1
|
Tidei JJ, Oakes PW, Beach JR. Myosin 2 - A general contractor for the cytoskeleton. Curr Opin Cell Biol 2025; 94:102522. [PMID: 40319507 DOI: 10.1016/j.ceb.2025.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025]
Abstract
Cells derive their shape, and in turn much of their behavior, from the organization of the cytoskeleton. While a myriad of proteins contribute to the regulation and organization of this dynamic structure, two of the principal components are actin filaments, which provide the structure, and myosin motors, which generate the majority of the forces. Here we review recent results on the assembly and kinetics of non-muscle myosin 2, and highlight how the cellular environment modulates local myosin behavior and signaling.
Collapse
Affiliation(s)
- Joseph J Tidei
- Dept. Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Patrick W Oakes
- Dept. Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| | - Jordan R Beach
- Dept. Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| |
Collapse
|
2
|
Au FK, Le KT, Liao Z, Lin Z, Shen Y, Tong P, Zhang M, Qi RZ. Calponin-homology domain of GAS2L1 promotes formation of stress fibers and focal adhesions. Mol Biol Cell 2025; 36:ar47. [PMID: 39969983 PMCID: PMC12005110 DOI: 10.1091/mbc.e24-10-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Growth arrest-specific 2-like 1 protein (GAS2L1) binds both actin and microtubules through its unique structural domains: a calponin-homology (CH) domain for actin binding and a GAS2-related (GAR) domain for microtubule interaction. In this study, we demonstrate that GAS2L1 promotes stress fiber assembly, enhances focal adhesion formation, and stabilizes cytoskeletal networks against mechanical perturbation through its CH domain. Remarkably, we show that the CH domain dimerizes and induces actin filament bundling and stabilization both in cells and in vitro. The CH and GAR domains interact to form an autoinhibitory module, wherein the GAR domain suppresses CH domain dimerization and actin-bundling activity. Our findings provide novel insights into the regulatory mechanisms of GAS2L1's autoinhibition and identify the CH domain as a critical actin-bundling factor that contributes to the organization of stress fibers and focal adhesions.
Collapse
Affiliation(s)
- Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Khoi T.D. Le
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhitao Liao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhijie Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Penger Tong
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| |
Collapse
|
3
|
McNicol GR, Dalby MJ, Stewart PS. A theoretical model for focal adhesion and cytoskeleton formation in non-motile cells. J Theor Biol 2025; 596:111965. [PMID: 39442686 DOI: 10.1016/j.jtbi.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
To function and survive cells need to be able to sense and respond to their local environment through mechanotransduction. Crucially, mechanical and biochemical perturbations initiate cell signalling cascades, which can induce responses such as growth, apoptosis, proliferation and differentiation. At the heart of this process are actomyosin stress fibres (SFs), which form part of the cell cytoskeleton, and focal adhesions (FAs), which bind this cytoskeleton to the extra-cellular matrix (ECM). The formation and maturation of these structures (connected by a positive feedback loop) is pivotal in non-motile cells, where SFs are generally of ventral type, interconnecting FAs and producing isometric tension. In this study we formulate a one-dimensional bio-chemo-mechanical continuum model to describe the coupled formation and maturation of ventral SFs and FAs. We use a set of reaction-diffusion-advection equations to describe three sets of biochemical events: the polymerisation of actin and subsequent bundling into activated SFs; the formation and maturation of cell-substrate adhesions; and the activation of signalling proteins in response to FA and SF formation. The evolution of these key proteins is coupled to a Kelvin-Voigt viscoelastic description of the cell cytoplasm and the ECM. We employ this model to understand how cells respond to external and intracellular cues in vitro and are able to reproduce experimentally observed phenomena including non-uniform cell striation and cells forming weaker SFs and FAs on softer substrates.
Collapse
Affiliation(s)
- Gordon R McNicol
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Peter S Stewart
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
4
|
Alisafaei F, Mandal K, Saldanha R, Swoger M, Yang H, Shi X, Guo M, Hehnly H, Castañeda CA, Janmey PA, Patteson AE, Shenoy VB. Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Commun Biol 2024; 7:658. [PMID: 38811770 PMCID: PMC11137025 DOI: 10.1038/s42003-024-06366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Kalpana Mandal
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Renita Saldanha
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Maxx Swoger
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xuechen Shi
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Carlos A Castañeda
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY, 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, 13244, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, 19104, USA
- Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY, 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Liu Y, Huang Y, Guo Z, Yang C, Li Y, Li B, Liu Y, Zheng H. Sulforaphane inhibits TGF-β-induced fibrogenesis and inflammation in human Tenon's fibroblasts. Mol Vis 2024; 30:200-210. [PMID: 39563680 PMCID: PMC11575843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/27/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose Subconjunctival fibrosis is the main cause of failure after glaucoma filtration surgery. We explored the effects of sulforaphane (SFN) on the conversion of human Tenon's fibroblasts (HTFs) into myofibroblasts, transforming growth factor (TGF)-β-induced contraction of collagen gel, and inflammation. Methods After treatment with the combination of TGF-β and SFN or TGF-β alone, primary HTFs were subjected to a three-dimensional collagen contraction experiment to examine their contractility. Levels of α smooth muscle actin (α-SMA), synthesis of extracellular matrix (ECM), and phosphorylation of various signaling molecules were determined by western blot or quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Fluorescence microscopy was employed to examine stress fiber formation in HTFs. The expressions of interleukin (IL)-6, IL-8, and connective tissue growth factor (CTGF) were determined using RT-qPCR. Results The contraction of myofibroblasts caused by TGF-β was significantly suppressed by SFN. This suppressive effect was exerted via the differentiation of HTFs into myofibroblasts by inhibiting the production of fibronectin and the expression of α-SMA. Moreover, SFN treatment reduced the expression of TGF-β-promoted integrins β1 and α5, myosin light chain (MLC) phosphorylation, and stress fiber formation, as well as the expression of IL-6, IL-8, and CTGF. Finally, TGF-β-induced Smad2/3 and extracellular signal-regulated kinase (ERK) phosphorylations were attenuated by SFN. Conclusions SFN inhibits HTF contractility, differentiation into myofibroblasts, and inflammation caused by TGF-β. These effects are mediated by both classic and non-classic signaling pathways. Our results indicate that SFN has potent anti-fibrotic and anti-inflammatory effects in HTFs and is a potential candidate for subconjunctival fibrosis therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Yangbin Huang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Zihan Guo
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Chengcheng Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Yunzepeng Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Binhui Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Hui Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| |
Collapse
|
6
|
Mizoguchi Y, Nakashima K, Sato A, Shindo A. β-adrenergic receptor regulates embryonic epithelial extensibility through actomyosin inhibition. iScience 2023; 26:108469. [PMID: 38213788 PMCID: PMC10783608 DOI: 10.1016/j.isci.2023.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
During morphogenesis, epithelial tissues reshape and expand to cover the body and organs. The molecular mechanisms of this deformability remain elusive. Here, we investigate the role of the β-adrenergic receptor (ADRB) in orchestrating actomyosin contractility, pivotal for epithelial extensibility. Chemical screens on Xenopus laevis embryos pinpointed ADRB2 as a principal regulator. ADRB2 promotes actomyosin relaxation, facilitating apical cell area expansion during body elongation. In contrast, ADRB2 knockdown results in heightened cell contraction, marked by synchronous oscillation of F-actin and myosin, impeding body elongation. ADRB2 mutants with reduced affinity for ligand binding lack the function to induce cellular relaxation, highlighting the ligand's essential roles even in the developing epidermis. Our findings unveil ADRB2's critical contribution to extensibility of the epidermis and subsequent body elongation during development. This study also offers insights into the physiology of mature epithelial organs deformed by the smooth muscle response to the adrenergic autonomic nervous system.
Collapse
Affiliation(s)
- Yohei Mizoguchi
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| | - Kaoru Nakashima
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Asako Shindo
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
7
|
Liu Y, Huang Y, Guo Z, Yang C, Li Y, Li B, Liu Y, Zheng H. Sulforaphane inhibits TGF-β-induced fibrogenesis and inflammation in human Tenon's fibroblasts. Mol Vis 2023; 29:306-316. [PMID: 38264611 PMCID: PMC10805336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/02/2023] [Indexed: 01/25/2024] Open
Abstract
Purpose Subconjunctival fibrosis is the main cause of failure after glaucoma filtration surgery. We explored the effects of sulforaphane (SFN) on the conversion of human Tenon's fibroblasts (HTFs) into myofibroblasts, transforming growth factor (TGF)-β-induced contraction of collagen gel, and inflammation. Methods After treatment with the combination of TGF-β and SFN or TGF-β alone, primary HTFs were subjected to a three-dimensional collagen contraction experiment to examine their contractility. Levels of α smooth muscle actin (α-SMA), synthesis of extracellular matrix (ECM), and phosphorylation of various signaling molecules were determined by western blot or quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Fluorescence microscopy was employed to examine stress fiber formation in HTFs. The expressions of interleukin (IL)-6, IL-8, and connective tissue growth factor (CTGF) were determined using RT-qPCR. Results The contraction of myofibroblasts caused by TGF-β was significantly suppressed by SFN. This suppressive effect was exerted via the differentiation of HTFs into myofibroblasts by inhibiting the production of fibronectin and the expression of α-SMA. Moreover, SFN treatment reduced the expression of TGF-β-promoted integrins β1 and α5, myosin light chain (MLC) phosphorylation, and stress fiber formation, as well as the expression of IL-6, IL-8, and CTGF. Finally, TGF-β-induced Smad2/3 and extracellular signal-regulated kinase (ERK) phosphorylations were attenuated by SFN. Conclusions SFN inhibits HTF contractility, differentiation into myofibroblasts, and inflammation caused by TGF-β. These effects are mediated by both classic and non-classic signaling pathways. Our results indicate that SFN has potent anti-fibrotic and anti-inflammatory effects in HTFs and is a potential candidate for subconjunctival fibrosis therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Yangbin Huang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Zihan Guo
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Chengcheng Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Yunzepeng Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Binhui Li
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| | - Hui Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, PR China
| |
Collapse
|
8
|
Hoshino A, Clemente V, Shetty M, Castle B, Odde D, Bazzaro M. The microtubule-severing protein UNC-45A preferentially binds to curved microtubules and counteracts the microtubule-straightening effects of Taxol. J Biol Chem 2023; 299:105355. [PMID: 37858676 PMCID: PMC10654038 DOI: 10.1016/j.jbc.2023.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Uncoordinated protein 45A (UNC-45A) is the only known ATP-independent microtubule (MT)-severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells, UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT-severing proteins on MT lattice curvature is largely undefined. Here, we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and total internal fluorescence microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT-straightening effects of the drug.
Collapse
Affiliation(s)
- Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Valentino Clemente
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Castle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
9
|
Hoshino A, Clemente V, Shetty M, Castle B, Odde D, Bazzaro M. The Microtubule Severing Protein UNC-45A Counteracts the Microtubule Straightening Effects of Taxol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557417. [PMID: 37745537 PMCID: PMC10515786 DOI: 10.1101/2023.09.12.557417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
UNC-45A is the only known ATP-independent microtubule (MT) severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT severing proteins on MT lattice curvature is largely undefined. Here we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and TIRF microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT straightening effects of the drug. Significance: Our findings reveal for the first time that UNC-45A increases MT curvature. This hints that UNC-45A-mediated MT severing could be due to the worsening of MT curvature and provide a mechanistic understanding of how this MT-severing protein may act. UNC-45A is the only MT severing protein expressed in human cancers, including paclitaxel-resistant ovarian cancer. Our finding that UNC-45A counteracts the paclitaxel-straightening effects of MTs in cells suggests an additional mechanism through which cancer cells escape drug treatment.
Collapse
|
10
|
Myosin light chain phosphorylation exhibits a gradient across the wall of cerebellar arteries under sustained ex vivo vascular tone. Sci Rep 2023; 13:909. [PMID: 36650375 PMCID: PMC9845333 DOI: 10.1038/s41598-023-28092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Small blood vessel diseases are often associated with impaired regulation of vascular tone. The current understanding of resistance arteries often focuses on how a level of vascular tone is achieved in the acute phase, while less emphasis is placed on mechanisms that maintain vascular tone. In this study, cannulated rat superior cerebellar arteries (SCA) developed spontaneous myogenic tone and showed a marked and sustained constriction in the presence of diluted serum (10%), a stimulus relevant to cerebrovascular disease. Both phosphorylated myosin light chain (MLC-p) and smooth muscle alpha actin (SM-α-actin) aligned with phalloidin-stained actin filaments in the vessel wall, while exhibiting a 'high to low' gradient across the layers of vascular smooth muscle cells (VSMC), peaking in the outer layer. The MLC-p distribution profile shifted towards the adventitia in serum treated vessels, while removal of the serum reversed it. Furthermore, a positive correlation between the MLC-p signal and vessel wall tension was also evident. The gradients of phosphorylated MLC and SM-α-actin are consistent with a spatial regulation of the myosin-actin apparatus in the vessel wall during the maintenance of vascular tone. Further, the changing profiles of MLC-p and SM-α-actin are consistent with SCA vasoconstriction being accompanied by VSMC cytoskeletal reorganization.
Collapse
|
11
|
Hoffman LM, Jensen CC, Beckerle MC. Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Mol Biol Cell 2022; 33:ar100. [PMID: 35767320 DOI: 10.1091/mbc.e22-02-0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small heat shock protein HspB1, also known as Hsp25/27, is a ubiquitously expressed molecular chaperone that responds to mechanical cues. Uniaxial cyclic stretch activates the p38 mitogen-activated protein kinase (MAPK) signaling cascade and increases the phosphorylation of HspB1. Similar to the mechanosensitive cytoskeletal regulator zyxin, phospho-HspB1 is recruited to features of the stretch-stimulated actin cytoskeleton. To evaluate the role of HspB1 and its phosphoregulation in modulating cell function, we utilized CRISPR/Cas9-edited HspB1-null cells and determined they were altered in behaviors such as actin cytoskeletal remodeling, cell spreading, and cell motility. In our model system, expression of WT HspB1, but not nonphosphorylatable HspB1, rescued certain characteristics of the HspB1-null cells including the enhanced cell motility of HspB1-null cells and the deficient actin reinforcement of stretch-stimulated HspB1-null cells. The recruitment of HspB1 to high-tension structures in geometrically constrained cells, such as actin comet tails emanating from focal adhesions, also required a phosphorylatable HspB1. We show that mechanical signals activate posttranslational regulation of the molecular chaperone, HspB1, and are required for normal cell behaviors including actin cytoskeletal remodeling, cell spreading, and cell migration.
Collapse
Affiliation(s)
- Laura M Hoffman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Mary C Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112.,Department of Biology, University of Utah, Salt Lake City, UT 84112.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
12
|
Saito T, Matsunaga D, Deguchi S. Analysis of chemomechanical behavior of stress fibers by continuum mechanics-based FRAP. Biophys J 2022; 121:2921-2930. [PMID: 35778840 PMCID: PMC9388576 DOI: 10.1016/j.bpj.2022.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a common technique to analyze the turnover of molecules in living cells. Numerous physicochemical models have been developed to quantitatively evaluate the rate of turnover driven by chemical reaction and diffusion that occurs in a few seconds to minutes. On the other hand, they have limitations in interpreting long-term FRAP responses where intracellular active movement inevitably provides target molecular architectures with additional effects other than chemical reaction and diffusion, namely directed transport and structural deformation. To overcome the limitations, we develop a continuum mechanics-based model that allows for decoupling FRAP response into the intrinsic turnover rate and subcellular mechanical characteristics such as displacement vector and strain tensor. Our approach was validated using fluorescently labeled β-actin in an actomyosin-mediated contractile apparatus called stress fibers, revealing spatially distinct patterns of the multi-physicochemical events, in which the turnover rate, which represents effective off-rate of β-actin, was significantly higher at the center of the cell. We also found that the turnover rate is negatively correlated with the rate of displacement or velocity along stress fibers but, interestingly, not with the absolute magnitude of strain. Moreover, stress fibers are subjected to centripetal flow that is facilitated by the circulation of actin molecules. Taken together, this novel framework for long-term FRAP analysis allows for unveiling the contribution of overlooked microscopic mechanics to molecular turnover in living cells.
Collapse
Affiliation(s)
- Takumi Saito
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
13
|
Canet-Jourdan C, Pagès DL, Nguyen-Vigouroux C, Cartry J, Zajac O, Desterke C, Lopez JB, Gutierrez-Mateyron E, Signolle N, Adam J, Raingeaud J, Polrot M, Gonin P, Mathieu JRR, Souquere S, Pierron G, Gelli M, Dartigues P, Ducreux M, Barresi V, Jaulin F. Patient-derived organoids identify an apico-basolateral polarity switch associated with survival in colorectal cancer. J Cell Sci 2022; 135:276070. [PMID: 35703098 DOI: 10.1242/jcs.259256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
The metastatic progression of cancer remains a major issue in patient treatment. Yet, the molecular and cellular mechanisms underlying this process remains unclear. Here, we use primary explants and organoids from patients harboring mucinous colorectal carcinoma (MUC CRC), a poor prognosis histological form of digestive cancers, to study the architecture, invasive behavior and chemoresistance of tumor cell intermediates. We report that these tumors maintain a robust apico-basolateral polarity as they spread in the peritumoral stroma or organotypic collagen-I gels. We identified two distinct topologies: MUC CRCs either display a conventional "apical-in" polarity or, more frequently, harbor an inverted "apical-out" topology. Transcriptomic analyses combined with interference experiments on organoids showed that TGFb and focal adhesion signaling pathways are the main drivers of polarity orientation. Finally, this apical-out topology is associated with increased resistance to chemotherapeutic treatments in organoids and decreased patient survival in the clinic. Thus, patient-derived organoids have the potential to bridge histological, cellular and molecular analyses to decrypt onco-morphogenic programs and stratify cancer patients.
Collapse
Affiliation(s)
| | | | | | - Jérôme Cartry
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| | - Olivier Zajac
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | | | | | | | - Nicolas Signolle
- INSERM Unit U981, Experimental Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Julien Adam
- INSERM Unit U981, Experimental Pathology, Gustave Roussy, 94805 Villejuif, France
| | - Joel Raingeaud
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| | - Mélanie Polrot
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/ US 23, Gustave Roussy, Villejuif, F-94805, France
| | - Patrick Gonin
- Plateforme d'Evaluation Préclinique, AMMICA UMS 3655/ US 23, Gustave Roussy, Villejuif, F-94805, France
| | | | | | | | - Maximiliano Gelli
- Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France
| | - Peggy Dartigues
- Pathology Department, Gustave Roussy, Villejuif, F-94805, France
| | - Michel Ducreux
- Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France.,Paris-Saclay University, Saint-Aubin, F-91190, France
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona 37129, Italia
| | - Fanny Jaulin
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France
| |
Collapse
|
14
|
Sugita S, Hozaki M, Matsui TS, Nagayama K, Deguchi S, Nakamura M. Polarized light retardation analysis allows for the evaluation of tension in individual stress fibers. Biochem Biophys Res Commun 2022; 620:49-55. [DOI: 10.1016/j.bbrc.2022.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
15
|
Bernal R, Van Hemelryck M, Gurchenkov B, Cuvelier D. Actin Stress Fibers Response and Adaptation under Stretch. Int J Mol Sci 2022; 23:ijms23095095. [PMID: 35563485 PMCID: PMC9101353 DOI: 10.3390/ijms23095095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
One of the many effects of soft tissues under mechanical solicitation in the cellular damage produced by highly localized strain. Here, we study the response of peripheral stress fibers (SFs) to external stretch in mammalian cells, plated onto deformable micropatterned substrates. A local fluorescence analysis reveals that an adaptation response is observed at the vicinity of the focal adhesion sites (FAs) due to its mechanosensor function. The response depends on the type of mechanical stress, from a Maxwell-type material in compression to a complex scenario in extension, where a mechanotransduction and a self-healing process takes place in order to prevent the induced severing of the SF. A model is proposed to take into account the effect of the applied stretch on the mechanics of the SF, from which relevant parameters of the healing process are obtained. In contrast, the repair of the actin bundle occurs at the weak point of the SF and depends on the amount of applied strain. As a result, the SFs display strain-softening features due to the incorporation of new actin material into the bundle. In contrast, the response under compression shows a reorganization with a constant actin material suggesting a gliding process of the SFs by the myosin II motors.
Collapse
Affiliation(s)
- Roberto Bernal
- Cellular Mechanics Laboratory, Physics Department, SMAT-C, Universidad de Santiago de Chile, Santiago 9170124, Chile;
- Correspondence: (R.B.); (D.C.)
| | - Milenka Van Hemelryck
- Cellular Mechanics Laboratory, Physics Department, SMAT-C, Universidad de Santiago de Chile, Santiago 9170124, Chile;
| | - Basile Gurchenkov
- Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié Salpêtrière, 47 bd de l’Hôpital, 75013 Paris, France;
| | - Damien Cuvelier
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 926 Chemistry, 75005 Paris, France
- Institut Pierre Gilles de Gennes, Paris Sciences et Lettres Research University, 75005 Paris, France
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
- Correspondence: (R.B.); (D.C.)
| |
Collapse
|
16
|
Marivin A, Ho RXY, Garcia-Marcos M. DAPLE orchestrates apical actomyosin assembly from junctional polarity complexes. J Biophys Biochem Cytol 2022; 221:213115. [PMID: 35389423 PMCID: PMC8996326 DOI: 10.1083/jcb.202111002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Establishment of apicobasal polarity and the organization of the cytoskeleton must operate coordinately to ensure proper epithelial cell shape and function. However, the precise molecular mechanisms by which polarity complexes directly instruct the cytoskeletal machinery to determine cell shape are poorly understood. Here, we define a mechanism by which the PAR polarity complex (PAR3–PAR6–aPKC) at apical cell junctions leads to efficient assembly of the apical actomyosin network to maintain epithelial cell morphology. We found that the PAR polarity complex recruits the protein DAPLE to apical cell junctions, which in turn triggers a two-pronged mechanism that converges upon assembly of apical actomyosin. More specifically, DAPLE directly recruits the actin-stabilizing protein CD2AP to apical junctions and, concomitantly, activates heterotrimeric G protein signaling in a GPCR-independent manner to favor RhoA-myosin activation. These observations establish DAPLE as a direct molecular link between junctional polarity complexes and the formation of apical cytoskeletal assemblies that support epithelial cell shape.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Rachel Xi-Yeen Ho
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
17
|
O'Callaghan P, Engberg A, Eriksson O, Fatsis-Kavalopoulos N, Stelzl C, Sanchez G, Idevall-Hagren O, Kreuger J. Piezo1 activation attenuates thrombin-induced blebbing in breast cancer cells. J Cell Sci 2022; 135:274949. [PMID: 35274124 PMCID: PMC9016622 DOI: 10.1242/jcs.258809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells exploit a variety of migration modes to leave primary tumors and establish metastases, including amoeboid cell migration, which is typically reliant on bleb formation. Here we demonstrate that thrombin induces dynamic blebbing in the MDA-MB-231 breast cancer cell line and confirm that protease-activated receptor 1 (PAR1) activation is sufficient to induce this effect. Cell confinement has been implicated as a driving force in bleb-based migration. Unexpectedly, we found that gentle contact compression, exerted using a custom built ‘cell press’ to mechanically stimulate cells, reduced thrombin-induced blebbing. Thrombin-induced blebbing was similarly attenuated using the small molecule Yoda1, an agonist of the mechanosensitive Ca2+ channel Piezo1, and this attenuation was impaired in Piezo1-depleted cells. Additionally, Piezo1 activation suppressed thrombin-induced phosphorylation of ezrin, radixin and moesin (ERM) proteins, which are implicated in the blebbing process. Our results provide mechanistic insights into Piezo1 activation as a suppressor of dynamic blebbing, specifically that which is induced by thrombin. Summary: Thrombin and protease-activated receptor agonists induce dynamic blebbing in breast cancer cells, which can be attenuated by contact-mediated compression, and activation of the mechanosensitive ion channel Piezo1.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Christina Stelzl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Gonzalo Sanchez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Yu Y, Yoshimura SH. Investigating the morphological dynamics of the plasma membrane by high-speed atomic force microscopy. J Cell Sci 2021; 134:272010. [PMID: 34468000 DOI: 10.1242/jcs.243584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite numerous recent developments in bioimaging techniques, nanoscale and live-cell imaging of the plasma membrane has been challenging because of the insufficient z-resolution of optical microscopes, as well as the lack of fluorescent probes to specifically label small membrane structures. High-speed atomic force microscopy (HS-AFM) is a powerful tool for visualising the dynamics of a specimen surface and is therefore suitable for observing plasma membrane dynamics. Recent developments in HS-AFM for live-cell imaging have enabled the visualisation of the plasma membrane and the network of cortical actin underneath the membrane in a living cell. Furthermore, correlative imaging with fluorescence microscopy allows for the direct visualisation of morphological changes of the plasma membrane together with the dynamic assembly or disassembly of proteins during the entire course of endocytosis in a living cell. Here, we review these recent advances in HS-AFM in order to analyse various cellular events occurring at the cell surface.
Collapse
Affiliation(s)
- Yiming Yu
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Vignaud T, Copos C, Leterrier C, Toro-Nahuelpan M, Tseng Q, Mahamid J, Blanchoin L, Mogilner A, Théry M, Kurzawa L. Stress fibres are embedded in a contractile cortical network. NATURE MATERIALS 2021; 20:410-420. [PMID: 33077951 PMCID: PMC7610471 DOI: 10.1038/s41563-020-00825-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/14/2020] [Indexed: 05/06/2023]
Abstract
Contractile actomyosin networks are responsible for the production of intracellular forces. There is increasing evidence that bundles of actin filaments form interconnected and interconvertible structures with the rest of the network. In this study, we explored the mechanical impact of these interconnections on the production and distribution of traction forces throughout the cell. By using a combination of hydrogel micropatterning, traction force microscopy and laser photoablation, we measured the relaxation of traction forces in response to local photoablations. Our experimental results and modelling of the mechanical response of the network revealed that bundles were fully embedded along their entire length in a continuous and contractile network of cortical filaments. Moreover, the propagation of the contraction of these bundles throughout the entire cell was dependent on this embedding. In addition, these bundles appeared to originate from the alignment and coalescence of thin and unattached cortical actin filaments from the surrounding mesh.
Collapse
Affiliation(s)
- Timothée Vignaud
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
- Clinique de Chirurgie Digestive et Endocrinienne, Hôtel Dieu, Nantes, France
| | - Calina Copos
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Christophe Leterrier
- NeuroCyto, Institute of NeuroPhysiopathology (INP), CNRS, Aix Marseille Université, Marseille, France
| | - Mauricio Toro-Nahuelpan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Qingzong Tseng
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laurent Blanchoin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Manuel Théry
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| | - Laetitia Kurzawa
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble-Alpes University/CEA/CNRS/INRA, Grenoble, France.
- CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Université Paris Diderot/CEA/INSERM, Paris, France.
| |
Collapse
|
20
|
Affiliation(s)
- Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK.
- Department of Cell and Developmental Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
21
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
22
|
Mukherjee A, Barai A, Singh RK, Yan W, Sen S. Nuclear plasticity increases susceptibility to damage during confined migration. PLoS Comput Biol 2020; 16:e1008300. [PMID: 33035221 PMCID: PMC7577492 DOI: 10.1371/journal.pcbi.1008300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/21/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023] Open
Abstract
Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage. Stiffness of the nucleus is known to impede migration of cells through dense matrices. Nuclear translocation through small pores is achieved by active deformation of the nucleus by the cytoskeleton. However, stresses on the nucleus during confined migration may lead to nuclear damage, as observed experimentally. However, the factors contributing to nuclear damage remain incompletely understood. Here we show that plastic or permanent nuclear deformation which is necessary for successful migration through small pores in stiff matrices, also leads to bending of the nuclear membrane. We propose that this bending precedes nuclear blebs which are experimentally observed.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
- Dept. of Mechanical Engineering, IIT Bombay, Mumbai, India
- Dept. of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Amlan Barai
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | | | - Wenyi Yan
- Dept. of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
- * E-mail: (WY); (SS)
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
- * E-mail: (WY); (SS)
| |
Collapse
|
23
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
24
|
Tsumoto K, Sakuta H, Takiguchi K, Yoshikawa K. Nonspecific characteristics of macromolecules create specific effects in living cells. Biophys Rev 2020; 12:425-434. [PMID: 32144739 PMCID: PMC7242541 DOI: 10.1007/s12551-020-00673-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, the important role of microphase separation in living cells has been attracting considerable interest in relation to cell organization and function. For example, many studies have focused on liquid-liquid phase separation (LLPS) as a very plausible mechanism for the presence of membraneless organelles. To confirm the role of phase separation in living cells, experimental studies on models and/or reconstructed systems are needed. In this short review, we discuss current paradigms of LLPS and provide some example "review data" to demonstrate particular points relating to the specific localization of biological macromolecules like DNAs and actin proteins with spontaneous domain formation in microdroplets emerging in an aqueous two-phase system (ATPS) (we use polyethylene glycol (PEG)/dextran (DEX)-a binary polymer solution). We also suggest that phase separation and transition may play basic roles in regulation of the biochemical reactivity of individual long genomic DNAs.
Collapse
Affiliation(s)
- Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, 514-8507, Japan.
| | - Hiroki Sakuta
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kingo Takiguchi
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kenichi Yoshikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| |
Collapse
|
25
|
Senger F, Pitaval A, Ennomani H, Kurzawa L, Blanchoin L, Théry M. Spatial integration of mechanical forces by α-actinin establishes actin network symmetry. J Cell Sci 2019; 132:jcs.236604. [PMID: 31615968 DOI: 10.1242/jcs.236604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Cell and tissue morphogenesis depend on the production and spatial organization of tensional forces in the actin cytoskeleton. Actin network architecture is made of distinct modules characterized by specific filament organizations. The assembly of these modules are well described, but their integration in a cellular network is less understood. Here, we investigated the mechanism regulating the interplay between network architecture and the geometry of the extracellular environment of the cell. We found that α-actinin, a filament crosslinker, is essential for network symmetry to be consistent with extracellular microenvironment symmetry. It is required for the interconnection of transverse arcs with radial fibres to ensure an appropriate balance between forces at cell adhesions and across the actin network. Furthermore, this connectivity appeared necessary for the ability of the cell to integrate and to adapt to complex patterns of extracellular cues as they migrate. Our study has unveiled a role of actin filament crosslinking in the spatial integration of mechanical forces that ensures the adaptation of intracellular symmetry axes in accordance with the geometry of extracellular cues.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabrice Senger
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorphoLab, 3800, Grenoble, France
| | - Amandine Pitaval
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorphoLab, 3800, Grenoble, France.,Université Grenoble-Alpes, CEA, INRA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, Biomics Lab, 38000 Grenoble, France
| | - Hajer Ennomani
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorphoLab, 3800, Grenoble, France
| | - Laetitia Kurzawa
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorphoLab, 3800, Grenoble, France
| | - Laurent Blanchoin
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorphoLab, 3800, Grenoble, France .,Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS 1160, CytoMorphoLab, 75010 Paris, France
| | - Manuel Théry
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorphoLab, 3800, Grenoble, France .,Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS 1160, CytoMorphoLab, 75010 Paris, France
| |
Collapse
|
26
|
Bildyug N. Extracellular Matrix in Regulation of Contractile System in Cardiomyocytes. Int J Mol Sci 2019; 20:E5054. [PMID: 31614676 PMCID: PMC6834325 DOI: 10.3390/ijms20205054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The contractile apparatus of cardiomyocytes is considered to be a stable system. However, it undergoes strong rearrangements during heart development as cells progress from their non-muscle precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the culture system are described along with the extracellular matrix alterations. The data supporting the regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of such regulation are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia.
| |
Collapse
|
27
|
Zhang Q, Narayanan V, Mui KL, O'Bryan CS, Anderson RH, Kc B, Cabe JI, Denis KB, Antoku S, Roux KJ, Dickinson RB, Angelini TE, Gundersen GG, Conway DE, Lele TP. Mechanical Stabilization of the Glandular Acinus by Linker of Nucleoskeleton and Cytoskeleton Complex. Curr Biol 2019; 29:2826-2839.e4. [PMID: 31402305 PMCID: PMC6736724 DOI: 10.1016/j.cub.2019.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/03/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
The nucleoskeleton and cytoskeleton are important protein networks that govern cellular behavior and are connected together by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Mutations in LINC complex components may be relevant to cancer, but how cell-level changes might translate into tissue-level malignancy is unclear. We used glandular epithelial cells in a three-dimensional culture model to investigate the effect of perturbations of the LINC complex on higher order cellular architecture. We show that inducible LINC complex disruption in human mammary epithelial MCF-10A cells and canine kidney epithelial MDCK II cells mechanically destabilizes the acinus. Lumenal collapse occurs because the acinus is unstable to increased mechanical tension that is caused by upregulation of Rho-kinase-dependent non-muscle myosin II motor activity. These findings provide a potential mechanistic explanation for how disruption of LINC complex may contribute to a loss of tissue structure in glandular epithelia.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Keeley L Mui
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | - Birendra Kc
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kevin B Denis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
29
|
Matsui TS, Deguchi S. Spatially selective myosin regulatory light chain regulation is absent in dedifferentiated vascular smooth muscle cells but is partially induced by fibronectin and Klf4. Am J Physiol Cell Physiol 2019; 316:C509-C521. [DOI: 10.1152/ajpcell.00251.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of myosin regulatory light chain (MRLC) is central to the regulation of contractility that impacts cellular homeostasis and fate decisions. Rho-kinase (ROCK) and myosin light chain kinase (MLCK) are major kinases for MRLC documented to selectively regulate MRLC in a subcellular position-specific manner; specifically, MLCK in some nonmuscle cell types works in the cell periphery to promote migration, while ROCK does so at the central region to sustain contractility. However, it remains unclear whether or not the spatially selective regulation of the MRLC kinases is universally present in other cell types, including dedifferentiated vascular smooth muscle cells (SMCs). Here, we demonstrate the absence of the spatial regulation in dedifferentiated SMCs using both cell lines and primary cells. Thus, our work is distinct from previous reports on cells with migratory potential. We also observed that the spatial regulation is partly induced upon fibronectin stimulation and Krüppel-like factor 4 overexpression. To find clues to the mechanism, we reveal how the phosphorylation state of MRLC is determined within dedifferentiated A7r5 SMCs under the enzymatic competition among three major regulators ROCK, MLCK, and MRLC phosphatase (MLCP). We show that ROCK, but not MLCK, predominantly regulates the MRLC phosphorylation in a manner distinct from previous in vitro-based and in silico-based reports. In this ROCK-dominating cellular system, the contractility at physiological conditions was regulated at the level of MRLC diphosphorylation, because its monophosphorylation is already saturated. Thus, the present study provides insights into the molecular basis underlying the absence of spatial MRLC regulation in dedifferentiated SMCs.
Collapse
Affiliation(s)
- Tsubasa S. Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Brizendine RK, Anuganti M, Cremo CR. Using the SpyTag SpyCatcher system to label smooth muscle myosin II filaments with a quantum dot on the regulatory light chain. Cytoskeleton (Hoboken) 2019; 76:192-199. [PMID: 30861328 DOI: 10.1002/cm.21516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 11/07/2022]
Abstract
The regulatory light chain (RLC) of myosin is commonly tagged to monitor myosin behavior in vitro, in muscle fibers, and in cells. The goal of this study was to prepare smooth muscle myosin (SMM) filaments containing a single head labeled with a quantum dot (QD) on the RLC. We show that when the RLC is coupled to a QD at Cys-108 and exchanged into SMM, subsequent filament assembly is severely disrupted. To address this, we used a novel approach for myosin by implementing the SpyTag002 SpyCatcher002 system to prepare SMM incorporated with RLC constructs fused to SpyTag or SpyCatcher. We show that filament assembly, actin-activated steady-state ATPase activities, ability to be phosphorylated, and selected enzymatic and mechanical properties were essentially unaffected if either SpyTag or SpyCatcher were fused to the C-terminus of the RLC. Crucially for our application, we also show that a QD coupled to SpyCatcher can be covalently attached to a RLC-Spy incorporated into a SMM filament without disrupting the filament, and that the filaments can move along actin in vitro.
Collapse
Affiliation(s)
| | - Murali Anuganti
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | | |
Collapse
|
31
|
van Kelle MAJ, Khalil N, Foolen J, Loerakker S, Bouten CVC. Increased Cell Traction-Induced Prestress in Dynamically Cultured Microtissues. Front Bioeng Biotechnol 2019; 7:41. [PMID: 30915330 PMCID: PMC6422899 DOI: 10.3389/fbioe.2019.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
Prestress is a phenomenon present in many cardiovascular tissues and has profound implications on their in vivo functionality. For instance, the in vivo mechanical properties are altered by the presence of prestress, and prestress also influences tissue growth and remodeling processes. The development of tissue prestress typically originates from complex growth and remodeling phenomena which yet remain to be elucidated. One particularly interesting mechanism in which prestress develops is by active traction forces generated by cells embedded in the tissue by means of their actin stress fibers. In order to understand how these traction forces influence tissue prestress, many have used microfabricated, high-throughput, micrometer scale setups to culture microtissues which actively generate prestress to specially designed cantilevers. By measuring the displacement of these cantilevers, the prestress response to all kinds of perturbations can be monitored. In the present study, such a microfabricated tissue gauge platform was combined with the commercially available Flexcell system to facilitate dynamic cyclic stretching of microtissues. First, the setup was validated to quantify the dynamic microtissue stretch applied during the experiments. Next, the microtissues were subjected to a dynamic loading regime for 24 h. After this interval, the prestress increased to levels over twice as high compared to static controls. The prestress in these tissues was completely abated when a ROCK-inhibitor was added, showing that the development of this prestress can be completely attributed to the cell-generated traction forces. Finally, after switching the microtissues back to static loading conditions, or when removing the ROCK-inhibitor, prestress magnitudes were restored to original values. These findings show that intrinsic cell-generated prestress is a highly controlled parameter, where the actin stress fibers serve as a mechanostat to regulate this prestress. Since almost all cardiovascular tissues are exposed to a dynamic loading regime, these findings have important implications for the mechanical testing of these tissues, or when designing cardiovascular tissue engineering therapies.
Collapse
Affiliation(s)
- Mathieu A J van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nilam Khalil
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jasper Foolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
32
|
Photoelasticity-based evaluation of cellular contractile force for phenotypic discrimination of vascular smooth muscle cells. Sci Rep 2019; 9:3960. [PMID: 30850684 PMCID: PMC6408479 DOI: 10.1038/s41598-019-40578-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have two distinct phenotypes: contractile and synthetic. The major difference between these phenotypes lies in the magnitude of the contractile force produced by the cell. Although traction force microscopy (TFM) is often used to evaluate cellular contractile force, this method requires complex preprocessing and a sufficiently compliant substrate. To evaluate the contractile force and the phenotype of living VSMCs with minimal effort and in a manner independent of the substrate stiffness, we propose a photoelasticity-based method using retardation, which is related to the difference between the first and second principal stresses and their orientation. The results demonstrate that actin filaments co-localize with areas of high retardation in cells, indicating that the retardation of VSMCs is promoted by actin filaments. The retardation of cells treated with calyculin A and Y-27632 tended to be larger and smaller, respectively, than that of control cells. Cell traction force significantly correlates with total cell retardation (r2 = 0.38). The retardation of contractile VSMCs (passage 2) was significantly higher than that of synthetic VSMCs (passage 12). These results indicate that cell retardation can be used to assess cell contractile force and, thus, determine the phenotype of VSMCs.
Collapse
|
33
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 604] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Chagnon-Lessard S, Jean-Ruel H, Godin M, Pelling AE. Cellular orientation is guided by strain gradients. Integr Biol (Camb) 2018; 9:607-618. [PMID: 28534911 DOI: 10.1039/c7ib00019g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strain-induced reorientation response of cyclically stretched cells has been well characterized in uniform strain fields. In the present study, we comprehensively analyse the behaviour of human fibroblasts subjected to a highly non-uniform strain field within a polymethylsiloxane microdevice. Our results indicate that the strain gradient amplitude and direction regulate cell reorientation through a coordinated gradient avoidance response. We provide critical evidence that strain gradient is a key physical cue that can guide cell organization. Specifically, our work suggests that cells are able to pinpoint the location under the cell of multiple physical cues and integrate this information (strain and strain gradient amplitudes and directions), resulting in a coordinated response. To gain insight into the underlying mechanosensing processes, we studied focal adhesion reorganization and the effect of modulating myosin-II contractility. The extracted focal adhesion orientation distributions are similar to those obtained for the cell bodies, and their density is increased by the presence of stretching forces. Moreover, it was found that the myosin-II activity promoter calyculin-A has little effect on the cellular response, while the inhibitor blebbistatin suppresses cell and focal adhesion alignment and reduces focal adhesion density. These results confirm that similar internal structures involved in sensing and responding to strain direction and amplitude are also key players in strain gradient mechanosensing and avoidance.
Collapse
Affiliation(s)
- Sophie Chagnon-Lessard
- Department of Physics, Center for Interdisciplinary Nanophysics, University of Ottawa, 598 King Edward, Ottawa, ON K1N 6N5, Canada.
| | | | | | | |
Collapse
|
35
|
Nikmaneshi M, Firoozabadi B, Saidi M. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell. J Biomech 2018; 67:37-45. [DOI: 10.1016/j.jbiomech.2017.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022]
|
36
|
Oria R, Wiegand T, Escribano J, Elosegui-Artola A, Uriarte JJ, Moreno-Pulido C, Platzman I, Delcanale P, Albertazzi L, Navajas D, Trepat X, García-Aznar JM, Cavalcanti-Adam EA, Roca-Cusachs P. Force loading explains spatial sensing of ligands by cells. Nature 2017; 552:219-224. [PMID: 29211717 DOI: 10.1038/nature24662] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.
Collapse
Affiliation(s)
- Roger Oria
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain
| | - Tina Wiegand
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany.,Heidelberg University, D-69120 Heidelberg, Germany
| | - Jorge Escribano
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | | | - Cristian Moreno-Pulido
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Ilia Platzman
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany.,Heidelberg University, D-69120 Heidelberg, Germany
| | - Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 08028 Barcelona, Spain
| | | | - Elisabetta Ada Cavalcanti-Adam
- Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany.,Heidelberg University, D-69120 Heidelberg, Germany
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain.,University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
37
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
38
|
Sakamoto Y, Buchanan RM, Sanchez-Adams J, Guilak F, Sacks MS. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach. J Biomech Eng 2017; 139:2595420. [PMID: 28024085 DOI: 10.1115/1.4035557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/20/2023]
Abstract
The function of the heart valve interstitial cells (VICs) is intimately connected to heart valve tissue remodeling and repair, as well as the onset and progression of valvular pathological processes. There is yet only very limited knowledge and extant models for the complex three-dimensional VIC internal stress-bearing structures, the associated cell-level biomechanical behaviors, and how they change under varying activation levels. Importantly, VICs are known to exist and function within the highly dynamic valve tissue environment, including very high physiological loading rates. Yet we have no knowledge on how these factors affect VIC function. To this end, we extended our previous VIC computational continuum mechanics model (Sakamoto, et al., 2016, "On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model," J. Mech. Behav. Biomed. Mater., 54(244-258)). to incorporate realistic stress-fiber geometries, force-length relations (Hill model for active contraction), explicit α-smooth muscle actin (α-SMA) and F-actin expression levels, and strain rate. Novel micro-indentation measurements were then performed using cytochalasin D (CytoD), variable KCl molar concentrations, both alone and with transforming growth factor β1 (TGF-β1) (which emulates certain valvular pathological processes) to explore how α-SMA and F-actin expression levels influenced stress fiber responses under quasi-static and physiological loading rates. Simulation results indicated that both F-actin and α-SMA contributed substantially to stress fiber force generation, with the highest activation state (90 mM KCL + TGF-β1) inducing the largest α-SMA levels and associated force generation. Validation was performed by comparisons to traction force microscopy studies, which showed very good agreement. Interestingly, only in the highest activation state was strain rate sensitivity observed, which was captured successfully in the simulations. These unique findings demonstrated that only VICs with high levels of αSMA expression exhibited significant viscoelastic effects. Implications of this study include greater insight into the functional role of α-SMA and F-actin in VIC stress fiber function, and the potential for strain rate-dependent effects in pathological states where high levels of α-SMA occur, which appear to be unique to the valvular cellular in vivo microenvironment.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Rachel M Buchanan
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Johannah Sanchez-Adams
- Departments of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710;Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Departments of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;Departments of Biomedical Engineering, Washington University, St. Louis, MO 63110;Departments of Developmental Biology, Washington University, St. Louis, MO 63110
| | - Michael S Sacks
- W. A. "Tex" Moncrief, Jr. Simulation-Based Engineering Science Chair I Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail:
| |
Collapse
|
39
|
Azatov M, Sun X, Suberi A, Fourkas JT, Upadhyaya A. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts. Phys Biol 2017. [PMID: 28635615 DOI: 10.1088/1478-3975/aa7acc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.
Collapse
Affiliation(s)
- Mikheil Azatov
- Department of Physics, University of Maryland, College Park, MD 20742, United States of America
| | | | | | | | | |
Collapse
|
40
|
Fredriksson-Lidman K, Van Itallie CM, Tietgens AJ, Anderson JM. Sorbin and SH3 domain-containing protein 2 (SORBS2) is a component of the acto-myosin ring at the apical junctional complex in epithelial cells. PLoS One 2017; 12:e0185448. [PMID: 28961272 PMCID: PMC5621683 DOI: 10.1371/journal.pone.0185448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
SORBS2 is a scaffolding protein associated with Abl/Arg non-receptor tyrosine kinase pathways and is known to interact with actin and several other cytoskeletal proteins in various cell types. Previous BioID proximity labeling of tight and adherens junction proteins suggested that SORBS2 is a component of the apical junction complex of epithelial cells. We asked whether SORBS2 plays a previously unappreciated role in controlling perijunctional actin and tight junction barrier function. Using super resolution imaging we confirmed that SORBS2 is localized at the apical junction complex but farther from the membrane than ZO-1 and located partially overlapping both the tight- and adherens junctions with a periodic concentration that alternates with myosin IIB in polarized epithelial cells. Overexpression of GFP-SORBS2 recruited alpha-actinin, vinculin and N-WASP, and possibly CIP4 to cellular junctions. However, CRISPR-Cas9 knock-out of SORBS2 did not alter the localization- or immunofluorescent staining intensity of these or several other junctional- and cytoskeletal proteins. SORBS2 knock-out also did not affect the barrier function as measured by TER and dextran flux; nor did it change actin-dependent junction re-assembly as measured by Ca2+-switch and Latrunculin-B wash-out assays. The kinetics of HGF-induced cell scattering and wound healing, and dextran flux increase induced by PDGF also were unaffected by SORBS2 knock-out. SORBS2 concentrates with apical junctional actin that accumulates in response to knock-down of ZO-1 and ZO-2. In spite of our finding that SORBS2 is clearly a component of the apical junction complex, it does not appear to be required for either normal tight- or adherens junction assembly, structure or function or for growth factor-mediated changes in tight junction dynamics.
Collapse
Affiliation(s)
- Karin Fredriksson-Lidman
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Christina M. Van Itallie
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amber J. Tietgens
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James M. Anderson
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
41
|
Kurzawa L, Vianay B, Senger F, Vignaud T, Blanchoin L, Théry M. Dissipation of contractile forces: the missing piece in cell mechanics. Mol Biol Cell 2017; 28:1825-1832. [PMID: 28684608 PMCID: PMC5526557 DOI: 10.1091/mbc.e16-09-0672] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics.
Collapse
Affiliation(s)
- Laetitia Kurzawa
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Benoit Vianay
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Fabrice Senger
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Timothée Vignaud
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Manuel Théry
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| |
Collapse
|
42
|
Zhang Z, Xia S, Kanchanawong P. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs. BMC Bioinformatics 2017; 18:268. [PMID: 28532442 PMCID: PMC5440974 DOI: 10.1186/s12859-017-1684-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. RESULT Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. CONCLUSION We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.
Collapse
Affiliation(s)
- Zhen Zhang
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Shumin Xia
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, 117411, Republic of Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117411, Republic of Singapore.
| |
Collapse
|
43
|
Wirshing ACE, Cram EJ. Myosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca. Mol Biol Cell 2017; 28:1937-1949. [PMID: 28331075 PMCID: PMC5541844 DOI: 10.1091/mbc.e17-01-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The contractile myoepithelial cells of the Caenorhabditis elegans somatic gonad are stretched by oocyte entry and subsequently contract to expel the fertilized embryo into the uterus. Formation of aligned, parallel actomyosin bundles during the first ovulation is triggered by oocyte entry and regulated by myosin contractility. Stress fibers—contractile actomyosin bundles—are important for cellular force production and adaptation to physical stress and have been well studied within the context of cell migration. However, less is known about actomyosin bundle formation and organization in vivo and in specialized contractile cells, such as smooth muscle and myoepithelial cells. The Caenorhabditis elegans spermatheca is a bag-like organ of 24 myoepithelial cells that houses the sperm and is the site of fertilization. During ovulation, spermathecal cells are stretched by oocyte entry and then coordinately contract to expel the fertilized embryo into the uterus. Here we use four-dimensional confocal microscopy of live animals to observe changes to spermathecal actomyosin network organization during cell stretch and contraction. Oocyte entry is required to trigger cell contraction and concomitant production of parallel actomyosin bundles. Actomyosin bundle size, connectivity, spacing, and orientation are regulated by myosin activity. We conclude that myosin drives actomyosin bundle production and that myosin activity is tightly regulated during ovulation to produce an optimally organized actomyosin network in C. elegans spermathecae.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
44
|
Lin YH, Zhen YY, Chien KY, Lee IC, Lin WC, Chen MY, Pai LM. LIMCH1 regulates nonmuscle myosin-II activity and suppresses cell migration. Mol Biol Cell 2017; 28:1054-1065. [PMID: 28228547 PMCID: PMC5391182 DOI: 10.1091/mbc.e15-04-0218] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 11/18/2022] Open
Abstract
LIMCH1 specifically associates with contractile stress fibers. The N-terminus of LIMCH1 directly interacts with the head of NM-IIA. LIMCH1 depletion modulates the myosin regulatory light chain and FAK phosphorylation. Actin stress fiber and focal adhesion are decreased in LIMCH1-depleted cells, leading to increased cell migration. Nonmuscle myosin II (NM-II) is an important motor protein involved in cell migration. Incorporation of NM-II into actin stress fiber provides a traction force to promote actin retrograde flow and focal adhesion assembly. However, the components involved in regulation of NM-II activity are not well understood. Here we identified a novel actin stress fiber–associated protein, LIM and calponin-homology domains 1 (LIMCH1), which regulates NM-II activity. The recruitment of LIMCH1 into contractile stress fibers revealed its localization complementary to actinin-1. LIMCH1 interacted with NM-IIA, but not NM-IIB, independent of the inhibition of myosin ATPase activity with blebbistatin. Moreover, the N-terminus of LIMCH1 binds to the head region of NM-IIA. Depletion of LIMCH1 attenuated myosin regulatory light chain (MRLC) diphosphorylation in HeLa cells, which was restored by reexpression of small interfering RNA–resistant LIMCH1. In addition, LIMCH1-depleted HeLa cells exhibited a decrease in the number of actin stress fibers and focal adhesions, leading to enhanced cell migration. Collectively, our data suggest that LIMCH1 plays a positive role in regulation of NM-II activity through effects on MRLC during cell migration.
Collapse
Affiliation(s)
- Yu-Hung Lin
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Yen-Yi Zhen
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - I-Ching Lee
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Wei-Chi Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 11221, Taiwan.,Genome Research Center, National Yang Ming University, Taipei 11221, Taiwan
| | - Li-Mei Pai
- Graduate Institute of Biomedical Sciences, Department of Biochemistry, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan .,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| |
Collapse
|
45
|
Hu S, Dasbiswas K, Guo Z, Tee YH, Thiagarajan V, Hersen P, Chew TL, Safran SA, Zaidel-Bar R, Bershadsky AD. Long-range self-organization of cytoskeletal myosin II filament stacks. Nat Cell Biol 2017; 19:133-141. [PMID: 28114270 DOI: 10.1038/ncb3466] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.
Collapse
Affiliation(s)
- Shiqiong Hu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kinjal Dasbiswas
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.,James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhenhuan Guo
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yee-Han Tee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | - Pascal Hersen
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Laboratoire Matire et Systèmes Complexes, UMR 7057 CNRS &Université Paris Diderot, Paris 75013, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, Virginia 20147, USA
| | - Samuel A Safran
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
Livne A, Geiger B. The inner workings of stress fibers - from contractile machinery to focal adhesions and back. J Cell Sci 2016; 129:1293-304. [PMID: 27037413 DOI: 10.1242/jcs.180927] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ventral stress fibers and focal adhesions are physically coupled structures that play key roles in cellular mechanics and force sensing. The tight functional interdependence between the two is manifested not only by their apparent proximity but also by the fact that ventral stress fibers and focal adhesions are simultaneously diminished upon actomyosin relaxation, and grow when subjected to external stretching. However, whereas the apparent co-regulation of the two structures is well-documented, the underlying mechanisms remains poorly understood. In this Commentary, we discuss some of the fundamental, yet still open questions regarding ventral stress fiber structure, its force-dependent assembly, as well as its capacity to generate force. We also challenge the common approach - i.e. ventral stress fibers are variants of the well-studied striated or smooth muscle machinery - by presenting and critically discussing alternative venues. By highlighting some of the less-explored aspects of the interplay between stress fibers and focal adhesions, we hope that this Commentary will encourage further investigation in this field.
Collapse
Affiliation(s)
- Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
47
|
The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts. Sci Rep 2016; 6:28805. [PMID: 27353427 PMCID: PMC4926206 DOI: 10.1038/srep28805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/10/2016] [Indexed: 01/15/2023] Open
Abstract
Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.
Collapse
|
48
|
Heissler SM, Sellers JR. Four things to know about myosin light chains as reporters for non-muscle myosin-2 dynamics in live cells. Cytoskeleton (Hoboken) 2016; 72:65-70. [PMID: 25712372 DOI: 10.1002/cm.21212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 11/07/2022]
Abstract
The interplay between non-muscle myosins-2 and filamentous actin results in cytoplasmic contractility which is essential for eukaryotic life. Concomitantly, there is tremendous interest in elucidating the physiological function and temporal localization of non-muscle myosin-2 in cells. A commonly used method to study the function and localization of non-muscle myosin-2 is to overexpress a fluorescent protein (FP)-tagged version of the regulatory light chain (RLC) which binds to the myosin-2 heavy chain by mass action. Caveats about this approach include findings from recent studies indicating that the RLC does not bind exclusively to the non-muscle myosin-2 heavy chain. Rather, it can also associate with the myosin heavy chains of several other classes as well as other targets than myosin. In addition, the presence of the FP moiety may compromise myosin's enzymatic and mechanical performance. This and other factors to be discussed in this commentary raise questions about the possible complications in using FP-RLC as a marker for the dynamic localization and regulatory aspects of non-muscle myosin-2 motor functions in cell biological experiments.
Collapse
Affiliation(s)
- Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
49
|
Abstract
Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions.
Collapse
Affiliation(s)
- Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | | | | |
Collapse
|
50
|
Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A 2015; 112:12705-10. [PMID: 26417073 DOI: 10.1073/pnas.1508073112] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm(2) rectangles with length:width aspect ratios of 5:1-7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.
Collapse
|