1
|
Ghosh A, Varshney A, Narwal SK, Nirdosh, Gupta R, Mishra S. The novel Plasmodium berghei protein S14 is essential for sporozoite gliding motility and infectivity. J Cell Sci 2024; 137:jcs261857. [PMID: 38832798 DOI: 10.1242/jcs.261857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Plasmodium sporozoites are the infective forms of the malaria parasite in the mosquito and vertebrate host. Gliding motility allows sporozoites to migrate and invade mosquito salivary glands and mammalian hosts. Motility and invasion are powered by an actin-myosin motor complex linked to the glideosome, which contains glideosome-associated proteins (GAPs), MyoA and the myosin A tail-interacting protein (MTIP). However, the role of several proteins involved in gliding motility remains unknown. We identified that the S14 gene is upregulated in sporozoite from transcriptome data of Plasmodium yoelii and further confirmed its transcription in P. berghei sporozoites using real-time PCR. C-terminal 3×HA-mCherry tagging revealed that S14 is expressed and localized on the inner membrane complex of the sporozoites. We disrupted S14 in P. berghei and demonstrated that it is essential for sporozoite gliding motility, and salivary gland and hepatocyte invasion. The gliding and invasion-deficient S14 knockout sporozoites showed normal expression and organization of inner membrane complex and surface proteins. Taken together, our data show that S14 plays a role in the function of the glideosome and is essential for malaria transmission.
Collapse
Affiliation(s)
- Ankit Ghosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sunil Kumar Narwal
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshni Gupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Gao J, Jiang N, Zhang Y, Chen R, Feng Y, Sang X, Chen Q. A heparin-binding protein of Plasmodium berghei is associated with merozoite invasion of erythrocytes. Parasit Vectors 2023; 16:277. [PMID: 37563696 PMCID: PMC10416508 DOI: 10.1186/s13071-023-05896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Malaria caused by Plasmodium species is a prominent public health concern worldwide, and the infection of a malarial parasite is transmitted to humans through the saliva of female Anopheles mosquitoes. Plasmodium invasion is a rapid and complex process. A critical step in the blood-stage infection of malarial parasites is the adhesion of merozoites to red blood cells (RBCs), which involves interactions between parasite ligands and receptors. The present study aimed to investigate a previously uncharacterized protein, PbMAP1 (encoded by PBANKA_1425900), which facilitates Plasmodium berghei ANKA (PbANKA) merozoite attachment and invasion via the heparan sulfate receptor. METHODS PbMAP1 protein expression was investigated at the asexual blood stage, and its specific binding activity to both heparan sulfate and RBCs was analyzed using western blotting, immunofluorescence, and flow cytometry. Furthermore, a PbMAP1-knockout parasitic strain was established using the double-crossover method to investigate its pathogenicity in mice. RESULTS The PbMAP1 protein, primarily localized to the P. berghei membrane at the merozoite stage, is involved in binding to heparan sulfate-like receptor on RBC surface of during merozoite invasion. Furthermore, mice immunized with the PbMAP1 protein or passively immunized with sera from PbMAP1-immunized mice exhibited increased immunity against lethal challenge. The PbMAP1-knockout parasite exhibited reduced pathogenicity. CONCLUSIONS PbMAP1 is involved in the binding of P. berghei to heparan sulfate-like receptors on RBC surface during merozoite invasion.
Collapse
Affiliation(s)
- Junying Gao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
3
|
Brandsma AM, Hilmer C, Rauch M, Matuschewski K, Montagna GN. Plasmodium early transcribed membrane proteins appear tailored to the host range of malaria parasites. Int J Parasitol 2021; 52:135-143. [PMID: 34715088 DOI: 10.1016/j.ijpara.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022]
Abstract
Early transcribed membrane proteins form a unique protein family in malaria parasites. These molecules are expressed during Plasmodium intracellular phases and inserted at the parasite parasitophorus vacuole membrane, which constitutes the host-parasite interface. Upregulated in infectious sporozoites 4 (UIS4) is an essential early transcribed membrane protein of liver stages of the murine malaria model parasite Plasmodium berghei. Despite its relevance for liver stage maturation, the molecular functions of UIS4 remain elusive, and UIS4 orthologs in human malaria parasites have not yet been identified. In order to characterise functional domains of UIS4, we generated P. berghei parasites carrying a carboxy-terminally truncated version of UIS4. We observed that uis4Δc parasites are severely impaired in liver stage development, similar to uis4(-) parasites, indicating an important role of the C-terminal domain for UIS4 function. To test whether members of the P. falciparum early transcribed membrane protein family are potential UIS4 orthologs, we selected candidates based on structural homology and parasitophorous vacuole membrane localization. We generated transgenic P. berghei parasites where UIS4 was replaced by Plasmodium falciparum ETRAMP8 or ETRAMP10.3. Both early transcribed membrane proteins were expressed in transgenic parasite lines, but liver stage maturation was impaired, indicating that the selected early transcribed membrane proteins failed to substitute the function of UIS4. As a control, we included the UIS4 ortholog from the murine parasite Plasmodium chaubaudi. We observed that PcUIS4 successfully restores UIS4 function in P. berghei. Together, these results suggest that Plasmodium parasites express tailor-made parasitophorous vacuole membrane proteins that might at least partially explain the narrow host range of malaria parasites.
Collapse
Affiliation(s)
- Arianne M Brandsma
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Princess Máxima Center for Pediatric Oncology, Heidelberg 25, 3584 CS Utrecht, The Netherlands
| | - Cecilie Hilmer
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Manuel Rauch
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Dept. of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Dept. of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Georgina N Montagna
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Instituto de Investigaciones Biotecnológicas Dr Rodolfo Ugalde' (IIBio), UNSAM-CONICET 1650 San Martín, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Pirovich DB, Da’dara AA, Skelly PJ. Multifunctional Fructose 1,6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci 2021; 8:719678. [PMID: 34458323 PMCID: PMC8385298 DOI: 10.3389/fmolb.2021.719678] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023] Open
Abstract
Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad "moonlighting" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase's importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
Collapse
Affiliation(s)
- David B. Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | | | | |
Collapse
|
5
|
Steel RWJ, Vigdorovich V, Dambrauskas N, Wilder BK, Arredondo SA, Goswami D, Kumar S, Carbonetti S, Swearingen KE, Nguyen T, Betz W, Camargo N, Fisher BS, Soden J, Thomas H, Freeth J, Moritz RL, Noah Sather D, Kappe SHI. Platelet derived growth factor receptor β (PDGFRβ) is a host receptor for the human malaria parasite adhesin TRAP. Sci Rep 2021; 11:11328. [PMID: 34059712 PMCID: PMC8166973 DOI: 10.1038/s41598-021-90722-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/13/2021] [Indexed: 02/04/2023] Open
Abstract
Following their inoculation by the bite of an infected Anopheles mosquito, the malaria parasite sporozoite forms travel from the bite site in the skin into the bloodstream, which transports them to the liver. The thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that is released from secretory organelles and relocalized on the sporozoite plasma membrane. TRAP is required for sporozoite motility and host infection, and its extracellular portion contains adhesive domains that are predicted to engage host receptors. Here, we identified the human platelet-derived growth factor receptor β (hPDGFRβ) as one such protein receptor. Deletion constructs showed that the von Willebrand factor type A and thrombospondin repeat domains of TRAP are both required for optimal binding to hPDGFRβ-expressing cells. We also demonstrate that this interaction is conserved in the human-infective parasite Plasmodium vivax, but not the rodent-infective parasite Plasmodium yoelii. We observed expression of hPDGFRβ mainly in cells associated with the vasculature suggesting that TRAP:hPDGFRβ interaction may play a role in the recognition of blood vessels by invading sporozoites.
Collapse
Affiliation(s)
- Ryan W J Steel
- Seattle Children's Research Institute, Seattle, WA, USA
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | | | | | - Brandon K Wilder
- Seattle Children's Research Institute, Seattle, WA, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | | | | | - Sudhir Kumar
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Thao Nguyen
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Will Betz
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Jo Soden
- Retrogenix Ltd, Chinley, High Peak, SK23 6FJ, UK
| | - Helen Thomas
- Retrogenix Ltd, Chinley, High Peak, SK23 6FJ, UK
| | - Jim Freeth
- Retrogenix Ltd, Chinley, High Peak, SK23 6FJ, UK
| | | | - D Noah Sather
- Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Stefan H I Kappe
- Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Hui MH, Rhine K, Tolan DR. Actin filament- and Wiskott-Aldrich syndrome protein-binding sites on fructose-1,6-bisphosphate aldolase are functionally distinct from the active site. Cytoskeleton (Hoboken) 2020; 78:129-141. [PMID: 33210455 DOI: 10.1002/cm.21646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 11/05/2022]
Abstract
The glycolytic enzyme fructose 1,6-(bis)phosphate aldolase (aldolase) is not only required for efficient utilization of glucose and fructose, but also for cytoskeletal functions like cytokinesis and cell motility. These differing roles are mediated by distinct and discrete binding interactions with aldolase's many binding partners, including actin filaments, Wiskott-Aldrich Syndrome protein (WASP), and Sorting Nexin 9 (SNX9). How these interactions are coordinated on the aldolase homotetramer of 160 kDa is unclear. In this study, the catalytic activity of wild-type aldolase is measured in the presence of actin filaments, and a WASP-derived peptide that binds to aldolase, or both. No appreciable changes in kcat or Km values are seen. Then, aldolase variants with substitutions targeting the tryptophan-binding pocket for WASP and SNX9 are created and perturbation of actin filament-, WASP peptide-, and SNX9 peptide-binding are assessed. Those that negatively impacted binding did not show an impact on aldolase catalysis. These results suggest that aldolase can engage in catalysis while simultaneously interacting with cytoskeletal machinery.
Collapse
Affiliation(s)
- Maggie H Hui
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Kevin Rhine
- Program in Cell, Molecular, and Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression. One of the most powerful approaches to understanding gene function involves turning genes on and off at will and measuring the impact at the cellular or organismal level. This particularly applies to the cohort of essential genes where traditional gene knockouts are inviable. In Plasmodium falciparum, conditional control of gene expression has been achieved by using multicomponent systems in which individual modules interact with each other to regulate DNA recombination, transcription, or posttranscriptional processes. The recently devised TetR-DOZI aptamer system relies on the ligand-regulatable interaction of a protein module with synthetic RNA aptamers to control the translation of a target gene. This technique has been successfully employed to study essential genes in P. falciparum and involves the insertion of several aptamer copies into the 3′ untranslated regions (UTRs), which provide control over mRNA fate. However, aptamer repeats are prone to recombination and one or more copies can be lost from the system, resulting in a loss of control over target gene expression. We rectified this issue by redesigning the aptamer array to minimize recombination while preserving the control elements. As proof of concept, we compared the original and modified arrays for their ability to knock down the levels of a putative essential apicoplast protein (PF3D7_0815700) and demonstrated that the modified array is highly stable and efficient. This redesign will enhance the utility of a tool that is quickly becoming a favored strategy for genetic studies in P. falciparum. IMPORTANCE Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression.
Collapse
|
8
|
Zhao N, Ming S, Lu Y, Wang F, Li H, Zhang X, Zhao X. Identification and Application of Epitopes in EtMIC1 of Eimeria tenella Recognized by the Monoclonal Antibodies 1-A1 and 1-H2. Infect Immun 2019; 87:e00596-19. [PMID: 31427452 PMCID: PMC6803336 DOI: 10.1128/iai.00596-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Eimeria tenella microneme-1 protein (EtMIC1) has been proposed to be a transmembrane protein, but this characteristic has not yet been confirmed experimentally. Furthermore, despite EtMIC1 being an important candidate antigen, its key epitope has not been reported. Here, two linear B-cell epitopes of EtMIC1, 91LITFATRSK99 and 698ESLISAGE705, were identified by Western blotting using specific monoclonal antibodies (MAbs) and were named epitope I (located in the I-domain) and epitope CTR (located in the CTR domain), respectively. Sequence comparative analyses of these epitopes among Eimeria species that infect chickens showed that epitope I differs greatly across species, whereas epitope CTR is relatively conserved. Point mutation assay results indicate that all the amino acid residues of the epitopes recognized by MAb 1-A1 or 1-H2 are key amino acids involved in recognition. Comparative analyses of indirect immunofluorescence assay (IFA) results for MAbs 1-A1 and 1-H2 under both nonpermeabilization and permeabilization conditions indicate that epitope I is located on the outer side of the sporozoite surface membrane whereas epitope CTR is located on the inner side, together providing experimental evidence that EtMIC1 is a transmembrane protein. IFA also labeled the EtMIC1 protein on the parasitophorous vacuole membrane and on the surface of schizonts, which suggests that the EtMIC1 protein may play an important role in parasitophorous vacuole formation and E. tenella development. Immunoprotective efficacy experiments revealed that epitope I has good immunogenicity, as evidenced by its induction of high serum antibody levels, blood lymphocyte proliferation, and CD4+ blood lymphocyte percentage.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Shuzhen Ming
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yaru Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| |
Collapse
|
9
|
Zhan X, He J, Yu L, Liu Q, Sun Y, Nie Z, Guo J, Zhao Y, Li M, Luo X, He L, Zhao J. Identification of a novel thrombospondin-related anonymous protein (BoTRAP2) from Babesia orientalis. Parasit Vectors 2019; 12:200. [PMID: 31053087 PMCID: PMC6500065 DOI: 10.1186/s13071-019-3457-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The thrombospondin-related anonymous protein (TRAP) was first discovered in the sporozoite of Plasmodium falciparum and TRAP family proteins are secreted by micronemes and transported to the parasite surface to participate in the invasion process. Various TRAP proteins have been identified in apicomplexan protozoans, but there have been few reports about TRAP proteins in Babesia orientalis. METHODS The functional domain of TRAP2 in B. orientalis was cloned, sequenced, characterized and compared to the TRAP sequences of related apicomplexan parasites. The functional domain of BoTRAP2 was truncated, named BoTRAP2-1, and then cloned into the pET-28a expression vector. Rabbit anti-rBoTRAP2-1 polyclonal antibody was produced by immunizing three rabbits. Western blot analysis was used to identify the native form and immunogenicity of BoTRAP2. The localization of BoTRAP2 was identified by indirect fluorescence assay (IFA). RESULTS The amplified genes of BoTRAP2 are 2817 bp in length, encoding a functional domain of about 938 aa with two vWFA domains, one TSP domain and one transmembrane domain. The amino acid sequence of BoTRAP2 has a high similarity with that of B. bovis and B. gibsoni. The predicted tertiary structure of truncated BoTRAP2-1 confirmed that BoTRAP2 contains two vWFA domains and a TSP domain, the main functional areas of the protein. The native BoTRAP2 was identified from B. orientalis lysate by using rabbit polyclonal anti-rBoTRAP2-1. A band corresponding to rBoTRAP2-1 was detected by reaction with serum from a B. orientalis-infected water buffalo, indicating that the protein has a high immunogenicity. IFA showed that BoTRAP2 is mainly localized on the apical end of parasites by rabbit anti-rBoTRAP2-1 polyclonal serum. CONCLUSIONS The rBoTRAP2 could differentiate serum from B. orientalis-infected water buffalo and normal water buffalo, implicating that BoTRAP2 has high immunogenicity and could serve as a candidate antigen for diagnosis of B. orientalis infection in buffalo.
Collapse
Affiliation(s)
- Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Junwei He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yali Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China. .,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
11
|
Identification and molecular characterization of a novel Babesia orientalis thrombospondin-related anonymous protein (BoTRAP1). Parasit Vectors 2018; 11:667. [PMID: 30587207 PMCID: PMC6307320 DOI: 10.1186/s13071-018-3245-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/29/2018] [Indexed: 11/18/2022] Open
Abstract
Background The thrombospondin-related anonymous protein (TRAP) family, a kind of transmembrane protein, is widely distributed with a conserved feature of structure in all apicomplexan parasites and plays a crucial role in the gliding motility and survival of parasites. Methods The Babesia orientalis TRAP1 gene (BoTRAP1) was truncated and cloned into a pET-42b expression vector and expressed as a GST-tag fusion protein with a TEV protease site. Rabbit anti-rBoTRAP1 antibody was produced and purified using a protein A chromatography column. Western blot analysis was performed to identify the native protein of BoTRAP1 and differentiate B. orientalis-infected positive from negative serum samples. The localization of BoTRAP1 on merozoites was identified by the indirect florescent antibody test (IFAT). Results The partial sequence of the TRAP1 gene was cloned from B. orientalis cDNA and identified to contain a von Willebrand factor A (vWFA) region and a thrombospondin type-1 (TSP-1) domain; it had a length of 762 bp, encoding a polypeptide of 254 amino acid residues with a predicted size of 28.2 kDa. The partial sequence was cloned into a pET-42b expression vector and expressed in E. coli as a GST fusion protein. Western blot indicated that rBoTRAP1 has a high immunogenicity and can differentiate B. orientalis-infected positive and negative serum samples collected from water buffaloes. IFAT showed that BoTRAP1 is mainly localized on the apical end of intracellular parasites by using polyclonal antibodies (PcAb) against rBoTRAP1. Meanwhile, the PcAb test also identified the native BoTRAP1 as a ~65 kDa band from B. orientalis lysates. The predicted 3D structure of BoTRAP1 contains a metalion-dependent adhesion site (MIDAS), which could be important for interaction with ligand on the surface of the host cells. Conclusions Like all known protozoa, B. orientalis has a TRAP family, comprising TRAP1, TRAP2, TRAP3 and TRAP4. The newly identified and characterized BoTRAP1 may play a key role in the invasion of B. orientalis into water buffalo erythrocytes.
Collapse
|
12
|
Pinto Torres JE, Goossens J, Ding J, Li Z, Lu S, Vertommen D, Naniima P, Chen R, Muyldermans S, Sterckx YGJ, Magez S. Development of a Nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Sci Rep 2018; 8:9019. [PMID: 29899344 PMCID: PMC5998082 DOI: 10.1038/s41598-018-26732-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Animal African trypanosomosis (AAT), a disease affecting livestock, is caused by parasites of the Trypanosoma genus (mainly T. vivax and T. congolense). AAT is widespread in Sub-Saharan Africa, where it continues to impose a heavy socio-economic burden as it renders development of sustainable livestock rearing very strenuous. Active case-finding and the identification of infected animals prior to initiation of drug treatment requires the availability of sensitive and specific diagnostic tests. In this paper, we describe the development of two heterologous sandwich assay formats (ELISA and LFA) for T. congolense detection through the use of Nanobodies (Nbs). The immunisation of an alpaca with a secretome mix from two T. congolense strains resulted in the identification of a Nb pair (Nb44/Nb42) that specifically targets the glycolytic enzyme pyruvate kinase. We demonstrate that the Nb44/Nb42 ELISA and LFA can be employed to detect parasitaemia in plasma samples from experimentally infected mice and cattle and, additionally, that they can serve as ‘test-of-cure’ tools. Altogether, the findings in this paper present the development and evaluation of the first Nb-based antigen detection LFA to identify active T. congolense infections.
Collapse
Affiliation(s)
- Joar E Pinto Torres
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Julie Goossens
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Jianzu Ding
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, China
| | - Zeng Li
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Shaohong Lu
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, China
| | - Didier Vertommen
- Department of Metabolism and Hormones, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, B-1200, Brussels, Belgium
| | - Peter Naniima
- Institute of Virology, Structural Virology Group, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Rui Chen
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, China
| | - Serge Muyldermans
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Yann G-J Sterckx
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Stefan Magez
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium. .,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium. .,Ghent University Global Campus, Songdomunhwa-Ro 119, Yeonsu-Gu, 406-840, Incheon, South Korea.
| |
Collapse
|
13
|
Boucher LE, Hopp CS, Muthinja JM, Frischknecht F, Bosch J. Discovery of Plasmodium (M)TRAP-Aldolase Interaction Stabilizers Interfering with Sporozoite Motility and Invasion. ACS Infect Dis 2018; 4:620-634. [PMID: 29411968 DOI: 10.1021/acsinfecdis.7b00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As obligate, intracellular parasites, Plasmodium spp. rely on invasion of host cells in order to replicate and continue their life cycle. The parasite needs to traverse the dermis and endothelium of blood vessels, invade hepatocytes and red blood cells, traverse the mosquito midgut, and enter the salivary glands to continue the cycle of infection and transmission. To traverse and invade cells, the parasite employs an actomyosin motor at the core of a larger invasion machinery complex known as the glideosome. The complex is comprised of multiple protein-protein interactions linking the motor to the internal cytoskeletal network of the parasite and to the extracellular adhesins, which directly contact the host tissue or cell surface. One key interaction is between the cytoplasmic tails of the thrombospondin related anonymous protein (TRAP) and aldolase, a bridging protein to the motor. Here, we present results from screening the Medicines for Malaria Venture (MMV) library of 400 compounds against this key protein-protein interaction. Using a surface plasmon resonance screen, we have identified several compounds that modulate the dynamics of the interaction between TRAP and aldolase. These compounds have been validated in vitro by studying their effects on sporozoite gliding motility and hepatocyte invasion. One of the MMV compounds identified reduced invasion levels by 89% at the lowest concentration tested (16 μM) and severely inhibited gliding at even lower concentrations (5 μM). By targeting protein-protein interactions, we investigated an under-explored area of parasite biology and general drug development, to identify potential antimalarial lead compounds.
Collapse
Affiliation(s)
- Lauren E. Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Christine S. Hopp
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Julianne Mendi Muthinja
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
- InterRayBio, LLC, 1812 Ashland Avenue, Baltimore, Maryland 21205, United States
| |
Collapse
|
14
|
Steel RWJ, Pei Y, Camargo N, Kaushansky A, Dankwa DA, Martinson T, Nguyen T, Betz W, Cardamone H, Vigdorovich V, Dambrauskas N, Carbonetti S, Vaughan AM, Sather DN, Kappe SHI. Plasmodium yoelii S4/CelTOS is important for sporozoite gliding motility and cell traversal. Cell Microbiol 2018; 20. [PMID: 29253313 DOI: 10.1111/cmi.12817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023]
Abstract
Gliding motility and cell traversal by the Plasmodium ookinete and sporozoite invasive stages allow penetration of cellular barriers to establish infection of the mosquito vector and mammalian host, respectively. Motility and traversal are not observed in red cell infectious merozoites, and we have previously classified genes that are expressed in sporozoites but not merozoites (S genes) in order to identify proteins involved in these processes. The S4 gene has been described as criticaly involved in Cell Traversal for Ookinetes and Sporozoites (CelTOS), yet knockout parasites (s4/celtos¯) do not generate robust salivary gland sporozoite numbers, precluding a thorough analysis of S4/CelTOS function during host infection. We show here that a failure of oocysts to develop or survive in the midgut contributes to the poor mosquito infection by Plasmodium yoelii (Py) s4/celtos¯ rodent malaria parasites. We rescued this phenotype by expressing S4/CelTOS under the ookinete-specific circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP) promoter (S4/CelTOSCTRP ), generating robust numbers of salivary gland sporozoites lacking S4/CelTOS that were suitable for phenotypic analysis. Py S4/CelTOSCTRP sporozoites showed reduced infectivity in BALB/c mice when compared to wild-type sporozoites, although they appeared more infectious than sporozoites deficient in the related traversal protein PLP1/SPECT2 (Py plp1/spect2¯). Using in vitro assays, we substantiate the role of S4/CelTOS in sporozoite cell traversal, but also uncover a previously unappreciated role for this protein for sporozoite gliding motility.
Collapse
Affiliation(s)
- Ryan W J Steel
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Ying Pei
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Nelly Camargo
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Dorender A Dankwa
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Thomas Martinson
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Thao Nguyen
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Will Betz
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Hayley Cardamone
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Vladimir Vigdorovich
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Nicholas Dambrauskas
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Sara Carbonetti
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Ashley M Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - D Noah Sather
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Mousa AA, Roche DB, Terkawi MA, Kameyama K, Kamyingkird K, Vudriko P, Salama A, Cao S, Orabi S, Khalifa H, Ahmed M, Attia M, Elkirdasy A, Nishikawa Y, Xuan X, Cornillot E. Human babesiosis: Indication of a molecular mimicry between thrombospondin domains from a novel Babesia microti BmP53 protein and host platelets molecules. PLoS One 2017; 12:e0185372. [PMID: 29040286 PMCID: PMC5644982 DOI: 10.1371/journal.pone.0185372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/12/2017] [Indexed: 01/11/2023] Open
Abstract
Human babesiosis is caused by the apicomplexan parasite Babesia microti, which is of major public health concern in the United States and elsewhere, resulting in malaise and fatigue, followed by a fever and hemolytic anemia. In this paper we focus on the characterization of a novel B. microti thrombospondin domain (TSP1)-containing protein (BmP53) from the new annotation of the B. microti genome (locus 'BmR1_04g09041'). This novel protein (BmP53) had a single TSP1 and a transmembrane domain, with a short cytoplasmic tail containing a sub-terminal glutamine residue, but no signal peptide and Von Willebrand factor type A domains (VWA), which are found in classical thrombospondin-related adhesive proteins (TRAP). Co-localization assays of BmP53 and Babesia microti secreted antigen 1 (BmSA1) suggested that BmP53 might be a non-secretory membranous protein. Molecular mimicry between the TSP1 domain from BmP53 and host platelets molecules was indicated through different measures of sequence homology, phylogenetic analysis, 3D structure and shared epitopes. Indeed, hamster isolated platelets cross-reacted with mouse anti-BmP53-TSP1. Molecular mimicry are used to help parasites to escape immune defenses, resulting in immune evasion or autoimmunity. Furthermore, specific host reactivity was also detected against the TSP1-free part of BmP53 in infected hamster sera. In conclusion, the TSP1 domain mimicry might help in studying the mechanisms of parasite-induced thrombocytopenia, with the TSP1-free truncate of the protein representing a potential safe candidate for future vaccine studies.
Collapse
Affiliation(s)
- Ahmed Abdelmoniem Mousa
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Daniel Barry Roche
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS-UMR 5237, Montpellier, France
| | - Mohamad Alaa Terkawi
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
| | - Kyohko Kameyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ketsarin Kamyingkird
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Patrick Vudriko
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Shinuo Cao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sahar Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Hanem Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mohamed Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mabrouk Attia
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Ahmed Elkirdasy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Yoshifumi Nishikawa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Xuenan Xuan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
- * E-mail: (EC); (XX)
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM-INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
- * E-mail: (EC); (XX)
| |
Collapse
|
16
|
Bahia D. A New Trick for a Conserved Enzyme: Mevalonate Kinase, a Glycosomal Enzyme, Can Be Secreted by Trypanosoma cruzi and Modulate Cell Invasion and Signaling. Is It Another Moonlighting Enzyme? Front Cell Infect Microbiol 2017; 7:426. [PMID: 29034216 PMCID: PMC5627032 DOI: 10.3389/fcimb.2017.00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
17
|
Dutta S, Moitra A, Mukherjee D, Jarori GK. Functions of tryptophan residues in EWGWS insert of Plasmodium falciparum enolase. FEBS Open Bio 2017; 7:892-904. [PMID: 28680804 PMCID: PMC5494301 DOI: 10.1002/2211-5463.12242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum enolase (Pfeno) is a dimeric enzyme with multiple moonlighting functions. This enzyme is thus a potential target for anti-malarial treatments. A unique feature of Pfeno is the presence of a pentapeptide insert 104 EWGWS 108. The functional role of tryptophan residues in this insert was investigated using site-directed mutagenesis. Replacement of these two Trp residues with alanines (or lysines) resulted in a near complete loss of enolase activity and dissociation of the normal dimeric form into monomers. Molecular modeling indicated that 340R forms π-cation bonds with the aromatic rings of 105W and 46Y. Mutation induced changes in the interactions among these three residues were presumably relayed to the inter-subunit interface via a coil formed by 46Y : 59Y, resulting in the disruption of a salt bridge between 11R : 425E and a π-cation interaction between 11R : 59Y. This led to a drop of ~ 4 kcal·mole-1 in the inter-subunit docking energy in the mutant, causing a ~ 103 fold decrease in affinity. Partial restoration of the inter-subunit interactions led to reformation of dimers and also restored a significant fraction of the lost enzyme activity. These results suggested that the perturbations in the conformation of the surface loop containing the insert sequence were relayed to the interface region, causing dimer dissociation that, in turn, disrupted the enzyme's active site. Since Plasmodium enolase is a moonlighting protein with multiple parasite-specific functions, it is likely that these functions may map on to the highly conserved unique insert region of this protein. ENZYMES Enolase(EC4.2.1.11).
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India.,Present address: T. H. Chan School of Public Health Graduate School of Arts and Sciences Harvard University Boston MA USA
| | - Anasuya Moitra
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Debanjan Mukherjee
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Portugal
| | - Gotam K Jarori
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
18
|
Tardieux I, Baum J. Reassessing the mechanics of parasite motility and host-cell invasion. J Cell Biol 2017; 214:507-15. [PMID: 27573462 PMCID: PMC5004448 DOI: 10.1083/jcb.201605100] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
The capacity to migrate is fundamental to multicellular and single-celled life. Apicomplexan parasites, an ancient protozoan clade that includes malaria parasites (Plasmodium) and Toxoplasma, achieve remarkable speeds of directional cell movement. This rapidity is achieved via a divergent actomyosin motor system, housed within a narrow compartment that lies underneath the length of the parasite plasma membrane. How this motor functions at a mechanistic level during motility and host cell invasion is a matter of debate. Here, we integrate old and new insights toward refining the current model for the function of this motor with the aim of revitalizing interest in the mechanics of how these deadly pathogens move.
Collapse
Affiliation(s)
- Isabelle Tardieux
- Institute of Advanced BioSciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, England, UK
| |
Collapse
|
19
|
Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion. Cell Host Microbe 2016; 20:731-743. [PMID: 27978434 DOI: 10.1016/j.chom.2016.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/16/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Isa Pires
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Jessica Stock
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Arnault Graindorge
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Yu-Fu Hung
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Huijong Han
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
20
|
Diaz SA, Martin SR, Howell SA, Grainger M, Moon RW, Green JL, Holder AA. The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation. PLoS One 2016; 11:e0161850. [PMID: 27607074 PMCID: PMC5015959 DOI: 10.1371/journal.pone.0161850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/14/2016] [Indexed: 02/07/2023] Open
Abstract
Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity.
Collapse
Affiliation(s)
- Suraya A. Diaz
- Malaria Parasitology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Stephen R. Martin
- Structural Biology Science Technology Platform The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Steven A. Howell
- Mass Spectrometry Science Technology Platform, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Munira Grainger
- Malaria Parasitology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Robert W. Moon
- Malaria Parasitology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Judith L. Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Ferreira ÉR, Horjales E, Bonfim-Melo A, Cortez C, da Silva CV, De Groote M, Sobreira TJP, Cruz MC, Lima FM, Cordero EM, Yoshida N, da Silveira JF, Mortara RA, Bahia D. Unique behavior of Trypanosoma cruzi mevalonate kinase: A conserved glycosomal enzyme involved in host cell invasion and signaling. Sci Rep 2016; 6:24610. [PMID: 27113535 PMCID: PMC4845012 DOI: 10.1038/srep24610] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 03/29/2016] [Indexed: 11/30/2022] Open
Abstract
Mevalonate kinase (MVK) is an essential enzyme acting in early steps of sterol isoprenoids biosynthesis, such as cholesterol in humans or ergosterol in trypanosomatids. MVK is conserved from bacteria to mammals, and localizes to glycosomes in trypanosomatids. During the course of T. cruzi MVK characterization, we found that, in addition to glycosomes, this enzyme may be secreted and modulate cell invasion. To evaluate the role of TcMVK in parasite-host cell interactions, TcMVK recombinant protein was produced and anti-TcMVK antibodies were raised in mice. TcMVK protein was detected in the supernatant of cultures of metacyclic trypomastigotes (MTs) and extracellular amastigotes (EAs) by Western blot analysis, confirming its secretion into extracellular medium. Recombinant TcMVK bound in a non-saturable dose-dependent manner to HeLa cells and positively modulated internalization of T. cruzi EAs but inhibited invasion by MTs. In HeLa cells, TcMVK induced phosphorylation of MAPK pathway components and proteins related to actin cytoskeleton modifications. We hypothesized that TcMVK is a bifunctional enzyme that in addition to playing a classical role in isoprenoid synthesis in glycosomes, it is secreted and may modulate host cell signaling required for T. cruzi invasion.
Collapse
Affiliation(s)
- Éden Ramalho Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Alexis Bonfim-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristian Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Mário Costa Cruz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fabio Mitsuo Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Esteban Mauricio Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, MG, Brazil
| |
Collapse
|
22
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Gliding motility in apicomplexan parasites. Semin Cell Dev Biol 2015; 46:135-42. [DOI: 10.1016/j.semcdb.2015.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 11/22/2022]
|
24
|
Nemetski SM, Cardozo TJ, Bosch G, Weltzer R, O'Malley K, Ejigiri I, Kumar KA, Buscaglia CA, Nussenzweig V, Sinnis P, Levitskaya J, Bosch J. Inhibition by stabilization: targeting the Plasmodium falciparum aldolase-TRAP complex. Malar J 2015; 14:324. [PMID: 26289816 PMCID: PMC4545932 DOI: 10.1186/s12936-015-0834-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging resistance of the malaria parasite Plasmodium to current therapies underscores the critical importance of exploring novel strategies for disease eradication. Plasmodium species are obligate intracellular protozoan parasites. They rely on an unusual form of substrate-dependent motility for their migration on and across host-cell membranes and for host cell invasion. This peculiar motility mechanism is driven by the 'glideosome', an actin-myosin associated, macromolecular complex anchored to the inner membrane complex of the parasite. Myosin A, actin, aldolase, and thrombospondin-related anonymous protein (TRAP) constitute the molecular core of the glideosome in the sporozoite, the mosquito stage that brings the infection into mammals. METHODS Virtual library screening of a large compound library against the PfAldolase-TRAP complex was used to identify candidate compounds that stabilize and prevent the disassembly of the glideosome. The mechanism of these compounds was confirmed by biochemical, biophysical and parasitological methods. RESULTS A novel inhibitory effect on the parasite was achieved by stabilizing a protein-protein interaction within the glideosome components. Compound 24 disrupts the gliding and invasive capabilities of Plasmodium parasites in in vitro parasite assays. A high-resolution, ternary X-ray crystal structure of PfAldolase-TRAP in complex with compound 24 confirms the mode of interaction and serves as a platform for future ligand optimization. CONCLUSION This proof-of-concept study presents a novel approach to anti-malarial drug discovery and design. By strengthening a protein-protein interaction within the parasite, an avenue towards inhibiting a previously "undruggable" target is revealed and the motility motor responsible for successful invasion of host cells is rendered inactive. This study provides new insights into the malaria parasite cell invasion machinery and convincingly demonstrates that liver cell invasion is dramatically reduced by 95 % in the presence of the small molecule stabilizer compound 24.
Collapse
Affiliation(s)
- Sondra Maureen Nemetski
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA. .,Department of Pediatrics, Phyllis and David Komansky Center for Children's Health, New York-Presbyterian Hospital-Weill Cornell Medical College, New York, USA.
| | - Timothy J Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA. .,Institute for Systems Genetics, New York University School of Medicine, New York, USA.
| | - Gundula Bosch
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Ryan Weltzer
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Kevin O'Malley
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Ijeoma Ejigiri
- Department of Medical Parasitology, New York University School of Medicine, New York, USA.
| | - Kota Arun Kumar
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology, New York University School of Medicine, New York, USA. .,Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de General San Martín-CONICET, 1650, San Martín, Buenos Aires, Argentina.
| | - Victor Nussenzweig
- Michael Heidelberg Division of Pathology of Infectious Diseases, Department of Pathology, New York University School of Medicine, New York, USA.
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Department of Medical Parasitology, New York University School of Medicine, New York, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Jelena Levitskaya
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA. .,Johns Hopkins Malaria Research Institute (JHMRI), Baltimore, USA.
| |
Collapse
|
25
|
Kumpula EP, Kursula I. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies? Acta Crystallogr F Struct Biol Commun 2015; 71:500-13. [PMID: 25945702 PMCID: PMC4427158 DOI: 10.1107/s2053230x1500391x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/25/2015] [Indexed: 11/10/2022] Open
Abstract
Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world's population. These parasites share a common form of gliding motility which relies on an actin-myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin-myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
26
|
Boucher LE, Bosch J. The apicomplexan glideosome and adhesins - Structures and function. J Struct Biol 2015; 190:93-114. [PMID: 25764948 PMCID: PMC4417069 DOI: 10.1016/j.jsb.2015.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 01/10/2023]
Abstract
The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models.
Collapse
Affiliation(s)
- Lauren E Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA; Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Tonkin ML, Halavaty AS, Ramaswamy R, Ruan J, Igarashi M, Ngô HM, Boulanger MJ. Structural and functional divergence of the aldolase fold in Toxoplasma gondii. J Mol Biol 2014; 427:840-852. [PMID: 25284756 DOI: 10.1016/j.jmb.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Parasites of the phylum Apicomplexa are highly successful pathogens of humans and animals worldwide. As obligate intracellular parasites, they have significant energy requirements for invasion and gliding motility that are supplied by various metabolic pathways. Aldolases have emerged as key enzymes involved in these pathways, and all apicomplexans express one or both of fructose 1,6-bisphosphate (F16BP) aldolase and 2-deoxyribose 5-phosphate (dR5P) aldolase (DERA). Intriguingly, Toxoplasma gondii, a highly successful apicomplexan parasite, expresses F16BP aldolase (TgALD1), d5RP aldolase (TgDERA), and a divergent dR5P aldolase-like protein (TgDPA) exclusively in the latent bradyzoite stage. While the importance of TgALD1 in glycolysis is well established and TgDERA is also likely to be involved in parasite metabolism, the detailed function of TgDPA remains elusive. To gain mechanistic insight into the function of different T. gondii aldolases, we first determined the crystal structures of TgALD1 and TgDPA. Structural analysis revealed that both aldolases adopt a TIM barrel fold accessorized with divergent secondary structure elements. Structural comparison of TgALD1 and TgDPA with members of their respective enzyme families revealed that, while the active-site residues are conserved in TgALD1, key catalytic residues are absent in TgDPA. Consistent with this observation, biochemical assays showed that, while TgALD1 was active on F16BP, TgDPA was inactive on dR5P. Intriguingly, both aldolases are competent to bind polymerized actin in vitro. Altogether, structural and biochemical analyses of T. gondii aldolase and aldolase-like proteins reveal diverse functionalization of the classic TIM barrel aldolase fold.
Collapse
Affiliation(s)
- Michelle L Tonkin
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | - Andrei S Halavaty
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Raghavendran Ramaswamy
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6
| | - Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Makoto Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Huân M Ngô
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA; BrainMicro LLC, 21 Pendleton Street, New Haven, CT 06511, USA
| | - Martin J Boulanger
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada V8W 3P6.
| |
Collapse
|
28
|
Diaz SA, Martin SR, Grainger M, Howell SA, Green JL, Holder AA. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization. Mol Biochem Parasitol 2014; 197:9-14. [PMID: 25261592 PMCID: PMC4251702 DOI: 10.1016/j.molbiopara.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/17/2014] [Indexed: 11/08/2022]
Abstract
The current model of Apicomplexan motility and host cell invasion is that both processes are driven by an actomyosin motor located beneath the plasma membrane, with the force transduced to the outside of the cell via coupling through aldolase and the cytoplasmic tail domains (CTDs) of certain type 1 membrane proteins. In Plasmodium falciparum (Pf), aldolase is thought to bind to the CTD of members of the thrombospondin-related anonymous protein (TRAP) family, which are micronemal proteins and represented by MTRAP in merozoites. Other type 1 membrane proteins including members of the erythrocyte binding antigen (EBA) and reticulocyte binding protein homologue (RH) protein families, which are also apical organellar proteins, have also been implicated in host cell binding in erythrocyte invasion. However, recent studies with Toxoplasma gondii have questioned the importance of aldolase in these processes. Using biolayer interferometry we show that Pf aldolase binds with high affinity to both rabbit and Pf actin, with a similar affinity for filamentous (F-) actin and globular (G-) actin. The interaction between Pf aldolase and merozoite actin was confirmed by co-sedimentation assays. Aldolase binding was shown to promote rabbit actin polymerization indicating that the interaction is more complicated than binding alone. The CTDs of some but not all type 1 membrane proteins also promoted actin polymerization in the absence of aldolase; MTRAP and RH1 CTDs promoted actin polymerization but EBA175 CTD did not. Direct actin polymerization mediated by membrane protein CTDs may contribute to actin recruitment, filament formation and stability during motor assembly, and actin-mediated movement, independent of aldolase.
Collapse
Affiliation(s)
- Suraya A Diaz
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Stephen R Martin
- Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Munira Grainger
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Steven A Howell
- Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Judith L Green
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Anthony A Holder
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| |
Collapse
|
29
|
Karkowska-Kuleta J, Kozik A. Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. Mol Oral Microbiol 2014; 29:270-83. [PMID: 25131723 DOI: 10.1111/omi.12078] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 01/03/2023]
Abstract
The delicate balance between eukaryotic pathogens and their human hosts during the initiation and development of infection is a complex process involving many diverse interactions. Different infectious agents, including pathogenic fungi, parasitic protozoa and multicellular parasites, directly interact through their cell surface with epithelial or endothelial cells of the human host as well as various proteinaceous host ligands such as extracellular matrix or plasma proteins. Eukaryotic pathogens possess a number of virulence factors but a relatively recently recognized and particularly interesting group of factors capable of enhancing virulence is the set of so-called 'moonlighting proteins'. This term was coined for a relatively large collection of housekeeping enzymes lacking special targeting motifs that would determine their extracellular localization, but that are often present at the cell surface of pathogen. Several such enzymes with key metabolic functions in glycolysis, the pentose phosphate cycle or other fundamental intracellular processes perform entirely new, non-catalytic roles often associated with adhesion to host ligands. Our current study summarizes some of the current knowledge of interesting moonlighting proteins which play putative or confirmed roles as virulence factors in pathogenic fungi, parasitic protozoa and multicellular parasites.
Collapse
Affiliation(s)
- J Karkowska-Kuleta
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
30
|
Hassan IA, Wang S, Xu L, Yan R, Song X, Li X. DNA vaccination with a gene encoding Toxoplasma gondii Deoxyribose Phosphate Aldolase (TgDPA) induces partial protective immunity against lethal challenge in mice. Parasit Vectors 2014; 7:431. [PMID: 25201636 PMCID: PMC4164750 DOI: 10.1186/1756-3305-7-431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that causes a pathological status known as toxoplasmosis, which has a huge impact on human and animal health. Currently, the main control strategy depends on the usage of drugs that target the acute stage of the infection, however, drawbacks were encountered while applying this method; therefore, development of an alternative effective method would be important progress. Deoxyribose Phosphate Aldolase (TgDPA) plays an important role supporting cell invasion and providing energy for the parasite. Methods TgDPA was expressed in Escherichia coli and the purified recombinant protein was used to immunize rats. The antibodies obtained were used to verify in vitro expression of TgDPA. The vector pVAX1 was utilized to formulate a DNA vaccine designated as pTgDPA, which was used to evaluate the immunological changes and the level of protection against challenge with the virulent RH strain of T. gondii. Results DNA vaccine, TgDPA revealed that it can induce a strong humoral as well as cellular mediated response in mice. These responses were a contribution of TH1, TH2 and TH17 type of responses. Following challenge, mice immunized with TgDPA showed longer survival rates than did those in control groups. Conclusions Further investigation regarding TgDPA is required to shed more light on its immunogenicity and its possible selection as a vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
31
|
Harvey KL, Yap A, Gilson PR, Cowman AF, Crabb BS. Insights and controversies into the role of the key apicomplexan invasion ligand, Apical Membrane Antigen 1. Int J Parasitol 2014; 44:853-7. [PMID: 25157917 DOI: 10.1016/j.ijpara.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Apicomplexan parasites are obligate intracellular pathogens that cause a host of human and animal diseases. These parasites have developed a universal mechanism of invasion involving formation of a 'moving junction' that provides a stable anchoring point through which the parasite invades host cells. The composition of the moving junction, particularly the presence of the protein Apical Membrane Antigen 1 (AMA1), has recently been the subject of some controversy. In this commentary we review findings that led to the current model of the moving junction complex and dissect the major conflicts to determine whether a substantial reassessment of the role of AMA1 is justified.
Collapse
Affiliation(s)
- Katherine L Harvey
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan Yap
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Infection and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Paul R Gilson
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Alan F Cowman
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Infection and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Brendan S Crabb
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Immunology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
32
|
Abstract
Protective immunity against preerythrocytic malaria parasite infection is difficult to achieve. Intracellular Plasmodium parasites likely minimize antigen presentation by surface-expressed major histocompatibility complex class I (MHC-I) molecules on infected cells, yet they actively remodel their host cells by export of parasite factors. Whether exported liver-stage proteins constitute better candidates for MHC-I antigen presentation to CD8+ T lymphocytes remains unknown. Here, we systematically characterized the contribution of protein export to the magnitude of antigen-specific T-cell responses against Plasmodium berghei liver-stage parasites in C57BL/6 mice. We generated transgenic sporozoites that secrete a truncated ovalbumin (OVA) surrogate antigen only in the presence of an amino-terminal protein export element. Immunization with live attenuated transgenic sporozoites revealed that antigen export was not critical for CD8+ T-cell priming but enhanced CD8+ T-cell proliferation in the liver. Upon transfer of antigen-specific CD8+ T cells, liver-stage parasites secreting the target protein were eliminated more efficiently. We conclude that Plasmodium parasites strictly control protein export during liver infection to minimize immune recognition. Strategies that enhance the discharge of parasite proteins into infected hepatocytes could improve the efficacy of candidate preerythrocytic malaria vaccines. Vaccine development against Plasmodium parasites remains a priority in malaria research. The most advanced malaria subunit vaccine candidates contain Plasmodium surface proteins with important roles for parasite vital functions. A fundamental question is whether recognition by effector CD8+ T cells is restricted to sporozoite surface antigens or extends to parasite proteins that are synthesized during the extensive parasite expansion phase in the liver. Using a surrogate model antigen, we found that a cytoplasmic antigen is able to induce robust protective CD8+ T-cell responses, but protein export further enhances immunogenicity and protection. Our results show that a cytoplasmic localization does not exclude a protein’s candidacy for malaria subunit vaccines and that protein secretion can enhance protective immunity.
Collapse
|
33
|
Han X, Wang Z, Wang W, Bai R, Zhao P, Shang J. Screening on human hepatoma cell line HepG-2 nucleus and cytoplasm protein after CDK2 silencing by RNAi. Cytotechnology 2014; 66:567-74. [PMID: 24801578 DOI: 10.1007/s10616-013-9604-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022] Open
Abstract
The activation of phase-specific cyclin-dependent kinases is associated with ordered cell cycle transitions. Among the mammalian Cdks, Cdk2 is essential for liver cancer cell proliferation. The related cycling protein CDK2 was analyzed by 2D-gel and MALDI-TOF/TOF MS mass assay in liver cancer cells, which CDK2 was silenced. The results showed four significantly different spots in cell ribonucleoprotein (similar to ribosomal protein S12, chaperonin 10-related protein, beta-actin and zinc finger protein 276) and four in plasmosin (aldolase A protein, hCG, anonymous protein and tubulin, gamma complex associated protein 2). In the plasmosin, aldolase A catalyzes the production of tublin and actin. Together they regulate the cell cycle and arrest the cell in the S phage. In the cell ribonucleoprotein, proteins with homology to ribosomal protein S12 and chaperonin 10 play a similar role in cell cycle regulation.
Collapse
Affiliation(s)
- Xiaofang Han
- Department of Clinical Laboratory, Inner Mongolia People's Hospital, Hohhot, 010018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Kan A, Tan YH, Angrisano F, Hanssen E, Rogers KL, Whitehead L, Mollard VP, Cozijnsen A, Delves MJ, Crawford S, Sinden RE, McFadden GI, Leckie C, Bailey J, Baum J. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility. Cell Microbiol 2014; 16:734-50. [PMID: 24612056 PMCID: PMC4286792 DOI: 10.1111/cmi.12283] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/22/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission.
Collapse
Affiliation(s)
- Andrey Kan
- Victoria Research Laboratory, National ICT Australia (NICTA), Department of Computing and Information Systems, University of Melbourne, Melbourne, Vic., 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Malpede BM, Tolia NH. Malaria adhesins: structure and function. Cell Microbiol 2014; 16:621-31. [PMID: 24506585 DOI: 10.1111/cmi.12276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/21/2022]
Abstract
The malaria parasite Plasmodium utilizes specialized proteins for adherence to cellular receptors in its mosquito vector and human host. Adherence is critical for parasite development, host cell traversal and invasion, and protection from vector and host immune mechanisms. These vital roles have identified several adhesins as vaccine candidates. A deficiency in current adhesin-based vaccines is induction of antibodies targeting non-conserved, non-functional and decoy epitopes due to the use of full length proteins or binding domains. To alleviate the elicitation of non-inhibitory antibodies, conserved functional regions of proteins must be identified and exploited. Structural biology provides the tools necessary to achieve this goal, and has succeeded in defining biologically functional receptor binding and oligomerization interfaces for a number of promising malaria vaccine candidates. We describe here the current knowledge of Plasmodium adhesin structure and function, and how it has illuminated elements of parasite biology and defined interactions at the host/vector and parasite interface.
Collapse
Affiliation(s)
- Brian M Malpede
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | | |
Collapse
|
36
|
Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion. Proc Natl Acad Sci U S A 2014; 111:3567-72. [PMID: 24550496 DOI: 10.1073/pnas.1315156111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gliding motility and host-cell invasion by apicomplexan parasites depend on cell-surface adhesins that are translocated via an actin-myosin motor beneath the membrane. The current model posits that fructose-1,6-bisphosphate aldolase (ALD) provides a critical link between the cytoplasmic tails of transmembrane adhesins and the actin-myosin motor. Here we tested this model using the Toxoplasma gondii apical membrane protein 1 (TgAMA1), which binds to aldolase in vitro. TgAMA1 cytoplasmic tail mutations that disrupt ALD binding in vitro showed no correlation with host-cell invasion, indicating this interaction is not essential. Furthermore, ALD-depleted parasites were impaired when grown in glucose, yet they showed normal gliding and invasion in glucose-free medium. Depletion of ALD in the presence of glucose led to accumulation of fructose-1,6-bisphosphate, which has been associated with toxicity in other systems. Finally, TgALD knockout parasites and an ALD mutant that specifically disrupts adhesin binding in vitro also supported normal invasion when cultured in glucose-free medium. Taken together, these results suggest that ALD is primarily important for energy metabolism rather than interacting with microneme adhesins, challenging the current model for apicomplexan motility and invasion.
Collapse
|
37
|
Ritterson Lew C, Tolan DR. Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics. J Cell Biochem 2013; 114:1928-39. [PMID: 23495010 DOI: 10.1002/jcb.24538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/28/2013] [Indexed: 02/03/2023]
Abstract
In addition to its roles in sugar metabolism, fructose-1,6-bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed "moonlighting functions." These moonlighting functions likely involve the known aldolase-actin interaction, as many proteins with which aldolase interacts are involved in actin-dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott-Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP-dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3-dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP-dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP-dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin-binding activity. While the actin-binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP-mediated processes.
Collapse
Affiliation(s)
- Carolyn Ritterson Lew
- Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
38
|
Goo YK, Ueno A, Terkawi MA, Aboge GO, Junya Y, Igarashi M, Kim JY, Hong YC, Chung DI, Nishikawa Y, Xuan X. Actin polymerization mediated by Babesia gibsoni aldolase is required for parasite invasion. Exp Parasitol 2013; 135:42-9. [PMID: 23792005 DOI: 10.1016/j.exppara.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 06/09/2013] [Indexed: 01/05/2023]
Abstract
Host cell invasion by apicomplexan parasites driven by gliding motility and empowered by actin-based movement is essential for parasite survival and pathogenicity. The parasites share a conserved invasion process: actin-based motility led by the coordination of adhesin-cytoskeleton via aldolase. A number of studies of host cell invasion in the Plasmodium species and Toxoplasma gondii have been performed. However, the mechanisms of host cell invasion by Babesia species have not yet been studied. Here, we show that Babesia gibsoni aldolase (BgALD) forms a complex with B. gibsoni thrombospondin-related anonymous protein (BgTRAP) and B. gibsoni actin (BgACT), depending on tryptophan-734 (W-734) in BgTRAP. In addition, actin polymerization is mediated by BgALD. Moreover, cytochalasin D, which disrupts actin polymerization, suppressed B. gibsoni parasite growth and inhibited the host cell invasion by parasites, indicating that actin dynamics are essential for erythrocyte invasion by B. gibsoni. This study is the first molecular approach to determine the invasion mechanisms of Babesia species.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Frénal K, Soldati-Favre D. [The glideosome, a unique machinery that assists the Apicomplexa in gliding into host cells]. Med Sci (Paris) 2013; 29:515-22. [PMID: 23732101 DOI: 10.1051/medsci/2013295015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protozoan parasites belonging to the phylum Apicomplexa are of considerable medical and veterinary significance. These obligate intracellular parasites use a unique form of locomotion to traverse biological barriers and actively invade in and egress from host cells. An actin-myosin-based complex named "glideosome" drives this unusual substrate-dependent motility, which is essential for the establishment of the infection. The mechanisms involved in motility, invasion and egress are conserved throughout the phylum. This article describes the current knowledge on the invasion process of two experimentally tractable apicomplexan parasites: Toxoplasma gondii and Plasmodium falciparum.
Collapse
Affiliation(s)
- Karine Frénal
- Département de microbiologie et médecine moléculaire, faculté de médecine, université de Genève, centre médical universitaire, 1 rue Michel Servet, 1211 Genève, Suisse.
| | | |
Collapse
|
40
|
Partial protective of chickens against Eimeria tenella challenge with recombinant EtMIC-1 antigen. Parasitol Res 2013; 112:2281-7. [PMID: 23559377 DOI: 10.1007/s00436-013-3389-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/08/2013] [Indexed: 01/16/2023]
Abstract
Eimeria tenella microneme protein 1 (EtMIC-1) is highly conserved with TgMIC-2, which is involved in parasite binding specifically to host cells. Little is known about the immune responses and protective efficacy against E. tenella infection with EtMIC-1 antigen. In the present study, the recombinant proteins of E. tenella mature MIC-1 and adhesive domain (von Willebrand factor type A domain, EtMIC-1-VD) were obtained, protective efficacy against E.tenella infection and the mucosal immune response, which is induced in broilers was evaluated. The antibody levels and the transcription profiles of cytokine of chickens, such as interleukin-12 (IL-12) and interferon-γ (IFN-γ), were detected after being immunized three times with the recombinant EtMIC-1 and EtMIC-1-VD by ELISA assay and quantitative real-time PCR, respectively. The results showed that both groups of chickens, after being immunized with 100 μg EtMIC-1 or EtMIC-1-VD antigen, induced about tenfold higher IgG levels compared to the nonimmune groups. The transcription profiles of IL-12 and IFN-γ of the immunized groups were significantly higher than the control groups as well. The anticoccidial index of the group immunized with 100 μg EtMIC-1 and the group immunized with 100 μg EtMIC-1-VD were 167.2 and 165.5, respectively, which are significantly higher than low-dose immunized groups and challenged control groups. Our data suggests that VD domain is the key functional structure of EtMIC-1 that could trigger a significant humoral and cellular response against E. tenella infection, and EtMIC-1 had the potential in imparting partial protection in chickens against homologous challenge.
Collapse
|
41
|
Structure of Plasmodium falciparum TRAP (thrombospondin-related anonymous protein) A domain highlights distinct features in apicomplexan von Willebrand factor A homologues. Biochem J 2013; 450:469-76. [DOI: 10.1042/bj20121058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRAP (thrombospondin-related anonymous protein), localized in the micronemes and on the surface of sporozoites of the notorious malaria parasite Plasmodium, is a key molecule upon infection of mammalian host hepatocytes and invasion of mosquito salivary glands. TRAP contains two adhesive domains responsible for host cell recognition and invasion, and is known to be essential for infectivity. In the present paper, we report high-resolution crystal structures of the A domain of Plasmodium falciparum TRAP with and without bound Mg2+. The structure reveals a vWA (von Willebrand factor A)-like fold and a functional MIDAS (metal-ion-dependent adhesion site), as well as a potential heparan sulfate-binding site. Site-directed mutagenesis and cell-attachment assays were used to investigate the functional roles of the surface epitopes discovered. The reported structures are the first determined for a complete vWA domain of parasitic origin, highlighting unique features among homologous domains from other proteins characterized hitherto. Some of these are conserved among Plasmodiae exclusively, whereas others may be common to apicomplexan organisms in general.
Collapse
|
42
|
Shape change in the receptor for gliding motility in Plasmodium sporozoites. Proc Natl Acad Sci U S A 2012; 109:21420-5. [PMID: 23236185 DOI: 10.1073/pnas.1218581109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sporozoite gliding motility and invasion of mosquito and vertebrate host cells in malaria is mediated by thrombospondin repeat anonymous protein (TRAP). Tandem von Willebrand factor A (VWA) and thrombospondin type I repeat (TSR) domains in TRAP connect through proline-rich stalk, transmembrane, and cytoplasmic domains to the parasite actin-dependent motility apparatus. We crystallized fragments containing the VWA and TSR domains from Plasmodium vivax and Plasmodium falciparum in different crystal lattices. TRAP VWA domains adopt closed and open conformations, and bind a Mg(2+) ion at a metal ion-dependent adhesion site implicated in ligand binding. Metal ion coordination in the open state is identical to that seen in the open high-affinity state of integrin I domains. The closed VWA conformation associates with a disordered TSR domain. In contrast, the open VWA conformation crystallizes with an extensible β ribbon and ordered TSR domain. The extensible β ribbon is composed of disulfide-bonded segments N- and C-terminal to the VWA domain that are largely drawn out of the closed VWA domain in a 15 Å movement to the open conformation. The extensible β ribbon and TSR domain overlap at a conserved interface. The VWA, extensible β ribbon, and TSR domains adopt a highly elongated overall orientation that would be stabilized by tensile force exerted across a ligand-receptor complex by the actin motility apparatus of the sporozoite. Our results provide insights into regulation of "stick-and-slip" parasite motility and for development of sporozoite subunit vaccines.
Collapse
|
43
|
Bartholdson SJ, Bustamante LY, Crosnier C, Johnson S, Lea S, Rayner JC, Wright GJ. Semaphorin-7A is an erythrocyte receptor for P. falciparum merozoite-specific TRAP homolog, MTRAP. PLoS Pathog 2012; 8:e1003031. [PMID: 23166499 PMCID: PMC3499583 DOI: 10.1371/journal.ppat.1003031] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
The motility and invasion of Plasmodium parasites is believed to require a cytoplasmic actin-myosin motor associated with a cell surface ligand belonging to the TRAP (thrombospondin-related anonymous protein) family. Current models of invasion usually invoke the existence of specific receptors for the TRAP-family ligands on the surface of the host cell; however, the identities of these receptors remain largely unknown. Here, we identify the GPI-linked protein Semaphorin-7A (CD108) as an erythrocyte receptor for the P. falciparum merozoite-specific TRAP homolog (MTRAP) by using a systematic screening approach designed to detect extracellular protein interactions. The specificity of the interaction was demonstrated by showing that binding was saturable and by quantifying the equilibrium and kinetic biophysical binding parameters using surface plasmon resonance. We found that two MTRAP monomers interact via their tandem TSR domains with the Sema domains of a Semaphorin-7A homodimer. Known naturally-occurring polymorphisms in Semaphorin-7A did not quantitatively affect MTRAP binding nor did the presence of glycans on the receptor. Attempts to block the interaction during in vitro erythrocyte invasion assays using recombinant proteins and antibodies showed no significant inhibitory effect, suggesting the inaccessibility of the complex to proteinaceous blocking agents. These findings now provide important experimental evidence to support the model that parasite TRAP-family ligands interact with specific host receptors during cellular invasion. Apicomplexan parasites are one of the most significant groups of pathogens infecting humans and include Plasmodium falciparum, the parasite responsible for malaria. These parasites critically depend on their human host and must invade our cells to multiply; therefore, understanding this invasion process - with the eventual aim of therapeutically preventing it - has been a focus for scientific investigation. A key component of the invasion machinery is a family of proteins (the “TRAP” family) which traverse the membrane surrounding the parasite: the part remaining within the parasite connects to a molecular motor that powers invasion, whilst the surface-exposed region is thought to interact with proteins on the surface of the target host cell. One major question that remains unanswered is the identity of the host receptors for the TRAPs. In our paper, we use a method specifically designed to detect interactions that occur in the extracellular space between host and pathogen proteins to reveal a host receptor called Semaphorin-7A for the TRAP-family member used by the blood stage of the malarial parasite – a protein called MTRAP. The characterization of this host-parasite interaction may therefore lead to novel therapies based upon preventing parasite invasion.
Collapse
Affiliation(s)
- S. Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Leyla Y. Bustamante
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cecile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Binding of aldolase and glyceraldehyde-3-phosphate dehydrogenase to the cytoplasmic tails of Plasmodium falciparum merozoite duffy binding-like and reticulocyte homology ligands. mBio 2012; 3:mBio.00292-12. [PMID: 22991428 PMCID: PMC3448169 DOI: 10.1128/mbio.00292-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Invasion of erythrocytes by Plasmodium falciparum requires a connection between the cytoplasmic tail of the parasite’s ligands for its erythrocyte receptors and the actin-myosin motor of the parasite. For the thromobospondin-related anonymous protein (TRAP) ligand on Plasmodium sporozoites, aldolase forms this connection and requires tryptophan and negatively charged amino acids in the ligand’s cytoplasmic tail. Because of the importance of the Duffy binding-like (DBL) and the reticulocyte homology (RH) ligand families in erythrocyte binding and merozoite invasion, we characterized the ability of their cytoplasmic tails to bind aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), both of which bind actin. We tested the binding of the cytoplasmic peptides of the two ligand families to aldolase and GAPDH. Only the cytoplasmic peptides of some RH ligands showed strong binding to aldolase, and the binding depended on the presence of an aromatic amino acid (phenylalanine or tyrosine), rather than tryptophan, in the context of negatively charged amino acids. The binding was confirmed by surface plasmon resonance analysis and was found to represent affinity similar to that seen with TRAP. An X-ray crystal structure of aldolase at 2.5 Å in the presence of RH2b peptide suggested that the binding site location was near the TRAP-binding site. GAPDH bound to some of the cytoplasmic tails of certain RH and DBL ligands in an aromatic amino acid-dependent manner. Thus, the connection between Plasmodium merozoite ligands and erythrocyte receptors and the actin motor can be achieved through the activity of either aldolase or GAPDH by mechanisms that do not require tryptophan but, rather, other aromatic amino acids. The invasion of the Plasmodium merozoite into erythrocytes is a critical element in malaria pathogenesis. It is important to understand the molecular details of this process, as this machinery can be a target for both vaccine and drug development. In Plasmodium sporozoites and Toxoplasma tachyzoites, invasion involves a glycolytic enzyme aldolase, linking the cytoplasmic tail domains of the parasite ligands to the actin-myosin motor that drives invasion. This binding requires a tryptophan that cannot be replaced by other aromatic residues. Here we show that aldolase binds the cytoplasmic tails of some P. falciparum merozoite erythrocyte-binding ligands but that the binding involves aromatic residues other than tryptophan. The biological relevance of aldolase binding to cytoplasmic tails of parasite ligands in invasion is demonstrated by our observation that RH2b but not RH2a binds to aldolase and, as previously shown, that RH2b but not RH2a is required for P. falciparum invasion of erythrocytes.
Collapse
|
45
|
Analysis of the conformation and function of the Plasmodium falciparum merozoite proteins MTRAP and PTRAMP. EUKARYOTIC CELL 2012; 11:615-25. [PMID: 22467743 DOI: 10.1128/ec.00039-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombospondin repeat (TSR)-like domains are structures involved with cell adhesion. Plasmodium falciparum proteins containing TSR domains play crucial roles in parasite development. In particular, the preerythrocytic P. falciparum circumsporozoite protein is involved in hepatocyte invasion. The importance of these domains in two other malaria proteins, the merozoite-specific thrombospondin-related anonymous protein (MTRAP) and the thrombospondin-related apical membrane protein (PTRAMP), were assessed using near-full-length recombinant proteins composed of the extracellular domains produced in Escherichia coli. MTRAP is thought to be released from invasive organelles identified as micronemes during merozoite invasion to mediate motility and host cell invasion through an interaction with aldolase, an actin binding protein involved in the moving junction. PTRAMP function remains unknown. In this study, the conformation of recombinant MTRAP (rMTRAP) appeared to be a highly extended protein (2 nm by 33 nm, width by length, respectively), whereas rPTRAMP had a less extended structure. Using an erythrocyte binding assay, rMTRAP but not rPTRAMP bound human erythrocytes; rMTRAP binding was mediated through the TSR domain. MTRAP- and in general PTRAMP-specific antibodies failed to inhibit P. falciparum development in vitro. Altogether, MTRAP is a highly extended bifunctional protein that binds to an erythrocyte receptor and the merozoite motor.
Collapse
|
46
|
Shen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites. Curr Opin Microbiol 2012; 15:449-55. [PMID: 22445360 DOI: 10.1016/j.mib.2012.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
One defining feature of apicomplexan parasites is their special ability to actively invade host cells. Although rapid, invasion is a complicated process that requires coordinated activities of host cell attachment, protein secretion, and motility by the parasite. Central to this process is the establishment of a structure called moving junction (MJ), which forms a tight connection between invading parasite and host cell membranes through which the parasite passes to enter into the host. Although recognized microscopically for decades, molecular characterization of the MJ was only enabled by the recent discovery of components that make up this multi-protein complex. Exciting progress made during the past few years on both the structure and function of the components of the MJ is reviewed here.
Collapse
Affiliation(s)
- Bang Shen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
47
|
Bosch J, Paige MH, Vaidya AB, Bergman LW, Hol WGJ. Crystal structure of GAP50, the anchor of the invasion machinery in the inner membrane complex of Plasmodium falciparum. J Struct Biol 2012; 178:61-73. [PMID: 22387043 DOI: 10.1016/j.jsb.2012.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
The glideosome associated protein GAP50 is an essential protein in apicomplexan parasites such as Plasmodium, Toxoplasma and Cryptosporidium, several species of which are important human pathogens. The 44.6kDa protein is part of a multi-protein complex known as the invasion machinery or glideosome, which is required for cell invasion and substrate gliding motility empowered by an actin-myosin motor. GAP50 is anchored through its C-terminal transmembrane helix into the inner membrane complex and interacts via a short six residue C-terminal tail with other proteins of the invasion machinery in the pellicle of the parasite. In this paper we describe the 1.7Å resolution crystal structure of the soluble GAP50 domain from the malaria parasite Plasmodium falciparum. The structure shows an αßßα fold with overall similarity to purple acid phosphatases with, however, little homology regarding the nature of the residues in the active site region of the latter enzyme. While purple acid phosphatases contain a phosphate bridged binuclear Fe-site coordinated by seven side chains with the Fe-ions 3.2Å apart, GAP50 in our crystals contains two cobalt ions each with one protein ligand and a distance between the Co(2+) ions of 18Å.
Collapse
Affiliation(s)
- Jürgen Bosch
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
48
|
Bargieri D, Lagal V, Tardieux I, Ménard R. Host cell invasion by apicomplexans: what do we know? Trends Parasitol 2012; 28:131-5. [PMID: 22326913 DOI: 10.1016/j.pt.2012.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
Apicomplexan zoites enter host cells by forming and actively moving through a tight junction (TJ) formed between the parasite and host cell surfaces. Although the TJ was first described decades ago, its molecular characterization has proved difficult mainly because of its transient existence during an internalization process that lasts only seconds. In the past 7 years, work has led to a model of the TJ in which the association between AMA1 and RON proteins structures the TJ and bridges the cytoskeletons of the two cells. However, more recent work questions this view. Here, we critically discuss the current model and speculate on alternative models of the AMA1-RON association and of the apicomplexan TJ.
Collapse
Affiliation(s)
- Daniel Bargieri
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, 75015 Paris, France
| | | | | | | |
Collapse
|
49
|
Montagna GN, Buscaglia CA, Münter S, Goosmann C, Frischknecht F, Brinkmann V, Matuschewski K. Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 2011; 287:2410-22. [PMID: 22139844 DOI: 10.1074/jbc.m111.302109] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plasmodium sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory proteins appear to be encoded in the Plasmodium genome. Small heat shock proteins have been associated with cytoskeleton modulation in various biological processes. In this study, we identify HSP20 as a novel player in Plasmodium motility and provide molecular genetics evidence for a critical role of a small heat shock protein in cell traction and motility. We demonstrate that HSP20 ablation profoundly affects sporozoite-substrate adhesion, which translates into aberrant speed and directionality in vitro. Loss of HSP20 function impairs migration in the host, an important sporozoite trait required to find a blood vessel and reach the liver after being deposited in the skin by the mosquito. Our study also shows that fast locomotion of sporozoites is crucial during natural malaria transmission.
Collapse
|
50
|
Farrow RE, Green J, Katsimitsoulia Z, Taylor WR, Holder AA, Molloy JE. The mechanism of erythrocyte invasion by the malarial parasite, Plasmodium falciparum. Semin Cell Dev Biol 2011; 22:953-60. [DOI: 10.1016/j.semcdb.2011.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/29/2011] [Indexed: 10/24/2022]
|