PMID: 19631764 DOI: 10.1016/j.mito.2009.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/07/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
Base substitutions equivalent to those causing human pathologies have been introduced in yeast mitochondrial tRNA genes. These mutants can be utilized as flexible tools to investigate the molecular aspects of mitochondrial diseases and identify correcting genes. We show that for all studied tRNA mutations (including an homoplasmic one in tRNA(Val)) the severity of phenotypes follows the same trend in four different nuclear backgrounds. Correcting genes include TUF1 and genes encoding aminoacyl-tRNA synthetase. The effect of suppressors was analyzed by Northern blot. Mutated leucyl-tRNA synthetase with highly reduced catalytic activity maintains full suppressing effect, thus suggesting a chaperone-like and/or stabilizing function.
Collapse
Affiliation(s)
- Cristina De Luca
- Department of Cell and Developmental Biology, Pasteur Institute-Fondazione Cenci Bolognetti, University Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Montanari A, Besagni C, De Luca C, Morea V, Oliva R, Tramontano A, Bolotin-Fukuhara M, Frontali L, Francisci S. Yeast as a model of human mitochondrial tRNA base substitutions: investigation of the molecular basis of respiratory defects. RNA (NEW YORK, N.Y.) 2008; 14:275-83. [PMID: 18065717 PMCID: PMC2212258 DOI: 10.1261/rna.740108] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/16/2007] [Indexed: 05/25/2023]
Abstract
We investigate the relationships between acylation defects and structure alterations due to base substitutions in yeast mitochondrial (mt) tRNA(UUR)(Leu). The studied substitutions are equivalent to the A3243G and T3250C human pathogenetic tRNA mutations. Our data show that both mutations can produce tRNA(UUR)(Leu) acylation defects, although to a different extent. For mutant A14G (equivalent to MELAS A3243G base substitution), the presence of the tRNA and its defective aminoacylation could be observed only in the nuclear context of W303, a strain where the protein synthesis defects caused by tRNA base substitutions are far less severe than in previously studied strains. For mutant T20C (equivalent to the MM/CPEO human T3250C mutation), the acylation defect was less severe, and a thermosensitive acylation could be detected also in the MCC123 strain. The correlation between the severity of the in vivo phenotypes of yeast tRNA mutants and those obtained in in vitro studies of human tRNA mutants supports the view that yeast is a suitable model to study the cellular and molecular effects of tRNA mutations involved in human pathologies. Furthermore, the yeast model offers the possibility of modulating the severity of yeast respiratory phenotypes by studying the tRNA mutants in different nuclear contexts. The nucleotides at positions 14 and 20 are both highly conserved in yeast and human mt tRNAs; however, the different effect of their mutations can be explained by structure analyses and quantum mechanics calculations that can shed light on the molecular mechanisms responsible for the experimentally determined defects of the mutants.
Collapse
MESH Headings
- Acetylation
- Base Sequence
- Cell Respiration/genetics
- Humans
- Models, Biological
- Mutation
- Nucleic Acid Conformation
- Phenotype
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Mitochondrial
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Cell and Developmental Biology, Pasteur Institute-Fondazione Cenci Bolognetti, University Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Horn D, Fontanesi F, Barrientos A. Exploring protein-protein interactions involving newly synthesized mitochondrial DNA-encoded proteins. Methods Mol Biol 2008; 457:125-39. [PMID: 19066023 DOI: 10.1007/978-1-59745-261-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biogenesis of the mitochondrial respiratory chain enzymes involves the coordinated action of the mitochondrial and nuclear genomes. As a matter of fact, the structural sub-units forming these multimeric enzymes are encoded in both genomes. In addition, the assistance of nuclear encoded factors, termed assembly factors, is necessary to allow for the expression of the mitochondrial DNA-encoded subunits and to facilitate their maturation, membrane insertion, and further assembly into the corresponding enzymatic complex. These processes involve transient interactions among the newly synthesized mitochondrial products and specific assembly factors. The identification and characterization of these interactions can be achieved by the method described here, consisting of pulling down tagged versions of the assembly factors immediately after radiolabeling the mitochondrial translation products in isolated mitochondria, and analyzing the radiolabeled pulled-down material.
Collapse
Affiliation(s)
- Darryl Horn
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
26
|
Khalimonchuk O, Bird A, Winge DR. Evidence for a pro-oxidant intermediate in the assembly of cytochrome oxidase. J Biol Chem 2007; 282:17442-9. [PMID: 17430883 DOI: 10.1074/jbc.m702379200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrogen peroxide sensitivity of cells lacking two proteins, Sco1 and Cox11, important in the assembly of cytochrome c oxidase (CcO), is shown to arise from the transient accumulation of a pro-oxidant heme A-Cox1 stalled intermediate. The peroxide sensitivity of these cells is abrogated by a reduction in either Cox1 expression or heme A formation but exacerbated by either enhanced Cox1 expression or heme A production arising from overexpression of COX15. Sco1 and Cox11 are implicated in the formation of the Cu(A) and Cu(B) sites of CcO, respectively. The respective wild-type genes suppress the peroxide sensitivities of sco1Delta and cox11Delta cells, but no cross-complementation is seen with noncognate genes. Copper-binding mutant alleles of Sco1 and Cox11 that are nonfunctional in promoting the assembly of CcO are functional in suppressing the peroxide sensitivity of their respective null mutants. Likewise, human Sco1 that is nonfunctional in yeast CcO assembly is able to suppress the peroxide sensitivity of yeast sco1Delta cells. Thus, a disconnect exists between the respiratory capacity of cells and hydrogen peroxide sensitivity. Hydrogen peroxide sensitivity of sco1Delta and cox11Delta cells is abrogated by overexpression of a novel mitochondrial ATPase Afg1 that promotes the degradation of CcO mitochondrially encoded subunits. Studies on the hydrogen peroxide sensitivity in CcO assembly mutants reveal new aspects of the CcO assembly process.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
27
|
Pfeuty A, Dufresne C, Gueride M, Lecellier G. Mitochondrial upstream promoter sequences modulate in vivo the transcription of a gene in yeast mitochondria. Mitochondrion 2006; 6:289-98. [PMID: 17110175 DOI: 10.1016/j.mito.2006.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/28/2006] [Accepted: 10/10/2006] [Indexed: 10/24/2022]
Abstract
An in vivo study of the importance of the length and/or structures of sequences upstream of a mitochondrial promoter was undertaken in Saccharomyces cerevisiae. Short tandem mtDNA repeats were introduced upstream of the COX2 gene. Our data show that its expression is modulated by the sequence located over 200 bp upstream of the promoter. A deletion decreases the level of transcripts to about 50%. The initial level can be recovered by a fill-in AT-rich sequence or partially by the presence of a long repeat tract; on the contrary, a smaller number of copies tends to intensify the effect of the deletion. These results show that the length and base composition upstream of mitochondrial promoter are involved in vivo in the modulation of the gene expression.
Collapse
Affiliation(s)
- A Pfeuty
- Université de Versailles-Saint Quentin en Yvelines, Laboratoire de Génétique et Biologie Cellulaire, 45 Avenue des Etats-Unis, 78035 Versailles, Cedex, France
| | | | | | | |
Collapse
|
28
|
Fontanesi F, Soto IC, Horn D, Barrientos A. Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol 2006; 291:C1129-47. [PMID: 16760263 DOI: 10.1152/ajpcell.00233.2006] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome c-oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, plays a key role in the regulation of aerobic production of energy. Biogenesis of eukaryotic COX involves the coordinated action of two genomes. Three mitochondrial DNA-encoded subunits form the catalytic core of the enzyme, which contains metal prosthetic groups. Another 10 subunits encoded in the nuclear DNA act as a protective shield surrounding the core. COX biogenesis requires the assistance of >20 additional nuclear-encoded factors acting at all levels of the process. Expression of the mitochondrial-encoded subunits, expression and import of the nuclear-encoded subunits, insertion of the structural subunits into the mitochondrial inner membrane, addition of prosthetic groups, assembly of the holoenzyme, further maturation to form a dimer, and additional assembly into supercomplexes are all tightly regulated processes in a nuclear-mitochondrial-coordinated fashion. Such regulation ensures the building of a highly efficient machine able to catalyze the safe transfer of electrons from cytochrome c to molecular oxygen and ultimately facilitate the aerobic production of ATP. In this review, we will focus on describing and analyzing the present knowledge about the different regulatory checkpoints in COX assembly and the dynamic relationships between the different factors involved in the process. We have used information mostly obtained from the suitable yeast model, but also from bacterial and animal systems, by means of large-scale genetic, molecular biology, and physiological approaches and by integrating information concerning individual elements into a cellular system network.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Departments of Neurology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
29
|
Arnold I, Wagner-Ecker M, Ansorge W, Langer T. Evidence for a novel mitochondria-to-nucleus signalling pathway in respiring cells lacking i-AAA protease and the ABC-transporter Mdl1. Gene 2006; 367:74-88. [PMID: 16403607 DOI: 10.1016/j.gene.2005.09.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/08/2005] [Accepted: 09/23/2005] [Indexed: 11/23/2022]
Abstract
Peptides generated upon degradation of mitochondrial proteins by various ATP-dependent proteases are continuously released from mitochondria raising the intriguing possibility of a role of these peptides in interorganellar communication. Here, we have determined genome-wide transcript profiles of mutant yeast cells defective in mitochondrial peptide export. Deletion of YME1, coding for the i-AAA protease in the inner membrane, abolished peptide generation in the intermembrane space and led to the induction of nuclear genes with functions in mitochondrial gene expression and the biogenesis of the respiratory chain. On the other hand, deletion of MDL1, coding for an ABC-transporter involved in peptide export from the matrix space, only had minor effects on nuclear gene expression. It strengthened, however, the response in Deltayme1 cells suggesting a link between mitochondrial peptide export and nuclear gene expression. The response in Yme1-deficient cells depended on respiratory growth and was not observed in fermenting yeast cells. Inhibition of the F1FO-ATP synthase induced Deltayme1 responsive genes whereas inhibition of the respiratory chain or dissipation of the mitochondrial membrane potential resulted in their repression. These findings suggest the existence of a novel mitochondria-to-nucleus signalling pathway in respiring cells which allows the re-adjustment of the biogenesis of the respiratory chain in response to an altered activity of the F1FO-ATP synthase.
Collapse
Affiliation(s)
- Isabel Arnold
- Institut für Genetik and Zentrum für Molekulare Medizin (ZMMK), Universität zu Köln, 50674 Köln, Germany
| | | | | | | |
Collapse
|
30
|
Barros MH, Myers AM, Van Driesche S, Tzagoloff A. COX24 codes for a mitochondrial protein required for processing of the COX1 transcript. J Biol Chem 2005; 281:3743-51. [PMID: 16339141 DOI: 10.1074/jbc.m510778200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most strains of Saccharomyces cerevisiae the mitochondrial gene COX1, for subunit 1 of cytochrome oxidase, contains multiple exons and introns. Processing of COX1 primary transcript requires accessory proteins factors, some of which are encoded by nuclear genes and others by reading frames residing in some of the introns of the COX1 and COB genes. Here we show that the low molecular weight protein product of open reading frame YLR204W, for which we propose the name COX24, is also involved in processing of COX1 RNA intermediates. The growth defect of cox24 mutants is partially rescued in strains harboring mitochondrial DNA lacking introns. Northern blot analyses of mitochondrial transcripts indicate cox24 null mutants to be blocked in processing of introns aI2 and aI3. The dependence of intron aI3 excision on Cox24p is also supported by the growth properties of the cox24 mutant harboring mitochondrial DNA with different intron compositions. The intermediate phenotype of the cox24 mutant in the background of intronless mitochondrial DNA, however, suggests that in addition to its role in splicing of the COX1 pre-mRNA, Cox24p still has another function. Based on the analysis of a cox14-cox24 double mutant, we propose that the other function of Cox24p is related to translation of the COX1 mRNA.
Collapse
Affiliation(s)
- Mario H Barros
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
31
|
Khalimonchuk O, Rödel G. Biogenesis of cytochrome c oxidase. Mitochondrion 2005; 5:363-88. [PMID: 16199211 DOI: 10.1016/j.mito.2005.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 11/20/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of electron transport chains in some prokaryotes and in mitochondria, has been characterized in detail over many years. Recently, a number of new data on structural and functional aspects as well as on COX biogenesis emerged. COX biogenesis includes a variety of steps starting from translation to the formation of the mature complex. Each step involves a set of specific factors that assist translation of subunits, their translocation across membranes, insertion of essential cofactors, assembly and final maturation of the enzyme. In this review, we focus on the organization and biogenesis of COX.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
32
|
Williams EH, Bsat N, Bonnefoy N, Butler CA, Fox TD. Alteration of a novel dispensable mitochondrial ribosomal small-subunit protein, Rsm28p, allows translation of defective COX2 mRNAs. EUKARYOTIC CELL 2005; 4:337-45. [PMID: 15701796 PMCID: PMC549345 DOI: 10.1128/ec.4.2.337-345.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | |
Collapse
|
33
|
Herrmann JM, Funes S. Biogenesis of cytochrome oxidase—Sophisticated assembly lines in the mitochondrial inner membrane. Gene 2005; 354:43-52. [PMID: 15905047 DOI: 10.1016/j.gene.2005.03.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 02/02/2005] [Accepted: 03/23/2005] [Indexed: 11/18/2022]
Abstract
Biogenesis of the cytochrome oxidase complex in the mitochondrial inner membrane depends on the concerted action of a variety of proteins. Recent studies shed light on this biological assembly process revealing an astonishingly complex procedure by which the different subunits of the enzymes are put together and the required cofactors are supplied. In this review we present a hypothetical model for the assembly process of cytochrome oxidase based on the current knowledge of the functions of specific assembly factors. According to this model the two largest subunits of the complex are first equipped with their respective cofactors on independent assembly lines. Prior to their assembly with the residual subunits that complete the whole complex, these two subcomplexes remain bound to substrate-specific chaperones. We propose that these chaperones, Mss51 for subunit 1 and Cox20 for subunit 2, control the coordinate assembly process to prevent potentially harmful redox reactions of unassembled or misassembled subunits.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Institute of Physiological Chemistry, Butenandtstrasse 5, 81377 München, University of Munich, Germany.
| | | |
Collapse
|
34
|
Fiori A, Perez-Martinez X, Fox TD. Overexpression of theCOX2translational activator, Pet111p, prevents translation ofCOX1mRNA and cytochromecoxidase assembly in mitochondria ofSaccharomyces cerevisiae. Mol Microbiol 2005; 56:1689-704. [PMID: 15916616 DOI: 10.1111/j.1365-2958.2005.04658.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dramatically elevated levels of the COX2 mitochondrial mRNA-specific translational activator protein Pet111p interfere with respiratory growth and cytochrome c oxidase accumulation. The respiratory phenotype appears to be caused primarily by inhibition of the COX1 mitochondrial mRNA translation, a finding confirmed by lack of cox1Delta::ARG8(m) reporter mRNA translation. Interference with Cox1p synthesis depends to a limited extent upon increased translation of the COX2 mRNA, but is largely independent of it. Respiratory growth is partially restored by a chimeric COX1 mRNA bearing the untranslated regions of the COX2 mRNA, and by overproduction of the COX1 mRNA-specific activators, Pet309p and Mss51p. These results suggest that excess Pet111p interacts unproductively with factors required for normal COX1 mRNA translation. Certain missense mutations in PET111 alleviate the interference with COX1 mRNA translation but do not completely restore normal respiratory growth in strains overproducing Pet111p, suggesting that elevated Pet111p also perturbs assembly of newly synthesized subunits into active cytochrome c oxidase. Thus, this severe imbalance in translational activator levels appears to cause multiple problems in mitochondrial gene expression, reflecting the dual role of balanced translational activators in cooperatively regulating both the levels and locations of organellar translation.
Collapse
Affiliation(s)
- Alessandro Fiori
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
35
|
Williams EH, Perez-Martinez X, Fox TD. MrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria. Genetics 2005; 167:65-75. [PMID: 15166137 PMCID: PMC1470847 DOI: 10.1534/genetics.167.1.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translation in mitochondria utilizes a large complement of ribosomal proteins. Many mitochondrial ribosomal components are clearly homologous to eubacterial ribosomal proteins, but others appear unique to the mitochondrial system. A handful of mitochondrial ribosomal proteins appear to be eubacterial in origin but to have evolved additional functional domains. MrpL36p is an essential mitochondrial ribosomal large-subunit component in Saccharomyces cerevisiae. Increased dosage of MRPL36 also has been shown to suppress certain types of translation defects encoded within the mitochondrial COX2 mRNA. A central domain of MrpL36p that is similar to eubacterial ribosomal large-subunit protein L31 is sufficient for general mitochondrial translation but not suppression, and proteins bearing this domain sediment with the ribosomal large subunit in sucrose gradients. In contrast, proteins lacking the L31 domain, but retaining a novel N-terminal sequence and a C-terminal sequence with weak similarity to the Escherichia coli signal recognition particle component Ffh, are sufficient for dosage suppression and do not sediment with the large subunit of the ribosome. Interestingly, the activity of MrpL36p as a dosage suppressor exhibits gene and allele specificity. We propose that MrpL36p represents a highly diverged L31 homolog with derived domains functioning in mRNA selection in yeast mitochondria.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
36
|
Demlow CM, Fox TD. Activity of mitochondrially synthesized reporter proteins is lower than that of imported proteins and is increased by lowering cAMP in glucose-grown Saccharomyces cerevisiae cells. Genetics 2004; 165:961-74. [PMID: 14668357 PMCID: PMC1462836 DOI: 10.1093/genetics/165.3.961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We selected for increased phenotypic expression of a synthetic cox2::arg8m-G66S reporter gene inserted into Saccharomyces cerevisiae mtDNA in place of COX2. Recessive mutations in ras2 and cyr1, as well as elevated dosage of PDE2, allowed cox2::arg8m-G66S to support Arg prototrophy. Each of these genetic alterations should decrease cellular cAMP levels. The resulting signal was transduced through redundant action of the three cAMP-dependent protein kinases, TPK1, TPK2, and TPK3. ras2 had little or no effect on the level of wild-type Arg8p encoded by cox2::ARG8m, but did increase Arg8p activity, as judged by growth phenotype. ras2 also caused increased fluorescence in cells carrying the synthetic cox3::GFPm reporter in mtDNA, but had little effect on the steady-state level of GFP polypeptide detected immunologically. Thus, decreased cAMP levels did not affect the synthesis of mitochondrially coded protein reporters in glucose-grown cells, but rather elevated activities in the matrix that promote efficient folding. Furthermore, we show that when Arg8p is synthesized in the cytoplasm and imported into mitochondria, it has greater activity than when it is synthesized in the matrix. Thus, mitochondrially synthesized proteins may not have the same access to matrix chaperones as cytoplasmically synthesized proteins emerging from the import apparatus.
Collapse
Affiliation(s)
- Christina M Demlow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
37
|
Krause-Buchholz U, Barth K, Dombrowski C, Rödel G. Saccharomyces cerevisiae translational activator Cbs2p is associated with mitochondrial ribosomes. Curr Genet 2004; 46:20-8. [PMID: 15127226 DOI: 10.1007/s00294-004-0503-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/22/2004] [Accepted: 03/27/2004] [Indexed: 11/28/2022]
Abstract
A characteristic feature of the mitochondrial expression system in Saccharomyces cerevisiae is the requirement for gene-specific translational activator proteins. Translation of mitochondrial apocytochrome b mRNA requires the nucleus-encoded proteins Cbs1p and Cbs2p. These proteins are thought to tether cytochrome b mRNA to the mitochondrial inner membrane via binding to the 5' untranslated mRNA leader. Here, we demonstrate by the use of affinity chromatography and coimmunoprecipitation that Cbs2p interacts with the mitoribosomes. We further provide evidence that the C-terminus of Cbs2p is important for ribosome association, while the N-terminal portion is essential for the formation of homomeric structures.
Collapse
Affiliation(s)
- Udo Krause-Buchholz
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany.
| | | | | | | |
Collapse
|
38
|
Mireau H, Arnal N, Fox TD. Expression of Barstar as a selectable marker in yeast mitochondria. Mol Genet Genomics 2003; 270:1-8. [PMID: 12928865 DOI: 10.1007/s00438-003-0879-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 06/05/2003] [Indexed: 10/26/2022]
Abstract
We describe a new and potentially universal selection system for mitochondrial transformation based on bacterial genes, and demonstrate its feasibility in Saccharomyces cerevisiae. We first found that cytoplasmically synthesized Barnase, an RNase, interferes with mitochondrial gene expression when targeted to the organelle, without causing lethality when expressed at appropriate levels. Next, we synthesized a gene that uses the yeast mitochondrial genetic code to direct the synthesis of the specific Barnase inhibitor Barstar, and demonstrated that expression of this gene, BARSTM, integrated in mtDNA protects respiratory function from imported barnase. Finally, we showed that screening for resistance to mitochondrially targeted barnase can be used to identify rare mitochondrial transformants that had incorporated BARSTM in their mitochondrial DNA. The possibility of employing this strategy in other organisms is discussed.
Collapse
Affiliation(s)
- H Mireau
- Station de Génétique et d'Amélioration des Plantes, INRA, Route de Saint-Cyr, 78026 Versailles, France.
| | | | | |
Collapse
|
39
|
Golik P, Bonnefoy N, Szczepanek T, Saint-Georges Y, Lazowska J. The Rieske FeS protein encoded and synthesized within mitochondria complements a deficiency in the nuclear gene. Proc Natl Acad Sci U S A 2003; 100:8844-9. [PMID: 12837937 PMCID: PMC166401 DOI: 10.1073/pnas.1432907100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Indexed: 11/18/2022] Open
Abstract
The Rieske FeS protein, an essential catalytic subunit of the mitochondrial cytochrome bc1 complex, is encoded in yeast by the nuclear gene RIP1, whose deletion leads to a respiratory-deficient phenotype. By using biolistic transformation, we have relocated the nuclear RIP1 gene into mitochondria. To allow its expression within the organelle and to direct its integration downstream of the cox1 gene, we have fused the 3' end of the Saccharomyces douglasii cox1 gene upstream of the mitochondrial copy of RIP1 (RIP1m) flanked by the Saccharomyces cerevisiae cox1 promoter and terminator regions. We show that RIP1m integrated between the cox1 and atp8 genes is mitotically stable and expressed, and it complements a deletion of the nuclear gene. Immunodetection experiments demonstrate that the mitochondrial genome containing RIP1m is able to produce the Rip1 protein in lower steady-state amounts than the wild type but still sufficient to maintain a functional cytochrome bc1 complex and respiratory competence to a RIP1-deleted strain. Thus, this recombined mitochondrial genome is a fully functional mitochondrial chromosome with an extended gene content. This successful mitochondrial expression of a nuclear gene essential for respiration can be viewed at the evolutionary level as an artificial reversal of evolutionary events.
Collapse
Affiliation(s)
- Pawel Golik
- Centre de Génétique Moléculaire Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Williams EH, Fox TD. Antagonistic signals within the COX2 mRNA coding sequence control its translation in Saccharomyces cerevisiae mitochondria. RNA (NEW YORK, N.Y.) 2003; 9:419-31. [PMID: 12649494 PMCID: PMC1370409 DOI: 10.1261/rna.2182903] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 12/16/2002] [Indexed: 05/24/2023]
Abstract
Translation of the mitochondrially coded COX2 mRNA within the organelle in yeast produces the precursor of Cox2p (pre-Cox2p), which is processed and assembled into cytochrome c oxidase. The mRNA sequence of the first 14 COX2 codons, specifying the pre-Cox2p leader peptide, was previously shown to contain a positively acting element required for translation of a mitochondrial reporter gene, ARG8(m), fused to the 91st codon of COX2. Here we show that three relatively short sequences within the COX2 mRNA coding sequence, or structures they form in vivo, inhibit translation of the reporter in the absence of the positive element. One negative element was localized within codons 15 to 25 and shown to function at the level of the mRNA sequence, whereas two others are within predicted stem-loop structures formed by codons 22-44 and by codons 46-74. All three of these inhibitory elements are antagonized in a sequence-specific manner by reintroduction of the upstream positive-acting sequence. These interactions appear to be independent of 5'- and 3'-untranslated leader sequences, as they are also observed when the same reporter constructs are expressed from the COX3 locus. Overexpression of MRS2, which encodes a mitochondrial magnesium carrier, partially suppresses translational inhibition by each isolated negatively acting element, but does not suppress them in combination. We hypothesize that interplay among these signals during translation in vivo may ensure proper timing of pre-Cox2p synthesis and assembly into cytochrome c oxidase.
Collapse
Affiliation(s)
- Elizabeth H Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
41
|
Naithani S, Saracco SA, Butler CA, Fox TD. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:324-33. [PMID: 12529447 PMCID: PMC140248 DOI: 10.1091/mbc.e02-08-0490] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Accepted: 09/20/2002] [Indexed: 11/11/2022] Open
Abstract
The core of the cytochrome c oxidase complex is composed of its three largest subunits, Cox1p, Cox2p, and Cox3p, which are encoded in mitochondrial DNA of Saccharomyces cerevisiae and inserted into the inner membrane from the inside. Mitochondrial translation of the COX1, COX2, and COX3 mRNAs is activated mRNA specifically by the nuclearly coded proteins Pet309p, Pet111p, and the concerted action of Pet54p, Pet122p, and Pet494p, respectively. Because the translational activators recognize sites in the 5'-untranslated leaders of these mRNAs and because untranslated mRNA sequences contain information for targeting their protein products, the activators are likely to play a role in localizing translation. Herein, we report physical associations among the mRNA-specific translational activator proteins, located on the matrix side of the inner membrane. These interactions, detected by coimmune precipitation and by two-hybrid experiments, suggest that the translational activator proteins could be organized on the surface of the inner membrane such that synthesis of Cox1p, Cox2p, and Cox3p would be colocalized in a way that facilitates assembly of the core of the cytochrome c oxidase complex. In addition, we found interactions between Nam1p/Mtf2p and the translational activators, suggesting an organized delivery of mitochondrial mRNAs to the translation system.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
42
|
Nobrega MP, Bandeira SCB, Beers J, Tzagoloff A. Characterization of COX19, a widely distributed gene required for expression of mitochondrial cytochrome oxidase. J Biol Chem 2002; 277:40206-11. [PMID: 12171940 DOI: 10.1074/jbc.m207348200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
COX19, a nuclear gene of Saccharomyces cerevisiae, was cloned by transformation of a respiratory-deficient mutant from complementation group G188 of a pet mutant collection. The gene codes for an 11-kDa protein (Cox19p) required for expression of cytochrome oxidase. Because cox19 mutants are able to synthesize the mitochondrial and nuclear gene products of cytochrome oxidase, Cox19p probably functions post-translationally during assembly of the enzyme. Cox19p is present in the cytoplasm and mitochondria, where it exists as a soluble intermembrane protein. This dual location is similar to what was previously reported for Cox17p, a low molecular weight copper protein thought to be required for maturation of the CuA center of subunit 2 of cytochrome oxidase. The similarity in their subcellular distribution, combined with the presence of four cysteines in Cox19p that align with a subset of the cysteines in Cox17p, suggests that like the latter, Cox19p may function in metal transport to mitochondria.
Collapse
Affiliation(s)
- Marina P Nobrega
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, São José dos Campos, Brazil 12244-000
| | | | | | | |
Collapse
|
43
|
Saracco SA, Fox TD. Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane. Mol Biol Cell 2002; 13:1122-31. [PMID: 11950926 PMCID: PMC102256 DOI: 10.1091/mbc.01-12-0580] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 12/03/2001] [Accepted: 12/24/2001] [Indexed: 11/11/2022] Open
Abstract
The amino- and carboxy-terminal domains of mitochondrially encoded cytochrome c oxidase subunit II (Cox2p) are translocated out of the matrix to the intermembrane space. We have carried out a genetic screen to identify components required to export the biosynthetic enzyme Arg8p, tethered to the Cox2p C terminus by a translational gene fusion inserted into mtDNA. We obtained multiple alleles of COX18, PNT1, and MSS2, as well as mutations in CBP1 and PET309. Focusing on Cox18p, we found that its activity is required to export the C-tail of Cox2p bearing a short C-terminal epitope tag. This is not a consequence of reduced membrane potential due to loss of cytochrome oxidase activity because Cox2p C-tail export was not blocked in mitochondria lacking Cox4p. Cox18p is not required to export the Cox2p N-tail, indicating that these two domains of Cox2p are translocated by genetically distinct mechanisms. Cox18p is a mitochondrial integral inner membrane protein. The inner membrane proteins Mss2p and Pnt1p both coimmunoprecipitate with Cox18p, suggesting that they work together in translocation of Cox2p domains, an inference supported by functional interactions among the three genes.
Collapse
Affiliation(s)
- Scott A Saracco
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
44
|
Abstract
Yeast and bovine cytochrome c oxidases (COX) are composed of 12 and 13 different polypeptides, respectively. In both cases, the three subunits constituting the catalytic core are encoded by mitochondrial DNA. The other subunits are all products of nuclear genes that are translated on cytoplasmic ribosomes and imported through different transport routes into mitochondria. Biogenesis of the functional complex depends on the expression of all the structural and more than two dozen COX-specific genes. The latter impinge on all aspects of the biogenesis process. Here we review the current state of information about the functions of the COX-specific gene products and of their relationship to human COX deficiencies.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
45
|
Broadley SA, Demlow CM, Fox TD. Peripheral mitochondrial inner membrane protein, Mss2p, required for export of the mitochondrially coded Cox2p C tail in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:7663-72. [PMID: 11604502 PMCID: PMC99937 DOI: 10.1128/mcb.21.22.7663-7672.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochrome oxidase subunit 2 (Cox2p) is synthesized on the matrix side of the mitochondrial inner membrane, and its N- and C-terminal domains are exported across the inner membrane by distinct mechanisms. The Saccharomyces cerevisiae nuclear gene MSS2 was previously shown to be necessary for Cox2p accumulation. We have used pulse-labeling studies and the expression of the ARG8(m) reporter at the COX2 locus in an mss2 mutant to demonstrate that Mss2p is not required for Cox2p synthesis but rather for its accumulation. Mutational inactivation of the proteolytic function of the matrix-localized Yta10p (Afg3p) AAA-protease partially stabilizes Cox2p in an mss2 mutant but does not restore assembly of cytochrome oxidase. In the absence of Mss2p, the Cox2p N terminus is exported, but Cox2p C-terminal export and assembly of Cox2p into cytochrome oxidase is blocked. Epitope-tagged Mss2p is tightly, but peripherally, associated with the inner membrane and protected by it from externally added proteases. Taken together, these data indicate that Mss2p plays a role in recognizing the Cox2p C tail in the matrix and promoting its export.
Collapse
Affiliation(s)
- S A Broadley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
46
|
Bonnefoy N, Bsat N, Fox TD. Mitochondrial translation of Saccharomyces cerevisiae COX2 mRNA is controlled by the nucleotide sequence specifying the pre-Cox2p leader peptide. Mol Cell Biol 2001; 21:2359-72. [PMID: 11259585 PMCID: PMC86869 DOI: 10.1128/mcb.21.7.2359-2372.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial gene encoding yeast cytochrome oxidase subunit II (Cox2p) specifies a precursor protein with a 15-amino-acid leader peptide. Deletion of the entire leader peptide coding region is known to block Cox2p accumulation posttranscriptionally. Here, we examined in vivo the role of the pre-Cox2p leader peptide and the mRNA sequence that encodes it in the expression of a mitochondrial reporter gene, ARG8m, fused to the 91st codon of COX2. We found within the coding sequence antagonistic elements that control translation: the positive element includes sequences in the first 14 codons specifying the leader peptide, while the negative element appears to be within codons 15 to 91. Partial deletions, point mutations, and local frameshifts within the leader peptide coding region were placed in both the cox2::ARG8m reporter and in COX2 itself. Surprisingly, the mRNA sequence of the first six codons specifying the leader peptide plays an important role in positively controlling translation, while the amino acid sequence of the leader peptide itself is relatively unconstrained. Two mutations that partially block translation can be suppressed by nearby sequence substitutions that weaken a predicted stem structure and by overproduction of either the COX2 mRNA-specific translational activator Pet111p or the large-subunit mitochondrial ribosomal protein MrpL36p. We propose that regulatory elements embedded in the translated COX2 mRNA sequence could play a role, together with trans-acting factors, in coupling regulated synthesis of nascent pre-Cox2p to its insertion in the mitochondrial inner membrane.
Collapse
Affiliation(s)
- N Bonnefoy
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS associé à l'Université Pierre et Marie Curie, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
47
|
Green-Willms NS, Butler CA, Dunstan HM, Fox TD. Pet111p, an inner membrane-bound translational activator that limits expression of the Saccharomyces cerevisiae mitochondrial gene COX2. J Biol Chem 2001; 276:6392-7. [PMID: 11106667 DOI: 10.1074/jbc.m009856200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein specified by the Saccharomyces cerevisiae nuclear gene PET111 specifically activates translation of the mitochondrially coded mRNA for cytochrome c oxidase subunit II (Cox2p). We found Pet111p specifically in mitochondria of both wild-type cells and cells expressing a chromosomal gene for a functional epitope-tagged form of Pet111p. Pet111p was associated with mitochondrial membranes and was highly resistant to extraction with alkaline carbonate. Pet111p was protected from proteolytic digestion by the mitochondrial inner membrane. Thus, it is exposed only on the matrix side, where it could participate directly in organellar translation and localize Cox2p synthesis by virtue of its functional interaction with the COX2 mRNA 5'-untranslated leader. We also found that Pet111p is present at levels limiting the synthesis of Cox2p by examining the effect of altered PET111 gene dosage in the nucleus on expression of a reporter gene, cox2::ARG8(m), that was inserted into mitochondrial DNA. The level of the reporter protein, Arg8p, was one-half that of wild type in a diploid strain heterozygous for a pet111 deletion mutation, whereas it was increased 2.8-fold in a strain bearing extra copies of PET111 on a high-copy plasmid. Thus, Pet111p could play dual roles in both membrane localization and regulation of Cox2p synthesis within mitochondria.
Collapse
Affiliation(s)
- N S Green-Willms
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
48
|
Rohou H, Francisci S, Rinaldi T, Frontali L, Bolotin-Fukuhara M. Reintroduction of a characterized Mit tRNA glycine mutation into yeast mitochondria provides a new tool for the study of human neurodegenerative diseases. Yeast 2001; 18:219-27. [PMID: 11180455 DOI: 10.1002/1097-0061(200102)18:3<219::aid-yea651>3.0.co;2-c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the identification and characterization of a new mutation (ts9) in the Saccharomyces cerevisiae mitochondrial genome, which was first genetically mapped in the tRNAgly region and further identified by means of sequencing as consisting of a G to A transition at position 30 in the tRNA. The mutation causes an almost complete disappearance of mature tRNAgly, while a second mitochondrial mutation with a compensatory C to T change restores it in normal quantities; this points to the importance of the strong bond between bases 30 and 40 of the anticodon stem in the stabilization of the tRNA. In addition to resulting in a clear-cut heat-sensitive phenotype, the ts9 mutation creates a new EcoRV restriction site. Both properties were used as markers to monitor the successful (re) introduction of the mutated allele into a wild-type mitochondrial genome through biolistic transformation. The mutant frequency in the progeny as well as the correct integration of the mutated allele at its proper site demonstrate the feasibility of this method for creating and investigating specific mitochondrial tRNA mutations. The method will provide important applications for the use of yeast as a model system of human mitochondrial pathologies.
Collapse
MESH Headings
- Bacterial Proteins
- Base Sequence
- Biolistics
- Blotting, Northern
- Blotting, Southern
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/physiology
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Genome, Fungal
- Hot Temperature
- Humans
- Mitochondria/genetics
- Molecular Sequence Data
- Neurodegenerative Diseases/genetics
- Peptide Elongation Factor Tu
- Point Mutation/physiology
- RNA/chemistry
- RNA/genetics
- RNA, Fungal/genetics
- RNA, Mitochondrial
- RNA, Transfer, Gly/chemistry
- RNA, Transfer, Gly/genetics
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Sequence Analysis, DNA
- Transformation, Genetic
Collapse
Affiliation(s)
- H Rohou
- Laboratoire de Génétique Moléculaire, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Université Paris-Sud, Bat. 400, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
49
|
de Jong L, Elzinga SD, McCammon MT, Grivell LA, van der Spek H. Increased synthesis and decreased stability of mitochondrial translation products in yeast as a result of loss of mitochondrial (NAD(+))-dependent isocitrate dehydrogenase. FEBS Lett 2000; 483:62-6. [PMID: 11033357 DOI: 10.1016/s0014-5793(00)02086-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously demonstrated that the yeast Krebs cycle enzyme NAD(+)-dependent isocitrate dehydrogenase (Idh) binds specifically and with high affinity to the 5'-untranslated leader sequences of mitochondrial mRNAs in vitro and have proposed a role for the enzyme in the regulation of mitochondrial translation [Elzinga, S.D.J. et al. (2000) Curr. Genet., in press]. Although our studies initially failed to reveal any consistent correlation between idh disruption and mitochondrial translational activity, it is now apparent that compensatory extragenic suppressor mutations readily accumulate in idh disruption strains thereby masking mutant behaviour. Now, pulse-chase protein labelling of isolated mitochondria from an Idh disruption mutant lacking suppressor mutations reveals a strong (2-3-fold) increase in the synthesis of mitochondrial translation products. Strikingly, the newly synthesised proteins are more short-lived than in mitochondria from wild-type cells, their degradation occurring with a 2-3-fold reduced half-life. Enhanced degradation of translation products is also a feature of yeast mutants in which tethering/docking of mitochondrial mRNAs is disturbed. We therefore suggest that binding of Idh to mitochondrial mRNAs may suppress inappropriate translation of mitochondrial mRNAs.
Collapse
Affiliation(s)
- L de Jong
- Section for Molecular Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 2000; 289:1931-3. [PMID: 10988073 DOI: 10.1126/science.289.5486.1931] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mitochondrial import of a cytoplasmic transfer RNA (tRNA) in yeast requires the preprotein import machinery and cytosolic factors. We investigated whether the tRNA import pathway can be used to correct respiratory deficiencies due to mutations in the mitochondrial DNA and whether this system can be transferred into human cells. We show that cytoplasmic tRNAs with altered aminoacylation identity can be specifically targeted to the mitochondria and participate in mitochondrial translation. We also show that human mitochondria, which do not normally import tRNAs, are able to internalize yeast tRNA derivatives in vitro and that this import requires an essential yeast import factor.
Collapse
Affiliation(s)
- O A Kolesnikova
- FRE 2168 du CNRS, Mécanismes Moléculaires de la Division Cellulaire et du Développement, 21 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|